1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
|
"""
.. _volume_rendering_example:
Volume Rendering
~~~~~~~~~~~~~~~~
Volume render uniform mesh types like :class:`pyvista.ImageData` or 3D
NumPy arrays.
This also explores how to extract a volume of interest (VOI) from a
:class:`pyvista.ImageData` using the
:func:`pyvista.ImageDataFilters.extract_subset` filter.
"""
# sphinx_gallery_thumbnail_number = 3
from __future__ import annotations
import pyvista as pv
from pyvista import examples
# sphinx_gallery_start_ignore
# volume rendering does not work in interactive plots currently
PYVISTA_GALLERY_FORCE_STATIC_IN_DOCUMENT = True
# sphinx_gallery_end_ignore
# Download a volumetric dataset
vol = examples.download_knee_full()
vol
# %%
# Simple Volume Render
# ++++++++++++++++++++
#
# A nice camera position
cpos = [(-381.74, -46.02, 216.54), (74.8305, 89.2905, 100.0), (0.23, 0.072, 0.97)]
vol.plot(volume=True, cmap="bone", cpos=cpos)
# %%
# Opacity Mappings
# ++++++++++++++++
#
# Or use the :func:`pyvista.Plotter.add_volume` method like below.
# Note that here we use a non-default opacity mapping to a sigmoid:
pl = pv.Plotter()
pl.add_volume(vol, cmap="bone", opacity="sigmoid")
pl.camera_position = cpos
pl.show()
# %%
# You can also use a custom opacity mapping
opacity = [0, 0, 0, 0.1, 0.3, 0.6, 1]
pl = pv.Plotter()
pl.add_volume(vol, cmap="viridis", opacity=opacity)
pl.camera_position = cpos
pl.show()
# %%
# We can also use a shading technique when volume rendering with the ``shade``
# option
pl = pv.Plotter(shape=(1, 2))
pl.add_volume(vol, cmap="viridis", opacity=opacity, shade=False)
pl.add_text("No shading")
pl.camera_position = cpos
pl.subplot(0, 1)
pl.add_volume(vol, cmap="viridis", opacity=opacity, shade=True)
pl.add_text("Shading")
pl.link_views()
pl.show()
# %%
# Cool Volume Examples
# ++++++++++++++++++++
#
# Here are a few more cool volume rendering examples.
# %%
# Head Dataset
# """"""""""""
head = examples.download_head()
pl = pv.Plotter()
pl.add_volume(head, cmap="cool", opacity="sigmoid_6", show_scalar_bar=False)
pl.camera_position = [(-228.0, -418.0, -158.0), (94.0, 122.0, 82.0), (-0.2, -0.3, 0.9)]
pl.camera.zoom(1.5)
pl.show()
# %%
# Bolt-Nut MultiBlock Dataset
# """""""""""""""""""""""""""
# .. note::
# See how we set interpolation to ``'linear'`` here to smooth out scalars of
# each individual cell to make a more appealing plot. Two actor are returned
# by ``add_volume`` because ``bolt_nut`` is a :class:`pyvista.MultiBlock`
# dataset.
bolt_nut = examples.download_bolt_nut()
pl = pv.Plotter()
actors = pl.add_volume(bolt_nut, cmap="coolwarm", opacity="sigmoid_5", show_scalar_bar=False)
actors[0].prop.interpolation_type = 'linear'
actors[1].prop.interpolation_type = 'linear'
pl.camera_position = [(127.4, -68.3, 88.2), (30.3, 54.3, 26.0), (-0.25, 0.28, 0.93)]
cpos = pl.show(return_cpos=True)
# %%
# Frog Dataset
# """"""""""""
frog = examples.download_frog()
pl = pv.Plotter()
pl.add_volume(frog, cmap="viridis", opacity="sigmoid_6", show_scalar_bar=False)
pl.camera_position = [(929.0, 1067.0, -278.9), (249.5, 234.5, 101.25), (-0.2048, -0.2632, -0.9427)]
pl.camera.zoom(1.5)
pl.show()
# %%
# Extracting a VOI
# ++++++++++++++++
#
# Use the :func:`pyvista.ImageDataFilters.extract_subset` filter to extract
# a volume of interest/subset volume to volume render. This is ideal when
# dealing with particularly large volumes and you want to volume render only
# a specific region.
# Load a particularly large volume
large_vol = examples.download_damavand_volcano()
large_vol
# %%
opacity = [0, 0.75, 0, 0.75, 1.0]
clim = [0, 100]
pl = pv.Plotter()
pl.add_volume(
large_vol,
cmap="magma",
clim=clim,
opacity=opacity,
opacity_unit_distance=6000,
)
pl.show()
# %%
# Woah, that's a big volume. We probably don't want to volume render the
# whole thing. So let's extract a region of interest under the volcano.
#
# The region we will extract will be between nodes 175 and 200 on the x-axis,
# between nodes 105 and 132 on the y-axis, and between nodes 98 and 170 on
# the z-axis.
voi = large_vol.extract_subset([175, 200, 105, 132, 98, 170])
pl = pv.Plotter()
pl.add_mesh(large_vol.outline(), color="k")
pl.add_mesh(voi, cmap="magma")
pl.show()
# %%
# Ah, much better. Let's now volume render that region of interest.
pl = pv.Plotter()
pl.add_volume(voi, cmap="magma", clim=clim, opacity=opacity, opacity_unit_distance=2000)
pl.camera_position = [
(531554.5542909054, 3944331.800171338, 26563.04809259223),
(599088.1433822059, 3982089.287834022, -11965.14728669936),
(0.3738545892415734, 0.244312810377319, 0.8947312427698892),
]
pl.show()
|