File: volume.py

package info (click to toggle)
python-pyvista 0.44.1-11
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 159,804 kB
  • sloc: python: 72,164; sh: 118; makefile: 68
file content (180 lines) | stat: -rw-r--r-- 4,627 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
"""
.. _volume_rendering_example:

Volume Rendering
~~~~~~~~~~~~~~~~

Volume render uniform mesh types like :class:`pyvista.ImageData` or 3D
NumPy arrays.

This also explores how to extract a volume of interest (VOI) from a
:class:`pyvista.ImageData` using the
:func:`pyvista.ImageDataFilters.extract_subset` filter.
"""

# sphinx_gallery_thumbnail_number = 3
from __future__ import annotations

import pyvista as pv
from pyvista import examples

# sphinx_gallery_start_ignore
# volume rendering does not work in interactive plots currently
PYVISTA_GALLERY_FORCE_STATIC_IN_DOCUMENT = True
# sphinx_gallery_end_ignore

# Download a volumetric dataset
vol = examples.download_knee_full()
vol

# %%
# Simple Volume Render
# ++++++++++++++++++++
#

# A nice camera position
cpos = [(-381.74, -46.02, 216.54), (74.8305, 89.2905, 100.0), (0.23, 0.072, 0.97)]

vol.plot(volume=True, cmap="bone", cpos=cpos)


# %%
# Opacity Mappings
# ++++++++++++++++
#
# Or use the :func:`pyvista.Plotter.add_volume` method like below.
# Note that here we use a non-default opacity mapping to a sigmoid:

pl = pv.Plotter()
pl.add_volume(vol, cmap="bone", opacity="sigmoid")
pl.camera_position = cpos
pl.show()

# %%
# You can also use a custom opacity mapping
opacity = [0, 0, 0, 0.1, 0.3, 0.6, 1]

pl = pv.Plotter()
pl.add_volume(vol, cmap="viridis", opacity=opacity)
pl.camera_position = cpos
pl.show()

# %%
# We can also use a shading technique when volume rendering with the ``shade``
# option
pl = pv.Plotter(shape=(1, 2))
pl.add_volume(vol, cmap="viridis", opacity=opacity, shade=False)
pl.add_text("No shading")
pl.camera_position = cpos
pl.subplot(0, 1)
pl.add_volume(vol, cmap="viridis", opacity=opacity, shade=True)
pl.add_text("Shading")
pl.link_views()
pl.show()

# %%
# Cool Volume Examples
# ++++++++++++++++++++
#
# Here are a few more cool volume rendering examples.


# %%
# Head Dataset
# """"""""""""

head = examples.download_head()

pl = pv.Plotter()
pl.add_volume(head, cmap="cool", opacity="sigmoid_6", show_scalar_bar=False)
pl.camera_position = [(-228.0, -418.0, -158.0), (94.0, 122.0, 82.0), (-0.2, -0.3, 0.9)]
pl.camera.zoom(1.5)
pl.show()


# %%
# Bolt-Nut MultiBlock Dataset
# """""""""""""""""""""""""""
# .. note::
#    See how we set interpolation to ``'linear'`` here to smooth out scalars of
#    each individual cell to make a more appealing plot. Two actor are returned
#    by ``add_volume`` because ``bolt_nut`` is a :class:`pyvista.MultiBlock`
#    dataset.

bolt_nut = examples.download_bolt_nut()

pl = pv.Plotter()
actors = pl.add_volume(bolt_nut, cmap="coolwarm", opacity="sigmoid_5", show_scalar_bar=False)
actors[0].prop.interpolation_type = 'linear'
actors[1].prop.interpolation_type = 'linear'
pl.camera_position = [(127.4, -68.3, 88.2), (30.3, 54.3, 26.0), (-0.25, 0.28, 0.93)]
cpos = pl.show(return_cpos=True)


# %%
# Frog Dataset
# """"""""""""

frog = examples.download_frog()

pl = pv.Plotter()
pl.add_volume(frog, cmap="viridis", opacity="sigmoid_6", show_scalar_bar=False)
pl.camera_position = [(929.0, 1067.0, -278.9), (249.5, 234.5, 101.25), (-0.2048, -0.2632, -0.9427)]
pl.camera.zoom(1.5)
pl.show()


# %%
# Extracting a VOI
# ++++++++++++++++
#
# Use the :func:`pyvista.ImageDataFilters.extract_subset` filter to extract
# a volume of interest/subset volume to volume render. This is ideal when
# dealing with particularly large volumes and you want to volume render only
# a specific region.

# Load a particularly large volume
large_vol = examples.download_damavand_volcano()
large_vol

# %%
opacity = [0, 0.75, 0, 0.75, 1.0]
clim = [0, 100]

pl = pv.Plotter()
pl.add_volume(
    large_vol,
    cmap="magma",
    clim=clim,
    opacity=opacity,
    opacity_unit_distance=6000,
)
pl.show()


# %%
# Woah, that's a big volume. We probably don't want to volume render the
# whole thing. So let's extract a region of interest under the volcano.
#
# The region we will extract will be between nodes 175 and 200 on the x-axis,
# between nodes 105 and 132 on the y-axis, and between nodes 98 and 170 on
# the z-axis.

voi = large_vol.extract_subset([175, 200, 105, 132, 98, 170])

pl = pv.Plotter()
pl.add_mesh(large_vol.outline(), color="k")
pl.add_mesh(voi, cmap="magma")
pl.show()

# %%
# Ah, much better. Let's now volume render that region of interest.

pl = pv.Plotter()
pl.add_volume(voi, cmap="magma", clim=clim, opacity=opacity, opacity_unit_distance=2000)
pl.camera_position = [
    (531554.5542909054, 3944331.800171338, 26563.04809259223),
    (599088.1433822059, 3982089.287834022, -11965.14728669936),
    (0.3738545892415734, 0.244312810377319, 0.8947312427698892),
]
pl.show()