1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
|
"""
.. _sphere_eversion_example:
Turning the sphere inside out
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
There are several videos online talking about how a sphere can be turned inside
out in a continuous fashion, for instance in `this YouTube video
<https://www.youtube.com/watch?v=OI-To1eUtuU>`_. Thanks to `an excellent paper
by Adam Bednorz and Witold Bednorz, Differential and its Applications 64, 59
(2019) <https://doi.org/10.1016/j.difgeo.2019.02.004>`_ (also available `on
arXiv <https://arxiv.org/abs/1711.10466>`_), we can plot this so-called
eversion of a sphere (turning it inside out without pinching or tearing the
surface, in other words by preserving its topology).
The mathematics involved can seem a bit, well, involved. What matters is the
overall process visible in the animation: first the sphere is corrugated and
stretched out a bit to allow some legroom for the smooth transformation, then
the lobes are twisted around through each other, and the process is reversed in
order to unfold the sphere. It's not obvious that the transformation is truly
smooth; this was proved in the paper by Bednorz and Bednorz.
"""
# sphinx_gallery_thumbnail_number = 2
from __future__ import annotations
import numpy as np
import pyvista as pv
# define some parameters
n_steps = 30 # number of steps for a given stage of the animation
Q = 2 / 3 # arbitrary < 1
w = 2 # arbitrary > 0
n = 2 # arbitrary integer > 1, the number of "lobes"
beta = 1 # arbitrary > 1
alpha_final = 1 # arbitrary > 1
eta_final = 2 # arbitrary > 1
kappa = (n - 1) / (2 * n)
# %%
# Let's define the chain of mappings we'll need for implementing the eversion:
def sphere_to_cylinder(theta, phi):
"""Map from spherical polar coordinates to cylindrical ones.
Input theta goes from -pi/2 to pi/2, phi goes from -pi to pi.
Output h goes from -infinity to infinity, phi goes from -phi to phi.
"""
h = w * np.sin(theta) / np.cos(theta) ** n
# phi is unchanged
return h, phi
def cylinder_to_wormhole(h, phi, t, p, q):
"""Map from a cylinder to an open wormhole using Eq. (4).
Input h goes from -infinity to infinity, phi goes from -phi to phi.
Output is an (x, y, z) point embedded in 3d space.
The parameters t, p, q vary during the eversion process.
Start from |t| > 1 (fixed), p = 1 and q = 0. End at p = 0, qt = +-1.
"""
x = t * np.cos(phi) + p * np.sin((n - 1) * phi) - h * np.sin(phi)
y = t * np.sin(phi) + p * np.cos((n - 1) * phi) + h * np.cos(phi)
z = h * np.sin(n * phi) - t / n * np.cos(n * phi) - q * t * h
return x, y, z
def close_wormhole(x0, y0, z0, eta, xi, alpha):
"""Close the wormhole using Eqs. (7)-(8).
Input is an (x0, y0, z0) point embedded in 3d space.
Output is an (x2, y2, z2) == (x'', y'', z'') point embedded in 3d space.
The parameters eta, xi, alpha vary during the eversion process.
"""
# Eq. (7): (x, y, z) -> (x', y', z')
denominator = xi + eta * (x**2 + y**2)
x1 = x0 / (denominator**kappa)
y1 = y0 / (denominator**kappa)
z1 = z0 / denominator
gamma = 2 * np.sqrt(alpha * beta)
# singular case, Eq (9):
if np.isclose(gamma, 0):
denominator = x1**2 + y1**2
x2 = x1 / denominator
y2 = y1 / denominator
z2 = -z1
return x2, y2, z2
# Eq. (8): (x', y', z') -> (x'', y'', z'')
exponential = np.exp(gamma * z1)
numerator = alpha - beta * (x1**2 + y1**2)
denominator = alpha + beta * (x1**2 + y1**2)
x2 = x1 * exponential / denominator
y2 = y1 * exponential / denominator
z2 = numerator / denominator * exponential / gamma - (alpha - beta) / (alpha + beta) / gamma
return x2, y2, z2
def unfold_sphere(theta, phi, t, q, eta, lamda):
"""Unfold the sphere using Eqs. (12), (15), (10).
Input is a (theta, phi) point in spherical coordinates.
Output is an (x, y, z) point embedded in 3d space.
The parameter lamda varies. Lamda = 1 is the final stage of the
wormhole closing, and lamda = 0 is the recovered sphere.
"""
# apply Eqs. (12), (15)
# fmt: off
x = (
t * (1 - lamda + lamda * np.cos(theta)**n) * np.cos(phi)
- lamda * w * np.sin(theta) * np.sin(phi)
)
x /= np.cos(theta)**n
y = (
t * (1 - lamda + lamda * np.cos(theta)**n) * np.sin(phi)
+ lamda * w * np.sin(theta) * np.cos(phi)
)
y /= np.cos(theta) ** n
z = (
lamda * (
(w * np.sin(theta) * (np.sin(n * phi) - q * t)) / np.cos(theta)**n
- t / n * np.cos(n * phi)
)
- (1 - lamda) * eta**(1 + kappa) * t * abs(t)**(2 * kappa)
* np.sin(theta) / np.cos(theta)**(2 * n) # noqa: E131
)
# fmt: on
# apply Eq. (10)
denominator = x**2 + y**2
x2 = x * eta**kappa / denominator ** (1 - kappa)
y2 = y * eta**kappa / denominator ** (1 - kappa)
z2 = -z / eta / denominator
return x2, y2, z2
# %%
# Now chain the functions by performing the process in Table 1 of the paper.
# Start from the bottom for ``t = -1/Q``, keep stepping up, linearly changing
# parameters that change from row to row, then at the top go from ``t = -1/Q``
# to ``t = 1/Q``, then go back from top to bottom. Save each frame to a GIF.
#
# We make good use of the ``backface_params`` keyword parameter of
# :func:`pyvista.Plotter.add_mesh`, allowing us to plot the inside and the
# outside with different colors.
# plot options to use for each frame
opts = dict(
color='aquamarine',
specular=1.0,
specular_power=50.0,
backface_params=dict(color='forestgreen'),
smooth_shading=True,
reset_camera=True,
)
# use a small figure window to reduce the size of the GIF
plotter = pv.Plotter(window_size=(300, 300))
plotter.open_gif('sphere_eversion.gif')
def save_frame(x, y, z):
"""Helper to generate and store a frame of the eversion."""
plotter.clear()
plotter.enable_lightkit()
plotter.add_mesh(pv.StructuredGrid(x, y, z), **opts)
plotter.write_frame()
# initial parameters, will be updated
t = -1 / Q
q = Q
p = xi = alpha = 0
eta = 1
# sphere -> inverted wormhole
theta, phi = np.mgrid[-np.pi / 2 : np.pi / 2 : 200j, -np.pi : np.pi : 400j]
h, phi = sphere_to_cylinder(theta, phi)
for lamda in np.linspace(0, 1, n_steps, endpoint=False):
x2, y2, z2 = unfold_sphere(theta, phi, t, q, eta, lamda)
save_frame(x2, y2, z2)
# inverted wormhole -> unfolded wormhole
x, y, z = cylinder_to_wormhole(h, phi, t, p, q)
xis = np.linspace(0, 1, n_steps)
alphas = np.linspace(0, alpha_final, n_steps)
etas = np.linspace(1, eta_final, n_steps)
for xi, alpha, eta in zip(xis, alphas, etas):
x2, y2, z2 = close_wormhole(x, y, z, eta, xi, alpha)
save_frame(x2, y2, z2)
# unfolded wormhole -> closed wormhole
for q in np.linspace(Q, 0, n_steps):
p = 1 - abs(q * t)
x, y, z = cylinder_to_wormhole(h, phi, t, p, q)
x2, y2, z2 = close_wormhole(x, y, z, eta, xi, alpha)
save_frame(x2, y2, z2)
# closed wormhole turned inside out (flip sign of time)
# unfolded wormhole -> closed wormhole
for t in np.linspace(-1 / Q, 1 / Q, n_steps):
p = 1 - abs(q * t)
x, y, z = cylinder_to_wormhole(h, phi, t, p, q)
x2, y2, z2 = close_wormhole(x, y, z, eta, xi, alpha)
save_frame(x2, y2, z2)
# closed wormhole -> unfolded wormhole
for q in np.linspace(0, Q, n_steps + 1)[1:]:
p = 1 - abs(q * t)
x, y, z = cylinder_to_wormhole(h, phi, t, p, q)
x2, y2, z2 = close_wormhole(x, y, z, eta, xi, alpha)
save_frame(x2, y2, z2)
# unfolded wormhole -> inverted wormhole
x, y, z = cylinder_to_wormhole(h, phi, t, p, q)
xis = np.linspace(1, 0, n_steps + 1)[1:]
alphas = np.linspace(alpha_final, 0, n_steps + 1)[1:]
etas = np.linspace(eta_final, 1, n_steps + 1)[1:]
for xi, alpha in zip(xis, alphas):
x2, y2, z2 = close_wormhole(x, y, z, eta, xi, alpha)
save_frame(x2, y2, z2)
# inverted wormhole -> sphere
for lamda in np.linspace(1, 0, n_steps + 1)[1:]:
x2, y2, z2 = unfold_sphere(theta, phi, t, q, eta, lamda)
save_frame(x2, y2, z2)
plotter.close()
# %%
# Looking at the still image of the middle state with ``t = 0``, we see a nice
# symmetric configuration where two "inside" and two "outside" lobes of the
# sphere are visible.
# sphinx_gallery_start_ignore
# lighting does not work for this interactive plot
PYVISTA_GALLERY_FORCE_STATIC = True
# sphinx_gallery_end_ignore
t = q = 0
xi = p = 1
eta = eta_final
alpha = alpha_final
x, y, z = cylinder_to_wormhole(h, phi, t, p, q)
x2, y2, z2 = close_wormhole(x, y, z, eta, xi, alpha)
plotter = pv.Plotter(window_size=(512, 512))
plotter.add_mesh(pv.StructuredGrid(x2, y2, z2), **opts)
plotter.show()
|