1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
|
"""
.. _topo_map_example:
Topographic Map
~~~~~~~~~~~~~~~
This is very similar to the :ref:`texture_example` example except it is
focused on plotting aerial imagery from a GeoTIFF on top of some topography
mesh.
"""
# sphinx_gallery_thumbnail_number = 4
from __future__ import annotations
import matplotlib as mpl
import matplotlib.pyplot as plt
import pyvista as pv
from pyvista import examples
# %%
# Start by loading the elevation data and a topographic map.
# Load the elevation data as a surface
elevation = examples.download_crater_topo().warp_by_scalar()
# Load the topographic map from a GeoTiff
topo_map = examples.download_crater_imagery()
topo_map = topo_map.flip_y() # flip to align to our dataset
elevation
# %%
# Let's inspect the imagery that we just loaded.
mpl.rcParams['figure.dpi'] = 500
plt.imshow(topo_map.to_array())
# %%
# Once you have a topography mesh loaded as a surface mesh
# (we use a :class:`pyvista.StructuredGrid` here) and an image loaded as a
# :class:`pyvista.Texture` using :func:`pyvista.read_texture`,
# then you can map that imagery to the surface mesh as follows:
# Bounds of the aerial imagery - given to us
bounds = (1818000, 1824500, 5645000, 5652500, 0, 3000)
# Clip the elevation dataset to the map's extent
local = elevation.clip_box(bounds, invert=False)
# Apply texturing coordinates to associate the image to the surface
local.texture_map_to_plane(use_bounds=True, inplace=True)
# %%
# Now display it. Note that the imagery is aligned as we expect.
local.plot(texture=topo_map, cpos="xy")
# %%
# And here is a 3D perspective.
local.plot(texture=topo_map)
# %%
# We could also display the entire region by extracting the surrounding region
# and plotting the texture mapped local topography and the outside area
# Extract surrounding region from elevation data
surrounding = elevation.clip_box(bounds, invert=True)
# Display with a shading technique
p = pv.Plotter()
p.add_mesh(local, texture=topo_map)
p.add_mesh(surrounding, color="white")
p.enable_eye_dome_lighting()
p.camera_position = [
(1831100.0, 5642142.0, 8168.0),
(1820841.0, 5648745.0, 1104.0),
(-0.435, 0.248, 0.865),
]
p.show()
|