File: validate.py

package info (click to toggle)
python-pyvista 0.44.1-11
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 159,804 kB
  • sloc: python: 72,164; sh: 118; makefile: 68
file content (1047 lines) | stat: -rw-r--r-- 33,567 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
"""Functions that validate input and return a standard representation.

.. versionadded:: 0.43.0

A ``validate`` function typically:

* Uses :py:mod:`~pyvista.core._validation.check` functions to
  check the type and/or value of input arguments.
* Applies (optional) constraints, e.g. input or output must have a
  specific length, shape, type, data-type, etc.
* Accepts many different input types or values and standardizes the
  output as a single representation with known properties.

"""

from __future__ import annotations

import inspect
from itertools import product
import reprlib
from typing import TYPE_CHECKING
from typing import Any
from typing import Literal

import numpy as np

from pyvista.core._validation import check_contains
from pyvista.core._validation import check_finite
from pyvista.core._validation import check_integer
from pyvista.core._validation import check_length
from pyvista.core._validation import check_nonnegative
from pyvista.core._validation import check_range
from pyvista.core._validation import check_real
from pyvista.core._validation import check_shape
from pyvista.core._validation import check_sorted
from pyvista.core._validation import check_string
from pyvista.core._validation import check_subdtype
from pyvista.core._validation._cast_array import _cast_to_numpy
from pyvista.core._validation._cast_array import _cast_to_tuple
from pyvista.core._vtk_core import vtkMatrix3x3
from pyvista.core._vtk_core import vtkMatrix4x4
from pyvista.core._vtk_core import vtkTransform

if TYPE_CHECKING:  # pragma: no cover
    from pyvista.core._typing_core._array_like import NumpyArray


def validate_array(
    arr,
    /,
    *,
    must_have_shape=None,
    must_have_dtype=None,
    must_have_length=None,
    must_have_min_length=None,
    must_have_max_length=None,
    must_be_nonnegative=False,
    must_be_finite=False,
    must_be_real=True,
    must_be_integer=False,
    must_be_sorted=False,
    must_be_in_range=None,
    strict_lower_bound=False,
    strict_upper_bound=False,
    reshape_to=None,
    broadcast_to=None,
    dtype_out=None,
    as_any=True,
    copy=False,
    to_list=False,
    to_tuple=False,
    name="Array",
):
    """Check and validate a numeric array meets specific requirements.

    Validate an array to ensure it is numeric, has a specific shape,
    data-type, and/or has values that meet specific
    requirements such as being sorted, integer-like, or finite.

    The array's output can also be reshaped or broadcast, cast as a
    nested tuple or list array, or cast to a specific data type.

    See Also
    --------
    validate_number
        Specialized function for single numbers.

    validate_array3
        Specialized function for 3-element arrays.

    validate_arrayN
        Specialized function for one-dimensional arrays.

    validate_arrayNx3
        Specialized function for Nx3 dimensional arrays.

    validate_data_range
        Specialized function for data ranges.

    Parameters
    ----------
    arr : array_like
        Array to be validated, in any form that can be converted to
        a :class:`np.ndarray`. This includes lists, lists of tuples, tuples,
        tuples of tuples, tuples of lists and ndarrays.

    must_have_shape : int | tuple[int, ...] | list[int, tuple[int, ...]], optional
        :func:`Check <pyvista.core.validation.check.check_has_shape>`
        if the array has a specific shape. Specify a single shape
        or a ``list`` of any allowable shapes. If an integer, the array must
        be 1-dimensional with that length. Use a value of ``-1`` for any
        dimension where its size is allowed to vary. Use ``()`` to allow
        scalar values (i.e. 0-dimensional). Set to ``None`` if the array
        can have any shape (default).

    must_have_dtype : dtype_like | list[dtype_like, ...], optional
        :func:`Check <pyvista.core.validation.check.check_subdtype>`
        if the array's data-type has the given dtype. Specify a
        :class:`np.dtype` object or dtype-like base class which the
        array's data must be a subtype of. If a ``list``, the array's data
        must be a subtype of at least one of the specified dtypes.

    must_have_length : int | array_like[int, ...], optional
        :func:`Check <pyvista.core.validation.check.check_has_length>`
        if the array has the given length. If multiple values are given,
        the array's length must match one of the values.

        .. note ::

            The array's length is determined after reshaping the array
            (if ``reshape`` is not ``None``) and after broadcasting (if
            ``broadcast_to`` is not ``None``). Therefore, the values of
            `length`` should take the array's new shape into
            consideration if applicable.

    must_have_min_length : int, optional
        :func:`Check <pyvista.core.validation.check.check_has_length>`
        if the array's length is this value or greater.

    must_have_max_length : int, optional
        :func:`Check <pyvista.core.validation.check.check_has_length>`
        if the array' length is this value or less.

    must_be_nonnegative : bool, default: False
        :func:`Check <pyvista.core.validation.check.check_nonnegative>`
        if all elements of the array are nonnegative.

    must_be_finite : bool, default: False
        :func:`Check <pyvista.core.validation.check.check_finite>`
        if all elements of the array are finite, i.e. not ``infinity``
        and not Not a Number (``NaN``).

    must_be_real : bool, default: True
        :func:`Check <pyvista.core.validation.check.check_real>`
        if the array has real numbers, i.e. its data type is integer or
        floating.

    must_be_integer : bool, default: False
        :func:`Check <pyvista.core.validation.check.check_integer>`
        if the array's values are integer-like (i.e. that
        ``np.all(arr, np.floor(arr))``).

    must_be_sorted : bool | dict, default: False
        :func:`Check <pyvista.core.validation.check.check_sorted>`
        if the array's values are sorted. If ``True``, the check is
        performed with default parameters:

        * ``ascending=True``: the array must be sorted in ascending order
        * ``strict=False``: sequential elements with the same value are allowed
        * ``axis=-1``: the sorting is checked along the array's last axis

        To check for descending order, enforce strict ordering, or to check
        along a different axis, use a ``dict`` with keyword arguments that
        will be passed to ``check_sorted``.

    must_be_in_range : array_like[float, float], optional
        :func:`Check <pyvista.core.validation.check.check_range>`
        if the array's values are all within a specific range. Range
        must be array-like with two elements specifying the minimum and
        maximum data values allowed, respectively. By default, the range
        endpoints are inclusive, i.e. values must be >= minimum and <=
        maximum. Use ``strict_lower_bound`` and/or ``strict_upper_bound``
        to further restrict the allowable range.

        ..note ::

            Use ``np.inf`` to check for open intervals, e.g.:

            * ``[-np.inf, upper_bound]`` to check if values are less
              than (or equal to)  ``upper_bound``
            * ``[lower_bound, np.inf]`` to check if values are greater
              than (or equal to) ``lower_bound``

    strict_lower_bound : bool, default: False
        Enforce a strict lower bound for the range specified by
        ``must_be_in_range``, i.e. array values must be strictly greater
        than the specified minimum.

    strict_upper_bound : bool, default: False
        Enforce a strict upper bound for the range specified by
        ``must_be_in_range``, i.e. array values must be strictly less
        than the specified maximum.

    reshape_to : int | tuple[int, ...], optional
        Reshape the output array to a new shape with :func:`np.reshape`.
        The shape should be compatible with the original shape. If an
        integer, then the result will be a 1-D array of that length. One
        shape dimension can be -1.

    broadcast_to : int | tuple[int, ...], optional
        Broadcast the array with :func:`np.broadcast_to` to a
        read-only view with the specified shape. Broadcasting is done
        after reshaping (if ``reshape_to`` is not ``None``).

    dtype_out : dtype_like, optional
        Set the data-type of the returned array. By default, the
        dtype is inferred from the input data.

    as_any : bool, default: True
        Allow subclasses of ``np.ndarray`` to pass through without
        making a copy.

    copy : bool, default: False
        If ``True``, a copy of the array is returned. A copy is always
        returned if the array:

        * is a nested sequence
        * is a subclass of ``np.ndarray`` and ``as_any`` is ``False``.

        A copy may also be made to satisfy ``dtype_out`` requirements.

    to_list : bool, default: False
        Return the validated array as a ``list`` or nested ``list``. Scalar
        values are always returned as a ``Number``  (i.e. ``int`` or ``float``).
        Has no effect if ``to_tuple=True``.

    to_tuple : bool, default: False
        Return the validated array as a ``tuple`` or nested ``tuple``. Scalar
        values are always returned as a ``Number``  (i.e. ``int`` or ``float``).

    name : str, default: "Array"
        Variable name to use in the error messages if any of the
        validation checks fail.

    Returns
    -------
    array_like
        Validated array. Returned object is:

        * an instance of ``np.ndarray`` (default), or
        * a nested ``list`` (if ``to_list=True``), or
        * a nested ``tuple`` (if ``to_tuple=True``), or
        * a ``Number`` (i.e. ``int`` or ``float``) if the input is a scalar.

    Examples
    --------
    Validate a one-dimensional array has at least length two, is
    monotonically increasing (i.e. has strict ascending order), and
    is within some range.

    >>> from pyvista import _validation
    >>> array_in = (1, 2, 3, 5, 8, 13)
    >>> rng = (0, 20)
    >>> _validation.validate_array(
    ...     array_in,
    ...     must_have_shape=(-1),
    ...     must_have_min_length=2,
    ...     must_be_sorted=dict(strict=True),
    ...     must_be_in_range=rng,
    ... )
    array([ 1,  2,  3,  5,  8, 13])

    """
    arr_out = _cast_to_numpy(arr, as_any=as_any, copy=copy)

    # Check type
    if must_be_real:
        check_real(arr_out, name=name)
    else:
        try:
            check_subdtype(arr_out, np.number, name=name)
        except TypeError as e:
            raise TypeError(f"{name} must be numeric.") from e

    if must_have_dtype is not None:
        check_subdtype(arr_out, must_have_dtype, name=name)

    # Check shape
    if must_have_shape is not None:
        check_shape(arr_out, must_have_shape, name=name)

    # Do reshape _after_ checking shape to prevent unexpected reshaping
    if reshape_to is not None and arr_out.shape != reshape_to:
        arr_out = arr_out.reshape(reshape_to)

    if broadcast_to is not None and arr_out.shape != broadcast_to:
        arr_out = np.broadcast_to(arr_out, broadcast_to, subok=True)

    # Check length _after_ reshaping otherwise length may be wrong
    if (
        must_have_length is not None
        or must_have_min_length is not None
        or must_have_max_length is not None
    ):
        check_length(
            arr,
            exact_length=must_have_length,
            min_length=must_have_min_length,
            max_length=must_have_max_length,
            allow_scalars=True,
            name=name,
        )

    # Check data values
    if must_be_nonnegative:
        check_nonnegative(arr_out, name=name)
    if must_be_finite:
        check_finite(arr_out, name=name)
    if must_be_integer:
        check_integer(arr_out, strict=False, name=name)
    if must_be_in_range is not None:
        check_range(
            arr_out,
            must_be_in_range,
            strict_lower=strict_lower_bound,
            strict_upper=strict_upper_bound,
            name=name,
        )
    if must_be_sorted:
        if isinstance(must_be_sorted, dict):
            check_sorted(arr_out, **must_be_sorted, name=name)
        else:
            check_sorted(arr_out, name=name)

    # Process output
    if dtype_out is not None:
        # Copy was done earlier, so don't do it again here
        arr_out = arr_out.astype(dtype_out, copy=False)
    if to_tuple:
        return _cast_to_tuple(arr_out)
    if to_list:
        return arr_out.tolist()
    return arr_out


def validate_axes(
    *axes,
    normalize=True,
    must_be_orthogonal=True,
    must_have_orientation='right',
    name="Axes",
):
    """Validate 3D axes vectors.

    By default, the axes are normalized and checked to ensure they are orthogonal and
    have a right-handed orientation.

    Parameters
    ----------
    *axes : array_like
        Axes to be validated. Axes may be specified as a single argument of a 3x3
        array of row vectors or as separate arguments for each 3-element axis vector.
        If only two vectors are given and ``must_have_orientation`` is not ``None``,
        the third vector is automatically calculated as the cross-product of the
        two vectors such that the axes have the correct orientation.

    normalize : bool, default: True
        If ``True``, the axes vectors are individually normalized to each have a norm
        of 1.

    must_be_orthogonal : bool, default: True
        Check if the axes are orthogonal. If ``True``, the cross product between any
        two axes vectors must be parallel to the third.

    must_have_orientation : str, default: 'right'
        Check if the axes have a specific orientation. If ``right``, the
        cross-product of the first axis vector with the second must have a positive
        direction. If ``left``, the direction must be negative. If ``None``, the
        orientation is not checked.

    name : str, default: "Axes"
        Variable name to use in the error messages if any of the
        validation checks fail.

    Returns
    -------
    np.ndarray
        Validated 3x3 axes array of row vectors.

    Examples
    --------
    Validate an axes array.

    >>> import numpy as np
    >>> from pyvista import _validation
    >>> _validation.validate_axes(np.eye(3))
    array([[1., 0., 0.],
           [0., 1., 0.],
           [0., 0., 1.]])

    Validate individual axes vectors as a 3x3 array.

    >>> _validation.validate_axes([1, 0, 0], [0, 1, 0], [0, 0, 1])
    array([[1., 0., 0.],
           [0., 1., 0.],
           [0., 0., 1.]])

    Create a validated left-handed axes array from two vectors.

    >>> _validation.validate_axes(
    ...     [1, 0, 0], [0, 1, 0], must_have_orientation='left'
    ... )
    array([[ 1.,  0.,  0.],
           [ 0.,  1.,  0.],
           [ 0.,  0., -1.]])

    """
    # Validate number of args
    check_length(axes, exact_length=[1, 2, 3], name=f"{name} arguments")
    if must_have_orientation is not None:
        check_contains(
            item=must_have_orientation,
            container=['right', 'left'],
            name=f"{name} orientation",
        )
    elif must_have_orientation is None and len(axes) == 2:
        raise ValueError(f"{name} orientation must be specified when only two vectors are given.")

    # Validate axes array
    if len(axes) == 1:
        axes_array = validate_array(axes[0], must_have_shape=(3, 3), name=name)
    else:
        axes_array = np.zeros((3, 3))
        axes_array[0] = validate_array3(axes[0], name=f"{name} Vector[0]")
        axes_array[1] = validate_array3(axes[1], name=f"{name} Vector[1]")
        if len(axes) == 3:
            axes_array[2] = validate_array3(axes[2], name=f"{name} Vector[2]")
        else:  # len(axes) == 2
            if must_have_orientation == 'right':
                axes_array[2] = np.cross(axes_array[0], axes_array[1])
            else:
                axes_array[2] = np.cross(axes_array[1], axes_array[0])
    check_finite(axes_array, name=name)

    if np.isclose(np.dot(axes_array[0], axes_array[1]), 1) or np.isclose(
        np.dot(axes_array[0], axes_array[2]),
        1,
    ):
        raise ValueError(f"{name} cannot be parallel.")
    if np.any(np.all(np.isclose(axes_array, np.zeros(3)), axis=1)):
        raise ValueError(f"{name} cannot be zeros.")

    # Check orthogonality and orientation using cross products
    # Normalize axes first since norm values are needed for cross product calc
    axes_norm = axes_array / np.linalg.norm(axes_array, axis=1).reshape((3, 1))
    cross_0_1 = np.cross(axes_norm[0], axes_norm[1])
    cross_1_2 = np.cross(axes_norm[1], axes_norm[2])

    if must_be_orthogonal and not (
        (np.allclose(cross_0_1, axes_norm[2]) or np.allclose(cross_0_1, -axes_norm[2]))
        and (np.allclose(cross_1_2, axes_norm[0]) or np.allclose(cross_1_2, -axes_norm[0]))
    ):
        raise ValueError(f"{name} are not orthogonal.")

    if must_have_orientation:
        dot = np.dot(cross_0_1, axes_norm[2])
        if must_have_orientation == 'right' and dot < 0:
            raise ValueError(f"{name} do not have a right-handed orientation.")
        if must_have_orientation == 'left' and dot > 0:
            raise ValueError(f"{name} do not have a left-handed orientation.")

    if normalize:
        return axes_norm
    return axes_array


def validate_transform4x4(transform, /, *, name="Transform"):
    """Validate transform-like input as a 4x4 ndarray.

    This function supports inputs with a 3x3 or 4x4 shape. If the input is 3x3,
    the array is padded using a 4x4 identity matrix.

    Parameters
    ----------
    transform : array_like | vtkTransform | vtkMatrix4x4 | vtkMatrix3x3 | scipy.spatial.transform.Rotation
        Transformation matrix as a 3x3 or 4x4 array or vtk matrix, or a
        SciPy ``Rotation`` instance.

        Transformation matrix as a 3x3 or 4x4 array, 3x3 or 4x4 vtkMatrix,
        or as a vtkTransform.

    name : str, default: "Transform"
        Variable name to use in the error messages if any of the
        validation checks fail.

    Returns
    -------
    np.ndarray
        Validated 4x4 transformation matrix.

    See Also
    --------
    validate_transform3x3
        Similar function for 3x3 transforms.

    validate_array
        Generic array validation function.

    """
    check_string(name, name="Name")
    try:
        arr = np.eye(4)  # initialize
        arr[:3, :3] = validate_transform3x3(transform, name=name)
    except (ValueError, TypeError):
        if isinstance(transform, vtkMatrix4x4):
            arr = _array_from_vtkmatrix(transform, shape=(4, 4))
        elif isinstance(transform, vtkTransform):
            arr = _array_from_vtkmatrix(transform.GetMatrix(), shape=(4, 4))
        else:
            try:
                arr = validate_array(
                    transform,
                    must_have_shape=(4, 4),
                    must_be_finite=True,
                    name=name,
                )
            except ValueError:
                raise TypeError(
                    'Input transform must be one of:\n'
                    '\tvtkMatrix4x4\n'
                    '\tvtkMatrix3x3\n'
                    '\tvtkTransform\n'
                    '\t4x4 np.ndarray\n'
                    '\t3x3 np.ndarray\n',
                    '\tscipy.spatial.transform.Rotation\n'
                    f'Got {reprlib.repr(transform)} with type {type(transform)} instead.',
                )

    return arr


def validate_transform3x3(transform, /, *, name="Transform"):
    """Validate transform-like input as a 3x3 ndarray.

    Parameters
    ----------
    transform : array_like | vtkMatrix3x3 | scipy.spatial.transform.Rotation
        Transformation matrix as a 3x3 array, vtk matrix, or a SciPy ``Rotation``
        instance.

    name : str, default: "Transform"
        Variable name to use in the error messages if any of the
        validation checks fail.

    Returns
    -------
    np.ndarray
        Validated 3x3 transformation matrix.

    See Also
    --------
    validate_transform4x4
        Similar function for 4x4 transforms.

    validate_array
        Generic array validation function.

    """
    check_string(name, name="Name")
    if isinstance(transform, vtkMatrix3x3):
        return _array_from_vtkmatrix(transform, shape=(3, 3))
    else:
        try:
            return validate_array(transform, must_have_shape=(3, 3), must_be_finite=True, name=name)
        except ValueError:
            pass
        except TypeError:
            try:
                from scipy.spatial.transform import Rotation
            except ModuleNotFoundError:  # pragma: no cover
                pass
            else:
                if isinstance(transform, Rotation):
                    # Get matrix output and try validating again
                    return validate_transform3x3(transform.as_matrix())

    error_message = (
        f'Input transform must be one of:\n'
        '\tvtkMatrix3x3\n'
        '\t3x3 np.ndarray\n'
        '\tscipy.spatial.transform.Rotation\n'
        f'Got {reprlib.repr(transform)} with type {type(transform)} instead.'
    )
    raise TypeError(error_message)


def _array_from_vtkmatrix(
    matrix: vtkMatrix3x3 | vtkMatrix4x4,
    shape: tuple[Literal[3], Literal[3]] | tuple[Literal[4], Literal[4]],
) -> NumpyArray[float]:
    """Convert a vtk matrix to an array."""
    array = np.zeros(shape)
    for i, j in product(range(shape[0]), range(shape[1])):
        array[i, j] = matrix.GetElement(i, j)
    return array


def validate_number(num, /, *, reshape=True, **kwargs):
    """Validate a real, finite number.

    By default, the number is checked to ensure it:

    * is scalar or is an array which can be reshaped as a scalar
    * is a real number
    * is finite

    Parameters
    ----------
    num : int | float | array_like
        Number to validate.

    reshape : bool, default: True
        If ``True``, 1D arrays with 1 element are considered valid input
        and are reshaped to be 0-dimensional.

    **kwargs : dict, optional
        Additional keyword arguments passed to :func:`~validate_array`.

    Returns
    -------
    int | float
        Validated number.

    See Also
    --------
    validate_array
        Generic array validation function.

    Examples
    --------
    Validate a number.

    >>> from pyvista import _validation
    >>> _validation.validate_number(1)
    1

    1D arrays are automatically reshaped.

    >>> _validation.validate_number([42.0])
    42.0

    Additional checks can be added as needed.

    >>> _validation.validate_number(
    ...     10, must_be_in_range=[0, 10], must_be_integer=True
    ... )
    10

    """
    kwargs.setdefault('name', 'Number')
    kwargs.setdefault('to_list', True)
    kwargs.setdefault('must_be_finite', True)

    if reshape:
        shape = [(), (1,)]
        _set_default_kwarg_mandatory(kwargs, 'reshape_to', ())
    else:
        shape = ()
    _set_default_kwarg_mandatory(kwargs, 'must_have_shape', shape)

    return validate_array(num, **kwargs)


def validate_data_range(rng, /, **kwargs):
    """Validate a data range.

    By default, the data range is checked to ensure:

    * it has two values
    * it has real numbers
    * the lower bound is not more than the upper bound

    Parameters
    ----------
    rng : array_like[float, float]
        Range to validate in the form ``(lower_bound, upper_bound)``.

    **kwargs : dict, optional
        Additional keyword arguments passed to :func:`~validate_array`.

    Returns
    -------
    tuple
        Validated range as ``(lower_bound, upper_bound)``.

    See Also
    --------
    validate_array
        Generic array validation function.

    Examples
    --------
    Validate a data range.

    >>> from pyvista import _validation
    >>> _validation.validate_data_range([-5, 5])
    (-5, 5)

    Add additional constraints if needed.

    >>> _validation.validate_data_range([0, 1.0], must_be_nonnegative=True)
    (0.0, 1.0)

    """
    kwargs.setdefault('name', 'Data Range')
    _set_default_kwarg_mandatory(kwargs, 'must_have_shape', 2)
    _set_default_kwarg_mandatory(kwargs, 'must_be_sorted', True)
    if 'to_list' not in kwargs:
        kwargs.setdefault('to_tuple', True)
    return validate_array(rng, **kwargs)


def validate_arrayNx3(arr, /, *, reshape=True, **kwargs):
    """Validate an array is numeric and has shape Nx3.

    The array is checked to ensure its input values:

    * have shape ``(N, 3)`` or can be reshaped to ``(N, 3)``
    * are numeric

    The returned array is formatted so that its values:

    * have shape ``(N, 3)``.

    Parameters
    ----------
    arr : array_like
        Array to validate.

    reshape : bool, default: True
        If ``True``, 1D arrays with 3 elements are considered valid
        input and are reshaped to ``(1, 3)`` to ensure the output is
        two-dimensional.

    **kwargs : dict, optional
        Additional keyword arguments passed to :func:`~validate_array`.

    Returns
    -------
    np.ndarray
        Validated array with shape ``(N, 3)``.

    See Also
    --------
    validate_arrayN
        Similar function for one-dimensional arrays.

    validate_array
        Generic array validation function.

    Examples
    --------
    Validate an Nx3 array.

    >>> from pyvista import _validation
    >>> _validation.validate_arrayNx3(((1, 2, 3), (4, 5, 6)))
    array([[1, 2, 3],
           [4, 5, 6]])

    One-dimensional 3-element arrays are automatically reshaped to 2D.

    >>> _validation.validate_arrayNx3([1, 2, 3])
    array([[1, 2, 3]])

    Add additional constraints.

    >>> _validation.validate_arrayNx3(
    ...     ((1, 2, 3), (4, 5, 6)), must_be_in_range=[0, 10]
    ... )
    array([[1, 2, 3],
           [4, 5, 6]])

    """
    if reshape:
        shape = [3, (-1, 3)]
        _set_default_kwarg_mandatory(kwargs, 'reshape_to', (-1, 3))
    else:
        shape = (-1, 3)
    _set_default_kwarg_mandatory(kwargs, 'must_have_shape', shape)

    return validate_array(arr, **kwargs)


def validate_arrayN(arr, /, *, reshape=True, **kwargs):
    """Validate a numeric 1D array.

    The array is checked to ensure its input values:

    * have shape ``(N,)`` or can be reshaped to ``(N,)``
    * are numeric

    The returned array is formatted so that its values:

    * have shape ``(N,)``

    Parameters
    ----------
    arr : array_like[float, ...]
        Array to validate.

    reshape : bool, default: True
        If ``True``, 0-dimensional scalars are reshaped to ``(1,)`` and 2D
        vectors with shape ``(1, N)`` are reshaped to ``(N,)`` to ensure the
        output is consistently one-dimensional. Otherwise, all scalar and
        2D inputs are not considered valid.

    **kwargs : dict, optional
        Additional keyword arguments passed to :func:`~validate_array`.

    Returns
    -------
    np.ndarray
        Validated 1D array.

    See Also
    --------
    validate_arrayN_unsigned
        Similar function for non-negative integer arrays.

    validate_array
        Generic array validation function.

    Examples
    --------
    Validate a 1D array with four elements.

    >>> from pyvista import _validation
    >>> _validation.validate_arrayN((1, 2, 3, 4))
    array([1, 2, 3, 4])

    Scalar 0-dimensional values are automatically reshaped to be 1D.

    >>> _validation.validate_arrayN(42.0)
    array([42.0])

    2D arrays where the first dimension is unity are automatically
    reshaped to be 1D.

    >>> _validation.validate_arrayN([[1, 2]])
    array([1, 2])

    Add additional constraints if needed.

    >>> _validation.validate_arrayN((1, 2, 3), must_have_length=3)
    array([1, 2, 3])

    """
    if reshape:
        shape = [(), (-1), (1, -1)]
        _set_default_kwarg_mandatory(kwargs, 'reshape_to', (-1))
    else:
        shape = -1
    _set_default_kwarg_mandatory(kwargs, 'must_have_shape', shape)
    return validate_array(arr, **kwargs)


def validate_arrayN_unsigned(arr, /, *, reshape=True, **kwargs):
    """Validate a numeric 1D array of non-negative (unsigned) integers.

    The array is checked to ensure its input values:

    * have shape ``(N,)`` or can be reshaped to ``(N,)``
    * are integer-like
    * are non-negative

    The returned array is formatted so that its values:

    * have shape ``(N,)``
    * have an integer data type

    Parameters
    ----------
    arr : array_like[float, ...] | array_like[int, ...]
        Array to validate.

    reshape : bool, default: True
        If ``True``, 0-dimensional scalars are reshaped to ``(1,)`` and 2D
        vectors with shape ``(1, N)`` are reshaped to ``(N,)`` to ensure the
        output is consistently one-dimensional. Otherwise, all scalar and
        2D inputs are not considered valid.

    **kwargs : dict, optional
        Additional keyword arguments passed to :func:`~validate_array`.

    Returns
    -------
    np.ndarray
        Validated 1D array with non-negative integers.

    See Also
    --------
    validate_arrayN
        Similar function for numeric one-dimensional arrays.

    validate_array
        Generic array validation function.

    Examples
    --------
    Validate a 1D array with four non-negative integer-like elements.

    >>> import numpy as np
    >>> from pyvista import _validation
    >>> arr = _validation.validate_arrayN_unsigned((1.0, 2.0, 3.0, 4.0))
    >>> arr
    array([1, 2, 3, 4])

    Verify that the output data type is integral.

    >>> np.issubdtype(arr.dtype, int)
    True

    Scalar 0-dimensional values are automatically reshaped to be 1D.

    >>> _validation.validate_arrayN_unsigned(42)
    array([42])

    2D arrays where the first dimension is unity are automatically
    reshaped to be 1D.

    >>> _validation.validate_arrayN_unsigned([[1, 2]])
    array([1, 2])

    Add additional constraints if needed.

    >>> _validation.validate_arrayN_unsigned(
    ...     (1, 2, 3), must_be_in_range=[1, 3]
    ... )
    array([1, 2, 3])

    """
    # Set default dtype out but allow overriding as long as the dtype
    # is also integral
    kwargs.setdefault('dtype_out', int)
    if kwargs['dtype_out'] is not int:
        check_subdtype(kwargs['dtype_out'], np.integer)

    _set_default_kwarg_mandatory(kwargs, 'must_be_integer', True)
    _set_default_kwarg_mandatory(kwargs, 'must_be_nonnegative', True)

    return validate_arrayN(arr, reshape=reshape, **kwargs)


def validate_array3(arr, /, *, reshape=True, broadcast=False, **kwargs):
    """Validate a numeric 1D array with 3 elements.

    The array is checked to ensure its input values:

    * have shape ``(3,)`` or can be reshaped to ``(3,)``
    * are numeric and real

    The returned array is formatted so that it has shape ``(3,)``.

    Parameters
    ----------
    arr : array_like[float, float, float]
        Array to validate.

    reshape : bool, default: True
        If ``True``, 2D vectors with shape ``(1, 3)`` are considered valid
        input, and are reshaped to ``(3,)`` to ensure the output is
        consistently one-dimensional.

    broadcast : bool, default: False
        If ``True``, scalar values or 1D arrays with a single element
        are considered valid input and the single value is broadcast to
        a length 3 array.

    **kwargs : dict, optional
        Additional keyword arguments passed to :func:`~validate_array`.

    Returns
    -------
    np.ndarray
        Validated 1D array with 3 elements.

    See Also
    --------
    validate_number
        Similar function for a single number.

    validate_arrayN
        Similar function for one-dimensional arrays.

    validate_array
        Generic array validation function.

    Examples
    --------
    Validate a 1D array with three elements.

    >>> from pyvista import _validation
    >>> _validation.validate_array3((1, 2, 3))
    array([1, 2, 3])

    2D 3-element arrays are automatically reshaped to be 1D.

    >>> _validation.validate_array3([[1, 2, 3]])
    array([1, 2, 3])

    Scalar 0-dimensional values can be automatically broadcast as
    a 3-element 1D array.

    >>> _validation.validate_array3(42.0, broadcast=True)
    array([42.0, 42.0, 42.0])

    Add additional constraints if needed.

    >>> _validation.validate_array3((1, 2, 3), must_be_nonnegative=True)
    array([1, 2, 3])

    """
    shape = [(3,)]
    if reshape:
        shape.append((1, 3))
        shape.append((3, 1))
        _set_default_kwarg_mandatory(kwargs, 'reshape_to', (-1))
    if broadcast:
        shape.append(())  # allow 0D scalars
        shape.append((1,))  # 1D 1-element vectors
        _set_default_kwarg_mandatory(kwargs, 'broadcast_to', (3,))
    _set_default_kwarg_mandatory(kwargs, 'must_have_shape', shape)

    return validate_array(arr, **kwargs)


def _set_default_kwarg_mandatory(kwargs: dict[str, Any], key: str, default: Any):
    """Set a kwarg and raise ValueError if not set to its default value."""
    val = kwargs.pop(key, default)
    if val != default:
        calling_fname = inspect.stack()[1].function
        msg = (
            f"Parameter '{key}' cannot be set for function `{calling_fname}`.\n"
            f"Its value is automatically set to `{default}`."
        )
        raise ValueError(msg)
    kwargs[key] = default