1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
|
"""Functions that check the type and/or value of inputs.
.. versionadded:: 0.43.0
A ``check`` function typically:
* Performs a simple validation on a single input variable.
* Raises an error if the check fails due to invalid input.
* Does not modify input or return anything.
"""
from __future__ import annotations
from collections.abc import Iterable
from numbers import Number
import reprlib
from typing import TYPE_CHECKING
from typing import Sequence
from typing import Union
from typing import get_args
from typing import get_origin
import numpy as np
import numpy.typing as npt
from pyvista.core._validation._cast_array import _cast_to_numpy
if TYPE_CHECKING: # pragma: no cover
from pyvista.core._typing_core import NumberType
from pyvista.core._typing_core._aliases import _ArrayLikeOrScalar
def check_subdtype(
input_obj: Union[npt.DTypeLike, _ArrayLikeOrScalar[NumberType]],
/,
base_dtype: Union[npt.DTypeLike, tuple[npt.DTypeLike, ...], list[npt.DTypeLike]],
*,
name: str = 'Input',
):
"""Check if an input's data-type is a subtype of another data-type(s).
Parameters
----------
input_obj : float | ArrayLike[float] | numpy.typing.DTypeLike
``dtype`` object (or object coercible to one) or an array-like object.
If array-like, the dtype of the array is used.
base_dtype : numpy.typing.DTypeLike | Sequence[numpy.typing.DTypeLike]
``dtype``-like object or a sequence of ``dtype``-like objects. The ``input_obj``
must be a subtype of this value. If a sequence, ``input_obj`` must be a
subtype of at least one of the specified dtypes.
name : str, default: "Input"
Variable name to use in the error messages if any are raised.
Raises
------
TypeError
If ``input_obj`` is not a subtype of ``base_dtype``.
See Also
--------
check_real
check_number
Examples
--------
Check if ``float`` is a subtype of ``np.floating``.
>>> import numpy as np
>>> from pyvista import _validation
>>> _validation.check_subdtype(float, np.floating)
Check from multiple allowable dtypes.
>>> _validation.check_subdtype(int, [np.integer, np.floating])
Check an array's dtype.
>>> array = np.array([1, 2, 3], dtype='uint8')
>>> _validation.check_subdtype(array, np.integer)
"""
input_dtype: npt.DTypeLike
try:
input_dtype = np.dtype(input_obj) # type: ignore[arg-type]
except TypeError:
input_dtype = np.asanyarray(input_obj).dtype
if not isinstance(base_dtype, (tuple, list)):
base_dtype = [base_dtype]
if not any(np.issubdtype(input_dtype, base) for base in base_dtype):
# Not a subdtype, so raise error
msg = f"{name} has incorrect dtype of '{input_dtype.name}'. "
if len(base_dtype) == 1:
msg += f"The dtype must be a subtype of {base_dtype[0]}."
else:
msg += f"The dtype must be a subtype of at least one of \n{base_dtype}."
raise TypeError(msg)
def check_real(array: _ArrayLikeOrScalar[NumberType], /, *, name: str = "Array"):
"""Check if an array has real numbers, i.e. float or integer type.
Notes
-----
- Boolean data types are not considered real and will raise an error.
- Arrays with ``infinity`` or ``NaN`` values are considered real and
will not raise an error. Use :func:`check_finite` to check for
finite values.
Parameters
----------
array : float | ArrayLike[float]
Number or array to check.
name : str, default: "Array"
Variable name to use in the error messages if any are raised.
Raises
------
TypeError
If the array does not have real numbers.
See Also
--------
check_integer
Similar function for integer arrays.
check_number
Similar function for scalar values.
check_finite
Check for finite values.
Examples
--------
Check if an array has real numbers.
>>> from pyvista import _validation
>>> _validation.check_real([1, 2, 3])
"""
array = array if isinstance(array, np.ndarray) else _cast_to_numpy(array)
# Return early for common cases
if array.dtype.type in [np.int32, np.int64, np.float32, np.float64]:
return
# Do not use np.isreal as it will fail in some cases (e.g. scalars).
# Check dtype directly instead
try:
check_subdtype(array, (np.floating, np.integer), name=name)
except TypeError as e:
raise TypeError(f"{name} must have real numbers.") from e
def check_sorted(
array: _ArrayLikeOrScalar[NumberType],
/,
*,
ascending: bool = True,
strict: bool = False,
axis: int = -1,
name: str = "Array",
):
"""Check if an array's values are sorted.
Parameters
----------
array : float | ArrayLike[float]
Number or array to check.
ascending : bool, default: True
If ``True``, check if the array's elements are in ascending order.
If ``False``, check if the array's elements are in descending order.
strict : bool, default: False
If ``True``, the array's elements must be strictly increasing (if
``ascending=True``) or strictly decreasing (if ``ascending=False``).
Effectively, this means the array must be sorted *and* its values
must be unique.
axis : int | None, default: -1
Axis along which to check sorting. If ``None``, the array is flattened
before checking. The default is ``-1``, which checks sorting along the
last axis.
name : str, default: "Array"
Variable name to use in the error messages if any are raised.
Raises
------
ValueError
If the array is not sorted in ascending order.
See Also
--------
check_range
Examples
--------
Check if an array's values are sorted,
>>> from pyvista import _validation
>>> _validation.check_sorted([1, 2, 3])
"""
array = array if isinstance(array, np.ndarray) else _cast_to_numpy(array)
ndim = array.ndim
if ndim == 0:
# Scalars are always sorted
return
# Validate axis
if axis not in [-1, None]:
check_number(axis, name="Axis")
check_integer(axis, name="Axis")
axis = int(axis)
try:
check_range(axis, rng=[-ndim, ndim - 1], name="Axis")
except ValueError:
raise ValueError(f"Axis {axis} is out of bounds for ndim {ndim}.")
if axis is None and ndim >= 1:
# Emulate np.sort(), which flattens array when axis is None
array = array.ravel(order='A')
ndim = 1
axis = 0
# Create slicers to get a view along an axis
# Create two slicers to compare consecutive elements with each other
first_slice = [slice(None)] * ndim
first_slice[axis] = slice(None, -1)
first_item = array[tuple(first_slice)]
second_slice = [slice(None)] * ndim
second_slice[axis] = slice(1, None)
second_item = array[tuple(second_slice)]
if ascending and not strict:
is_sorted = np.all(first_item <= second_item)
elif ascending and strict:
is_sorted = np.all(first_item < second_item)
elif not ascending and not strict:
is_sorted = np.all(first_item >= second_item)
else: # not ascending and strict
is_sorted = np.all(first_item > second_item)
if not is_sorted:
# Show the array's elements in error msg if array is small
msg_body = f"with {array.size} elements"
order = "ascending" if ascending else "descending"
strict_ = "strict " if strict else ""
raise ValueError(
f"{name} {msg_body} must be sorted in {strict_}{order} order. "
f"Got:\n {reprlib.repr(array)}",
)
def check_finite(arr, /, *, name="Array"):
"""Check if an array has finite values, i.e. no NaN or Inf values.
Parameters
----------
arr : array_like
Array to check.
name : str, default: "Array"
Variable name to use in the error messages if any are raised.
Raises
------
ValueError
If the array has any ``Inf`` or ``NaN`` values.
See Also
--------
check_real
Examples
--------
Check if an array's values are finite.
>>> from pyvista import _validation
>>> _validation.check_finite([1, 2, 3])
"""
arr = arr if isinstance(arr, np.ndarray) else _cast_to_numpy(arr)
if not np.all(np.isfinite(arr)):
raise ValueError(f"{name} must have finite values.")
def check_integer(arr, /, *, strict=False, name="Array"):
"""Check if an array has integer or integer-like float values.
Parameters
----------
arr : array_like
Array to check.
strict : bool, default: False
If ``True``, the array's data must be a subtype of ``np.integer``
(i.e. float types are not allowed).
name : str, default: "Array"
Variable name to use in the error messages if any are raised.
Raises
------
ValueError
If any element's value differs from its floor.
TypeError
If ``strict=True`` and the array's dtype is not integral.
See Also
--------
check_nonnegative
Examples
--------
Check if an array has integer-like values.
>>> from pyvista import _validation
>>> _validation.check_integer([1.0, 2.0])
"""
arr = arr if isinstance(arr, np.ndarray) else _cast_to_numpy(arr)
if strict:
check_subdtype(arr, np.integer)
elif not np.array_equal(arr, np.floor(arr)):
raise ValueError(f"{name} must have integer-like values.")
def check_nonnegative(arr, /, *, name="Array"):
"""Check if an array's elements are all nonnegative.
Parameters
----------
arr : array_like
Array to check.
name : str, default: "Array"
Variable name to use in the error messages if any are raised.
Raises
------
ValueError
If the array has any negative values.
See Also
--------
check_greater_than
check_less_than
Examples
--------
Check if an array's values are non-negative.
>>> from pyvista import _validation
>>> _validation.check_nonnegative([1, 2, 3])
"""
check_greater_than(arr, 0, strict=False, name=name)
def check_greater_than(arr, /, value, *, strict=True, name="Array"):
"""Check if an array's elements are all greater than some value.
Parameters
----------
arr : array_like
Array to check.
value : Number
Value which the array's elements must be greater than.
strict : bool, default: True
If ``True``, the array's value must be strictly greater than ``value``.
Otherwise, values must be greater than or equal to ``value``.
name : str, default: "Array"
Variable name to use in the error messages if any are raised.
Raises
------
ValueError
If not all array elements are greater than (or equal to if
``strict=True``) the specified value.
See Also
--------
check_less_than
check_in_range
check_nonnegative
Examples
--------
Check if an array's values are greater than 0.
>>> from pyvista import _validation
>>> _validation.check_greater_than([1, 2, 3], value=0)
"""
arr = arr if isinstance(arr, np.ndarray) else _cast_to_numpy(arr)
value = _cast_to_numpy(value)
check_shape(value, ())
check_real(value)
check_finite(value)
if strict and not np.all(arr > value):
raise ValueError(f"{name} values must all be greater than {value}.")
elif not np.all(arr >= value):
raise ValueError(f"{name} values must all be greater than or equal to {value}.")
def check_less_than(arr, /, value, *, strict=True, name="Array"):
"""Check if an array's elements are all less than some value.
Parameters
----------
arr : array_like
Array to check.
value : Number
Value which the array's elements must be less than.
strict : bool, default: True
If ``True``, the array's value must be strictly less than
``value``. Otherwise, values must be less than or equal to
``value``.
name : str, default: "Array"
Variable name to use in the error messages if any are raised.
Raises
------
ValueError
If not all array elements are less than (or equal to if
``strict=True``) the specified value.
See Also
--------
check_greater_than
check_in_range
check_nonnegative
Examples
--------
Check if an array's values are less than 0.
>>> from pyvista import _validation
>>> _validation.check_less_than([-1, -2, -3], value=0)
"""
arr = arr if isinstance(arr, np.ndarray) else _cast_to_numpy(arr)
if strict and not np.all(arr < value):
raise ValueError(f"{name} values must all be less than {value}.")
elif not np.all(arr <= value):
raise ValueError(f"{name} values must all be less than or equal to {value}.")
def check_range(arr, /, rng, *, strict_lower=False, strict_upper=False, name="Array"):
"""Check if an array's values are all within a specific range.
Parameters
----------
arr : array_like
Array to check.
rng : array_like[float, float], optional
Array-like with two elements ``[min, max]`` specifying the minimum
and maximum data values allowed, respectively. By default, the
range endpoints are inclusive, i.e. values must be >= min
and <= max. Use ``strict_lower`` and/or ``strict_upper``
to further restrict the allowable range. Use ``np.inf`` or
``-np.inf`` to specify open intervals, e.g. ``[0, np.inf]``.
strict_lower : bool, default: False
Enforce a strict lower bound for the range, i.e. array values
must be strictly greater than the minimum.
strict_upper : bool, default: False
Enforce a strict upper bound for the range, i.e. array values
must be strictly less than the maximum.
name : str, default: "Array"
Variable name to use in the error messages if any are raised.
Raises
------
ValueError
If any array value is outside the specified range.
See Also
--------
check_less_than
check_greater_than
Examples
--------
Check if `an array's values are in the range ``[0, 1]``.
>>> from pyvista import _validation
>>> _validation.check_range([0, 0.5, 1], rng=[0, 1])
"""
rng = _cast_to_numpy(rng)
check_shape(rng, 2, name="Range")
check_real(rng, name="Range")
check_sorted(rng, name="Range")
arr = arr if isinstance(arr, np.ndarray) else _cast_to_numpy(arr)
check_greater_than(arr, rng[0], strict=strict_lower, name=name)
check_less_than(arr, rng[1], strict=strict_upper, name=name)
def check_shape(
arr,
/,
shape,
*,
name="Array",
):
"""Check if an array has the specified shape.
Parameters
----------
arr : array_like
Array to check.
shape : int, tuple[int, ...] | list[int, tuple[int, ...]], optional
A single shape or a list of any allowable shapes. If an integer,
``i``, the shape is interpreted as ``(i,)``. Use a value of
-1 for any dimension where its size is allowed to vary, e.g.
``(-1,3)`` if any Nx3 array is allowed. Use ``()`` for the
shape of scalar values (i.e. 0-dimensional). If a list, the
array must have at least one of the specified shapes.
name : str, default: "Array"
Variable name to use in the error messages if any are raised.
Raises
------
ValueError
If the array does not have any of the specified shape(s).
See Also
--------
check_length
Examples
--------
Check if an array is one-dimensional.
>>> import numpy as np
>>> from pyvista import _validation
>>> _validation.check_shape([1, 2, 3], shape=(-1))
Check if an array is one-dimensional or a scalar.
>>> _validation.check_shape(1, shape=[(), (-1)])
Check if an array is 3x3 or 4x4.
>>> _validation.check_shape(np.eye(3), shape=[(3, 3), (4, 4)])
"""
def _shape_is_allowed(a, b):
# a: array's actual shape
# b: allowed shape (may have -1)
return bool(len(a) == len(b) and all(map(lambda x, y: True if x == y else y == -1, a, b)))
arr = arr if isinstance(arr, np.ndarray) else _cast_to_numpy(arr)
if not isinstance(shape, list):
shape = [shape]
array_shape = arr.shape
for shp in shape:
shp = _validate_shape_value(shp)
if _shape_is_allowed(array_shape, shp):
return
msg = f"{name} has shape {arr.shape} which is not allowed. "
if len(shape) == 1:
msg += f"Shape must be {shape[0]}."
else:
msg += f"Shape must be one of {shape}."
raise ValueError(msg)
def check_number(num, /, *, name='Object'):
"""Check if an object is an instance of ``Number``.
A number is any instance of ``numbers.Number``, e.g. ``int``,
``float``, and ``complex``.
Notes
-----
A NumPy ndarray is not an instance of ``Number``.
Parameters
----------
num : Number
Number to check.
name : str, default: "Object"
Variable name to use in the error messages if any are raised.
Raises
------
TypeError
If input is not an instance of ``Number``.
See Also
--------
check_scalar
Examples
--------
Check if a complex number is an instance of ``Number``.
>>> from pyvista import _validation
>>> _validation.check_number(1 + 2j)
"""
check_instance(num, Number, allow_subclass=True, name=name)
def check_string(obj, /, *, allow_subclass=True, name='Object'):
"""Check if an object is an instance of ``str``.
Parameters
----------
obj : str
Object to check.
allow_subclass : bool, default: True
If ``True``, the object's type must be ``str`` or a subclass of
``str``. Otherwise, subclasses are not allowed.
name : str, default: "Object"
Variable name to use in the error messages if any are raised.
Raises
------
TypeError
If input is not an instance of ``str``.
See Also
--------
check_contains
check_iterable_items
check_sequence
check_instance
Examples
--------
Check if an object is a string.
>>> from pyvista import _validation
>>> _validation.check_string("eggs")
"""
check_instance(obj, str, allow_subclass=allow_subclass, name=name)
def check_sequence(obj, /, *, name='Object'):
"""Check if an object is an instance of ``Sequence``.
Parameters
----------
obj : Sequence
Object to check.
name : str, default: "Object"
Variable name to use in the error messages if any are raised.
Raises
------
TypeError
If input is not an instance of ``Sequence``.
See Also
--------
check_iterable
check_instance
Examples
--------
Check if an object is a sequence.
>>> import numpy as np
>>> from pyvista import _validation
>>> _validation.check_sequence([1, 2, 3])
>>> _validation.check_sequence("A")
"""
check_instance(obj, Sequence, allow_subclass=True, name=name)
def check_iterable(obj, /, *, name='Object'):
"""Check if an object is an instance of ``Iterable``.
Parameters
----------
obj : Iterable
Iterable object to check.
name : str, default: "Object"
Variable name to use in the error messages if any are raised.
Raises
------
TypeError
If input is not an instance of ``Iterable``.
See Also
--------
check_sequence
check_instance
check_iterable_items
Examples
--------
Check if an object is iterable.
>>> import numpy as np
>>> from pyvista import _validation
>>> _validation.check_iterable([1, 2, 3])
>>> _validation.check_iterable(np.array((4, 5, 6)))
"""
check_instance(obj, Iterable, allow_subclass=True, name=name)
def check_instance(obj, /, classinfo, *, allow_subclass=True, name='Object'):
"""Check if an object is an instance of the given type or types.
Parameters
----------
obj : Any
Object to check.
classinfo : type | tuple[type, ...]
``type`` or tuple of types. Object must be an instance of one of
the types.
allow_subclass : bool, default: True
If ``True``, the object's type must be specified by ``classinfo``
or any of its subclasses. Otherwise, subclasses are not allowed.
name : str, default: "Object"
Variable name to use in the error messages if any are raised.
Raises
------
TypeError
If object is not an instance of any of the given types.
See Also
--------
check_type
check_number
check_string
check_iterable
check_sequence
Examples
--------
Check if an object is an instance of ``complex``.
>>> from pyvista import _validation
>>> _validation.check_instance(1 + 2j, complex)
Check if an object is an instance of one of several types.
>>> _validation.check_instance("eggs", (int, str))
"""
if not isinstance(name, str):
raise TypeError(f"Name must be a string, got {type(name)} instead.")
# Get class info from generics
if get_origin(classinfo) is Union:
classinfo = get_args(classinfo)
# Count num classes
num_classes = len(classinfo) if isinstance(classinfo, tuple) else 1
# Check if is instance
is_instance = isinstance(obj, classinfo)
# Set flag to raise error if not instance
is_error = False
if allow_subclass and not is_instance:
is_error = True
if num_classes == 1:
msg_body = "must be an instance of"
else:
msg_body = "must be an instance of any type"
# Set flag to raise error if not type
elif not allow_subclass:
if isinstance(classinfo, tuple):
if type(obj) not in classinfo:
is_error = True
msg_body = "must have one of the following types"
elif type(obj) is not classinfo:
is_error = True
msg_body = "must have type"
if is_error:
msg = f"{name} {msg_body} {classinfo}. Got {type(obj)} instead."
raise TypeError(msg)
def check_type(obj, /, classinfo, *, name='Object'):
"""Check if an object is one of the given type or types.
Notes
-----
The use of :func:`check_instance` is generally preferred as it
allows subclasses. Use :func:`check_type` only for cases where
exact types are necessary.
Parameters
----------
obj : Any
Object to check.
classinfo : type | tuple[type, ...]
``type`` or tuple of types. Object must be one of the types.
name : str, default: "Object"
Variable name to use in the error messages if any are raised.
Raises
------
TypeError
If object is not any of the given types.
See Also
--------
check_instance
Examples
--------
Check if an object is type ``dict`` or ``set``.
>>> from pyvista import _validation
>>> _validation.check_type({'spam': "eggs"}, (dict, set))
"""
check_instance(obj, classinfo, allow_subclass=False, name=name)
def check_iterable_items(
iterable_obj,
/,
item_type,
*,
allow_subclass=True,
name='Iterable',
):
"""Check if an iterable's items all have a specified type.
Parameters
----------
iterable_obj : Iterable
Iterable to check.
item_type : type | tuple[type, ...]
Class type(s) to check for. Each element of the sequence must
have the type or one of the types specified.
allow_subclass : bool, default: True
If ``True``, the type of the iterable items must be any of the
given types or a subclass thereof. Otherwise, subclasses are not
allowed.
name : str, default: "Iterable"
Variable name to use in the error messages if any are raised.
Raises
------
TypeError
If any of the items in the iterable have an incorrect type.
See Also
--------
check_instance
check_iterable
check_iterable_items
Examples
--------
Check if a ``tuple`` only has ``int`` or ``float`` elements.
>>> from pyvista import _validation
>>> _validation.check_iterable_items((1, 2, 3.0), (int, float))
Check if a ``list`` only has ``list`` elements.
>>> from pyvista import _validation
>>> _validation.check_iterable_items([[1], [2], [3]], list)
"""
check_iterable(iterable_obj, name=name)
any(
check_instance(
item,
item_type,
allow_subclass=allow_subclass,
name=f"All items of {name}",
)
for item in iterable_obj
)
def check_contains(*, item, container, name='Input'):
"""Check if an item is in a container.
Parameters
----------
item : Any
Item to check.
container : Any
Container the item is expected to be in.
name : str, default: "Input"
Variable name to use in the error messages if any are raised.
Raises
------
ValueError
If the string is not in the iterable.
See Also
--------
check_iterable
check_iterable_items
Examples
--------
Check if ``"A"`` is in a list of strings.
>>> from pyvista import _validation
>>> _validation.check_contains(item="A", container=["A", "B", "C"])
"""
if item not in container:
qualifier = 'one of' if isinstance(container, (list, tuple)) else 'in'
msg = f"{name} '{item}' is not valid. {name} must be {qualifier}: \n\t{container}"
raise ValueError(msg)
def check_length(
arr,
/,
*,
exact_length=None,
min_length=None,
max_length=None,
must_be_1d=False,
allow_scalars=False,
name="Array",
):
"""Check if the length of an array meets specific requirements.
Notes
-----
By default, this function operates on multidimensional arrays,
where ``len(arr)`` may differ from the number of elements in the
array. For one-dimensional cases (where ``len(arr) == arr.size``),
set ``must_be_1D=True``.
Parameters
----------
arr : array_like
Array to check.
exact_length : int | array_like[int, ...]
Check if the array has the given length. If multiple
numbers are given, the array's length must match one of the
numbers.
min_length : int, optional
Check if the array has this length or greater.
max_length : int, optional
Check if the array has this length or less.
must_be_1d : bool, default: False
If ``True``, check if the shape of the array is one-dimensional,
i.e. that the array's shape is ``(1,)``.
allow_scalars : bool, default: False
If ``True``, a scalar input will be reshaped to have a length of
1. Otherwise, the check will fail since a scalar does not
have a length.
name : str, default: "Array"
Variable name to use in the error messages if any are raised.
Raises
------
ValueError
If the array's length is outside the specified range.
See Also
--------
check_shape
Examples
--------
Check if an array has a length of 2 or 3.
>>> from pyvista import _validation
>>> _validation.check_length([1, 2], exact_length=[2, 3])
Check if an array has a minimum length of 3.
>>> _validation.check_length((1, 2, 3), min_length=3)
Check if a multidimensional array has a maximum length of 2.
>>> _validation.check_length([[1, 2, 3], [4, 5, 6]], max_length=2)
"""
if allow_scalars:
# Reshape to 1D
if isinstance(arr, np.ndarray) and arr.ndim == 0:
arr = [arr.tolist()]
elif isinstance(arr, Number):
arr = [arr]
check_instance(arr, (Sequence, np.ndarray), name=name)
if must_be_1d:
check_shape(arr, shape=(-1))
if exact_length is not None:
exact_length = np.array(exact_length)
check_integer(exact_length, name="'exact_length'")
if len(arr) not in exact_length:
raise ValueError(
f"{name} must have a length equal to any of: {exact_length}. "
f"Got length {len(arr)} instead.",
)
# Validate min/max length
if min_length is not None:
min_length = _cast_to_numpy(min_length)
check_number(min_length.tolist(), name="Min length")
check_real(min_length, name="Min length")
if max_length is not None:
max_length = _cast_to_numpy(max_length)
check_number(max_length.tolist(), name="Max length")
check_real(max_length, name="Max length")
if min_length is not None and max_length is not None:
check_sorted((min_length, max_length), name="Range")
if min_length is not None:
if len(arr) < min_length:
raise ValueError(
f"{name} must have a minimum length of {min_length}. "
f"Got length {len(arr)} instead.",
)
if max_length is not None:
if len(arr) > max_length:
raise ValueError(
f"{name} must have a maximum length of {max_length}. "
f"Got length {len(arr)} instead.",
)
def _validate_shape_value(shape: int | tuple[int, ...] | tuple[None]):
"""Validate shape-like input and return its tuple representation."""
if shape is None:
# `None` is used to mean `any shape is allowed` by the array
# validation methods, so raise an error here.
# Also, setting `None` as a shape is deprecated by NumPy.
raise TypeError("`None` is not a valid shape. Use `()` instead.")
# Return early for common inputs
if shape in [(), (-1,), (1,), (3,), (2,), (1, 3), (-1, 3)]:
return shape
def _is_valid_dim(d):
return isinstance(d, int) and d >= -1
if _is_valid_dim(shape):
return (shape,)
if isinstance(shape, tuple) and all(map(_is_valid_dim, shape)):
return shape
# Input is not valid at this point. Use checks to raise an
# appropriate error
check_instance(shape, (int, tuple), name='Shape')
if isinstance(shape, int):
shape = (shape,)
else:
check_iterable_items(shape, int, name='Shape')
check_greater_than(shape, -1, name="Shape", strict=False)
raise RuntimeError("This line should not be reachable.") # pragma: no cover
|