File: arrays.py

package info (click to toggle)
python-pyvista 0.44.1-11
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 159,804 kB
  • sloc: python: 72,164; sh: 118; makefile: 68
file content (936 lines) | stat: -rw-r--r-- 27,608 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
"""Internal array utilities."""

from __future__ import annotations

from collections import UserDict
import enum
from itertools import product
import json
from typing import TYPE_CHECKING
from typing import Sequence
from typing import Union

import numpy as np

import pyvista
from pyvista.core import _vtk_core as _vtk
from pyvista.core.errors import AmbiguousDataError
from pyvista.core.errors import MissingDataError

if TYPE_CHECKING:  # pragma: no cover
    from pyvista.core._typing_core import MatrixLike
    from pyvista.core._typing_core import NumpyArray
    from pyvista.core._typing_core import TransformLike
    from pyvista.core._typing_core import VectorLike


class FieldAssociation(enum.Enum):
    """Represents which type of vtk field a scalar or vector array is associated with."""

    POINT = _vtk.vtkDataObject.FIELD_ASSOCIATION_POINTS
    CELL = _vtk.vtkDataObject.FIELD_ASSOCIATION_CELLS
    NONE = _vtk.vtkDataObject.FIELD_ASSOCIATION_NONE
    ROW = _vtk.vtkDataObject.FIELD_ASSOCIATION_ROWS


def parse_field_choice(field):
    """Return a field association object for a given field type string.

    Parameters
    ----------
    field : str, FieldAssociation
        Name of the field (e.g, ``'cell'``, ``'field'``, ``'point'``,
        ``'row'``).

    Returns
    -------
    pyvista.FieldAssociation
        Field association.

    """
    if isinstance(field, str):
        field = field.strip().lower()
        if field in ['cell', 'c', 'cells']:
            field = FieldAssociation.CELL
        elif field in ['point', 'p', 'points']:
            field = FieldAssociation.POINT
        elif field in ['field', 'f', 'fields']:
            field = FieldAssociation.NONE
        elif field in ['row', 'r']:
            field = FieldAssociation.ROW
        else:
            raise ValueError(f'Data field ({field}) not supported.')
    elif isinstance(field, FieldAssociation):
        pass
    else:
        raise TypeError(f'Data field ({field}) not supported.')
    return field


def _coerce_pointslike_arg(
    points: MatrixLike[float] | VectorLike[float],
    copy: bool = False,
) -> tuple[NumpyArray[float], bool]:
    """Check and coerce arg to (n, 3) np.ndarray.

    Parameters
    ----------
    points : MatrixLike[float] | VectorLike[float]
        Argument to coerce into (n, 3) :class:`numpy.ndarray`.

    copy : bool, default: False
        Whether to copy the ``points`` array.  Copying always occurs if ``points``
        is not :class:`numpy.ndarray`.

    Returns
    -------
    numpy.ndarray
        Size ``(n, 3)`` array.
    bool
        Whether the input was a single point in an array-like with shape ``(3,)``.

    """
    if isinstance(points, Sequence):
        points = np.asarray(points)

    if not isinstance(points, np.ndarray):
        raise TypeError("Given points must be convertible to a numerical array.")

    if points.ndim > 2:
        raise ValueError("Array of points must be 1D or 2D")

    if points.ndim == 2:
        if points.shape[1] != 3:
            raise ValueError("Array of points must have three values per point (shape (n, 3))")
        singular = False

    else:
        if points.size != 3:
            raise ValueError("Given point must have three values")
        singular = True
        points = np.reshape(points, [1, 3])

    if copy:
        return points.copy(), singular
    return points, singular


def copy_vtk_array(array, deep=True):
    """Create a deep or shallow copy of a VTK array.

    Parameters
    ----------
    array : vtk.vtkDataArray | vtk.vtkAbstractArray
        VTK array.

    deep : bool, optional
        When ``True``, create a deep copy of the array. When ``False``, returns
        a shallow copy.

    Returns
    -------
    vtk.vtkDataArray or vtk.vtkAbstractArray
        Copy of the original VTK array.

    Examples
    --------
    Perform a deep copy of a vtk array.

    >>> import vtk
    >>> import pyvista as pv
    >>> arr = vtk.vtkFloatArray()
    >>> _ = arr.SetNumberOfValues(10)
    >>> arr.SetValue(0, 1)
    >>> arr_copy = pv.core.utilities.arrays.copy_vtk_array(arr)
    >>> arr_copy.GetValue(0)
    1.0

    """
    if not isinstance(array, (_vtk.vtkDataArray, _vtk.vtkAbstractArray)):
        raise TypeError(f"Invalid type {type(array)}.")

    new_array = type(array)()
    if deep:
        new_array.DeepCopy(array)
    else:
        new_array.ShallowCopy(array)

    return new_array


def has_duplicates(arr):
    """Return if an array has any duplicates.

    Parameters
    ----------
    arr : numpy.ndarray
        Array to be checked for duplicates.

    Returns
    -------
    bool
        ``True`` if the array has any duplicates, otherwise ``False``.
    """
    s = np.sort(arr, axis=None)
    return (s[1:] == s[:-1]).any()


def raise_has_duplicates(arr):
    """Raise a ValueError if an array is not unique.

    Parameters
    ----------
    arr : numpy.ndarray
        Array to be checked for duplicates.

    Raises
    ------
    ValueError
        If the array contains duplicate values.
    """
    if has_duplicates(arr):
        raise ValueError("Array contains duplicate values.")


def convert_array(arr, name=None, deep=False, array_type=None):
    """Convert a NumPy array to a vtkDataArray or vice versa.

    Parameters
    ----------
    arr : np.ndarray | vtkDataArray
        A numpy array or vtkDataArry to convert.
    name : str, optional
        The name of the data array for VTK.
    deep : bool, default: False
        If input is numpy array then deep copy values.
    array_type : int, optional
        VTK array type ID as specified in ``vtkType.h``.

    Returns
    -------
    vtkDataArray or numpy.ndarray
        The converted array.  If input is a :class:`numpy.ndarray` then
        returns ``vtkDataArray`` or is input is ``vtkDataArray`` then
        returns NumPy ``ndarray``.

    """
    if arr is None:
        return None
    if isinstance(arr, (list, tuple, str)):
        arr = np.array(arr)
    if isinstance(arr, np.ndarray):
        if arr.dtype == np.dtype('O'):
            arr = arr.astype('|S')
        if arr.dtype.type in (np.str_, np.bytes_):
            # This handles strings
            if arr.ndim > 0:
                # Do not call ascontiguousarray for scalar strings since this will reshape to 1D
                # and scalars are already contiguous anyway
                arr = np.ascontiguousarray(arr)
            vtk_data = convert_string_array(arr)
        else:
            # This will handle numerical data
            arr = np.ascontiguousarray(arr)
            vtk_data = _vtk.numpy_to_vtk(num_array=arr, deep=deep, array_type=array_type)
        if isinstance(name, str):
            vtk_data.SetName(name)
        return vtk_data
    # Otherwise input must be a vtkDataArray
    if not isinstance(arr, (_vtk.vtkDataArray, _vtk.vtkBitArray, _vtk.vtkStringArray)):
        raise TypeError(f'Invalid input array type ({type(arr)}).')
    # Handle booleans
    if isinstance(arr, _vtk.vtkBitArray):
        arr = vtk_bit_array_to_char(arr)
    # Handle string arrays
    if isinstance(arr, _vtk.vtkStringArray):
        return convert_string_array(arr)
    # Convert from vtkDataArry to NumPy
    return _vtk.vtk_to_numpy(arr)


def get_array(mesh, name, preference='cell', err=False) -> pyvista.ndarray | None:
    """Search point, cell and field data for an array.

    Parameters
    ----------
    mesh : pyvista.DataSet
        Dataset to get the array from.

    name : str
        The name of the array to get the range.

    preference : str, default: "cell"
        When scalars is specified, this is the preferred array type to
        search for in the dataset.  Must be either ``'point'``,
        ``'cell'``, or ``'field'``.

    err : bool, default: False
        Whether to throw an error if array is not present.

    Returns
    -------
    pyvista.pyvista_ndarray or None
        Requested array.  Return ``None`` if there is no array
        matching the ``name`` and ``err=False``.

    """
    if isinstance(mesh, _vtk.vtkTable):
        arr = row_array(mesh, name)
        if arr is None and err:
            raise KeyError(f'Data array ({name}) not present in this dataset.')
        return arr

    if not isinstance(preference, str):
        raise TypeError('`preference` must be a string')
    if preference not in ['cell', 'point', 'field']:
        raise ValueError(
            f'`preference` must be either "cell", "point", "field" for a '
            f'{type(mesh)}, not "{preference}".',
        )

    parr = point_array(mesh, name)
    carr = cell_array(mesh, name)
    farr = field_array(mesh, name)
    preference = parse_field_choice(preference)
    if sum([array is not None for array in (parr, carr, farr)]) > 1:
        if preference == FieldAssociation.CELL:
            return carr
        elif preference == FieldAssociation.POINT:
            return parr
        else:  # must be field
            return farr

    if parr is not None:
        return parr
    elif carr is not None:
        return carr
    elif farr is not None:
        return farr
    elif err:
        raise KeyError(f'Data array ({name}) not present in this dataset.')
    return None


def get_array_association(mesh, name, preference='cell', err=False) -> FieldAssociation:
    """Return the array association.

    Parameters
    ----------
    mesh : Dataset
        Dataset to get the array association from.

    name : str
        The name of the array.

    preference : str, default: "cell"
        When scalars is specified, this is the preferred array type to
        search for in the dataset.  Must be either ``'point'``,
        ``'cell'``, or ``'field'``.

    err : bool, default: False
        Boolean to control whether to throw an error if array is not
        present.

    Returns
    -------
    pyvista.core.utilities.arrays.FieldAssociation
        Association of the array. If array is not present and ``err`` is
        ``False``, ``FieldAssociation.NONE`` is returned.

    """
    if isinstance(mesh, _vtk.vtkTable):
        arr = row_array(mesh, name)
        if arr is None and err:
            raise KeyError(f'Data array ({name}) not present in this dataset.')
        return FieldAssociation.ROW

    # with multiple arrays, return the array preference if possible
    parr = point_array(mesh, name)
    carr = cell_array(mesh, name)
    farr = field_array(mesh, name)
    arrays = [parr, carr, farr]
    preferences = [FieldAssociation.POINT, FieldAssociation.CELL, FieldAssociation.NONE]
    preference = parse_field_choice(preference)
    if preference not in preferences:
        raise ValueError(f'Data field ({preference}) not supported.')

    matches = [pref for pref, array in zip(preferences, arrays) if array is not None]
    # optionally raise if no match
    if not matches:
        if err:
            raise KeyError(f'Data array ({name}) not present in this dataset.')
        return FieldAssociation.NONE
    # use preference if it applies
    if preference in matches:
        return preference
    # otherwise return first in order of point -> cell -> field
    return matches[0]


def raise_not_matching(scalars, dataset):
    """Raise exception about inconsistencies.

    Parameters
    ----------
    scalars : numpy.ndarray
        Array of scalars.

    dataset : pyvista.DataSet
        Dataset to check against.

    Raises
    ------
    ValueError
        Raises a ValueError if the size of scalars does not the dataset.
    """
    if isinstance(dataset, _vtk.vtkTable):
        raise ValueError(
            f'Number of scalars ({scalars.shape[0]}) must match number of rows ({dataset.n_rows}).',
        )
    raise ValueError(
        f'Number of scalars ({scalars.shape[0]}) '
        f'must match either the number of points ({dataset.n_points}) '
        f'or the number of cells ({dataset.n_cells}).',
    )


def _assoc_array(obj, name, association='point'):
    """Return a point, cell, or field array from a pyvista.DataSet or VTK object.

    If the array or index doesn't exist, return nothing. This matches VTK's
    behavior when using ``GetAbstractArray`` with an invalid key or index.

    """
    vtk_attr = f'Get{association.title()}Data'
    python_attr = f'{association.lower()}_data'

    if isinstance(obj, pyvista.DataSet):
        try:
            return getattr(obj, python_attr).get_array(name)
        except KeyError:  # pragma: no cover
            return None
    abstract_array = getattr(obj, vtk_attr)().GetAbstractArray(name)
    if abstract_array is not None:
        return pyvista.pyvista_ndarray(abstract_array)
    return None


def point_array(obj, name):
    """Return point array of a pyvista or vtk object.

    Parameters
    ----------
    obj : pyvista.DataSet | vtk.vtkDataSet
        PyVista or VTK dataset.

    name : str | int
        Name or index of the array.

    Returns
    -------
    pyvista.pyvista_ndarray or None
        Wrapped array if the index or name is valid. Otherwise, ``None``.

    """
    return _assoc_array(obj, name, 'point')


def field_array(obj, name):
    """Return field data of a pyvista or vtk object.

    Parameters
    ----------
    obj : pyvista.DataSet or vtk.vtkDataSet
        PyVista or VTK dataset.

    name : str | int
        Name or index of the array.

    Returns
    -------
    pyvista.pyvista_ndarray or None
        Wrapped array if the index or name is valid. Otherwise, ``None``.

    """
    return _assoc_array(obj, name, 'field')


def cell_array(obj, name):
    """Return cell array of a pyvista or vtk object.

    Parameters
    ----------
    obj : pyvista.DataSet or vtk.vtkDataSet
        PyVista or VTK dataset.

    name : str | int
        Name or index of the array.

    Returns
    -------
    pyvista.pyvista_ndarray or None
        Wrapped array if the index or name is valid. Otherwise, ``None``.

    """
    return _assoc_array(obj, name, 'cell')


def row_array(obj, name):
    """Return row array of a vtk object.

    Parameters
    ----------
    obj : vtk.vtkDataSet
        PyVista or VTK dataset.

    name : str
        Name of the array.

    Returns
    -------
    numpy.ndarray
        Wrapped array.

    """
    vtkarr = obj.GetRowData().GetAbstractArray(name)
    return convert_array(vtkarr)


def get_vtk_type(typ):
    """Look up the VTK type for a given numpy data type.

    Corrects for string type mapping issues.

    Parameters
    ----------
    typ : numpy.dtype
        Numpy data type.

    Returns
    -------
    int
        Integer type id specified in ``vtkType.h``.

    """
    typ = _vtk.get_vtk_array_type(typ)
    # This handles a silly string type bug
    if typ == 3:
        return 13
    return typ


def vtk_bit_array_to_char(vtkarr_bint):
    """Cast vtk bit array to a char array.

    Parameters
    ----------
    vtkarr_bint : vtk.vtkBitArray
        VTK binary array.

    Returns
    -------
    vtk.vtkCharArray
        VTK char array.

    Notes
    -----
    This performs a copy.

    """
    vtkarr = _vtk.vtkCharArray()
    vtkarr.DeepCopy(vtkarr_bint)
    return vtkarr


def vtk_id_list_to_array(vtk_id_list):
    """Convert a vtkIdList to a NumPy array.

    Parameters
    ----------
    vtk_id_list : vtk.vtkIdList
        VTK ID list.

    Returns
    -------
    numpy.ndarray
        Array of IDs.

    """
    return np.array([vtk_id_list.GetId(i) for i in range(vtk_id_list.GetNumberOfIds())])


def _set_string_scalar_object_name(vtkarr: _vtk.vtkStringArray):
    """Set object name for scalar string arrays."""
    # This is used as a flag so that scalar arrays can be reshaped later.
    try:
        vtkarr.SetObjectName('scalar')
    except AttributeError:
        vtkarr.GetObjectName = lambda: 'scalar'


def convert_string_array(arr, name=None):
    """Convert a numpy array of strings to a vtkStringArray or vice versa.

    If a scalar string is provided, it is converted to a vtkCharArray

    Parameters
    ----------
    arr : numpy.ndarray | str
        Numpy string array to convert.

    name : str, optional
        Name to set the vtkStringArray to.

    Returns
    -------
    vtkStringArray
        VTK string array.

    Notes
    -----
    Note that this is terribly inefficient. If you have ideas on how
    to make this faster, please consider opening a pull request.

    """
    arr = np.array(arr) if isinstance(arr, str) else arr
    if isinstance(arr, np.ndarray):
        # VTK default fonts only support ASCII. See https://gitlab.kitware.com/vtk/vtk/-/issues/16904
        if (
            np.issubdtype(arr.dtype, np.str_) and not ''.join(arr.tolist()).isascii()
        ):  # avoids segfault
            raise ValueError(
                'String array contains non-ASCII characters that are not supported by VTK.',
            )
        vtkarr = _vtk.vtkStringArray()
        if arr.ndim == 0:
            arr = arr.reshape((1,))
            # distinguish scalar inputs from array inputs by
            # setting the object name
            _set_string_scalar_object_name(vtkarr)

        ########### OPTIMIZE ###########
        for val in arr:
            vtkarr.InsertNextValue(val)
        ################################
        if isinstance(name, str):
            vtkarr.SetName(name)
        return vtkarr
    # Otherwise it is a vtk array and needs to be converted back to numpy
    ############### OPTIMIZE ###############
    nvalues = arr.GetNumberOfValues()
    arr_out = np.array([arr.GetValue(i) for i in range(nvalues)], dtype='|U')
    try:
        if arr.GetObjectName() == 'scalar':
            return np.array("".join(arr_out))
    except AttributeError:
        pass
    return arr_out
    ########################################


def array_from_vtkmatrix(matrix) -> NumpyArray[float]:
    """Convert a vtk matrix to an array.

    Parameters
    ----------
    matrix : vtk.vtkMatrix3x3 | vtk.vtkMatrix4x4
        The vtk matrix to be converted to a ``numpy.ndarray``.
        Returned ndarray has shape (3, 3) or (4, 4) as appropriate.

    Returns
    -------
    numpy.ndarray
        Numpy array containing the data from ``matrix``.

    """
    if isinstance(matrix, _vtk.vtkMatrix3x3):
        shape = (3, 3)
    elif isinstance(matrix, _vtk.vtkMatrix4x4):
        shape = (4, 4)
    else:
        raise TypeError(
            'Expected vtk.vtkMatrix3x3 or vtk.vtkMatrix4x4 input,'
            f' got {type(matrix).__name__} instead.',
        )
    array = np.zeros(shape)
    for i, j in product(range(shape[0]), range(shape[1])):
        array[i, j] = matrix.GetElement(i, j)
    return array


def vtkmatrix_from_array(array):
    """Convert a ``numpy.ndarray`` or array-like to a vtk matrix.

    Parameters
    ----------
    array : array_like[float]
        The array or array-like to be converted to a vtk matrix.
        Shape (3, 3) gets converted to a ``vtk.vtkMatrix3x3``, shape (4, 4)
        gets converted to a ``vtk.vtkMatrix4x4``. No other shapes are valid.

    Returns
    -------
    vtk.vtkMatrix3x3 or vtk.vtkMatrix4x4
        VTK matrix.

    """
    array = np.asarray(array)
    if array.shape == (3, 3):
        matrix = _vtk.vtkMatrix3x3()
    elif array.shape == (4, 4):
        matrix = _vtk.vtkMatrix4x4()
    else:
        raise ValueError(f'Invalid shape {array.shape}, must be (3, 3) or (4, 4).')
    m, n = array.shape
    for i, j in product(range(m), range(n)):
        matrix.SetElement(i, j, array[i, j])
    return matrix


def set_default_active_vectors(mesh: pyvista.DataSet) -> None:
    """Set a default vectors array on mesh, if not already set.

    If an active vector already exists, no changes are made.

    If an active vectors does not exist, it checks for possibly cell
    or point arrays with shape ``(n, 3)``.  If only one exists, then
    it is set as the active vectors.  Otherwise, an error is raised.

    Parameters
    ----------
    mesh : pyvista.DataSet
        Dataset to set default active vectors.

    Raises
    ------
    MissingDataError
        If no vector-like arrays exist.

    AmbiguousDataError
        If more than one vector-like arrays exist.

    """
    if mesh.active_vectors_name is not None:
        return

    point_data = mesh.point_data
    cell_data = mesh.cell_data

    possible_vectors_point = [
        name for name, value in point_data.items() if value.ndim == 2 and value.shape[1] == 3
    ]
    possible_vectors_cell = [
        name for name, value in cell_data.items() if value.ndim == 2 and value.shape[1] == 3
    ]

    possible_vectors = possible_vectors_point + possible_vectors_cell
    n_possible_vectors = len(possible_vectors)

    if n_possible_vectors == 1:
        preference = 'point' if len(possible_vectors_point) == 1 else 'cell'
        mesh.set_active_vectors(possible_vectors[0], preference=preference)
    elif n_possible_vectors < 1:
        raise MissingDataError("No vector-like data available.")
    elif n_possible_vectors > 1:
        raise AmbiguousDataError(
            "Multiple vector-like data available\n"
            f"cell data: {possible_vectors_cell}.\n"
            f"point data: {possible_vectors_point}.\n"
            "Set one as active using DataSet.set_active_vectors(name, preference=type)",
        )


def set_default_active_scalars(mesh: pyvista.DataSet) -> None:
    """Set a default scalars array on mesh, if not already set.

    If an active scalars already exists, no changes are made.

    If an active scalars does not exist, it checks for point or cell
    arrays.  If only one exists, then it is set as the active scalars.
    Otherwise, an error is raised.

    Parameters
    ----------
    mesh : pyvista.DataSet
        Dataset to set default active scalars.

    Raises
    ------
    MissingDataError
        If no arrays exist.

    AmbiguousDataError
        If more than one array exists.

    """
    if mesh.active_scalars_name is not None:
        return

    point_data = mesh.point_data
    cell_data = mesh.cell_data

    possible_scalars_point = point_data.keys()
    possible_scalars_cell = cell_data.keys()

    possible_scalars = possible_scalars_point + possible_scalars_cell
    n_possible_scalars = len(possible_scalars)

    if n_possible_scalars == 1:
        preference = 'point' if len(possible_scalars_point) == 1 else 'cell'
        mesh.set_active_scalars(possible_scalars[0], preference=preference)
    elif n_possible_scalars < 1:
        raise MissingDataError("No data available.")
    elif n_possible_scalars > 1:
        raise AmbiguousDataError(
            "Multiple data available\n"
            f"cell data: {possible_scalars_cell}.\n"
            f"point data: {possible_scalars_point}.\n"
            "Set one as active using DataSet.set_active_scalars(name, preference=type)",
        )


def _coerce_transformlike_arg(transform_like: TransformLike) -> NumpyArray[float]:
    """Check and coerce transform-like arg to a 4x4 numpy array.

    Parameters
    ----------
    transform_like : np.ndarray | vtkMatrix3x3 | vtkMatrix4x4 | vtkTransform
        Transformation matrix as a 3x3 or 4x4 numpy array, vtkMatrix, or
        from a vtkTransform.

    Returns
    -------
    np.ndarray
        4x4 transformation matrix.

    """
    transform_array: NumpyArray[float] = np.eye(4)
    if isinstance(transform_like, _vtk.vtkMatrix4x4):
        transform_array = array_from_vtkmatrix(transform_like)
    elif isinstance(transform_like, _vtk.vtkMatrix3x3):
        transform_array[:3, :3] = array_from_vtkmatrix(transform_like)
    elif isinstance(transform_like, _vtk.vtkTransform):
        transform_array = array_from_vtkmatrix(transform_like.GetMatrix())
    elif isinstance(transform_like, np.ndarray):
        if transform_like.shape == (3, 3):
            transform_array[:3, :3] = transform_like
        elif transform_like.shape == (4, 4):
            transform_array = transform_like
        else:
            raise ValueError('Transformation array must be 3x3 or 4x4.')
    else:
        raise TypeError(
            'Input transform must be one of:\n'
            '\tvtk.vtkMatrix4x4\n'
            '\tvtk.vtkMatrix3x3\n'
            '\tvtk.vtkTransform\n'
            '\t4x4 np.ndarray\n'
            '\t3x3 np.ndarray\n',
        )
    return transform_array


_JSONValueType = Union[
    dict,  # type: ignore[type-arg]
    list,  # type: ignore[type-arg]
    tuple,  # type: ignore[type-arg]
    str,
    int,
    float,
    bool,
    None,
]


# TODO: add generic type annotations 'UserDict[str, _JSONValueType]'
#  once support for Python 3.8 is dropped
class _SerializedDictArray(UserDict, _vtk.vtkStringArray):  # type: ignore[type-arg]
    """Dict-like object with a JSON-serialized string array representation.

    This class behaves just like a regular dict, except its contents
    are represented internally as a JSON-formatted vtkStringArray.
    The string array is updated dynamically any time the dict is
    modified, such that modifying the dict will also implicitly modify
    its JSON string representation.

    Notes
    -----
    This class is intended for use as a dict with a small number of keys and
    relatively small values, e.g. for storing metadata. It should not be
    used to store frequently accessed array data with hundreds of entries.

    """

    @property
    def _string(self) -> str:
        """Get the vtkStringArray string."""
        return ''.join([self.GetValue(i) for i in range(self.GetNumberOfValues())])

    @_string.setter
    def _string(self, str_: str):
        """Set the vtkStringArray to a specified string."""
        self.SetNumberOfValues(0)  # Clear string
        for char in str_:  # Populate string
            self.InsertNextValue(char)

    def _update_string(self):
        """Format dict data as JSON and update the vtkStringArray."""
        data_str = json.dumps(self.data)
        if data_str != self._string:
            self._string = data_str

    def __repr__(self):
        """Return JSON-formatted dict representation."""
        return self._string

    def __init__(self, dict_=None, /, **kwargs):
        # Init from JSON string
        if isinstance(dict_, str):
            dict_ = json.loads(dict_)

        # Init UserDict
        super().__init__(dict_, **kwargs)
        self._update_string()

        # Flag self as a scalar string
        # This is only needed so that the Field DatasetAttributes repr
        # shows this array as `str`
        _set_string_scalar_object_name(self)

    # Override any/all `UserDict` or `MutableMapping` methods which mutate
    # the dictionary. This ensures the serialized string is also updated
    # and synced with the dict

    def __setitem__(self, key, item):
        super().__setitem__(key, item)
        self._update_string()

    def __delitem__(self, key):
        super().__delitem__(key)
        self._update_string()

    def __setattr__(self, key, value):
        object.__setattr__(self, key, value)
        self._update_string() if key != '_string' else None

    def update(self, *args, **kwargs):
        super().update(*args, **kwargs)
        self._update_string()

    def popitem(self):
        item = super().popitem()
        self._update_string()
        return item

    def pop(self, __key):
        item = super().pop(__key)
        self._update_string()
        return item

    def clear(self):
        super().clear()
        self._update_string()

    def setdefault(self, *args, **kwargs):
        super().setdefault(*args, **kwargs)
        self._update_string()