File: cells.py

package info (click to toggle)
python-pyvista 0.44.1-11
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 159,804 kB
  • sloc: python: 72,164; sh: 118; makefile: 68
file content (268 lines) | stat: -rw-r--r-- 9,138 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
"""PyVista wrapping of vtkCellArray."""

from __future__ import annotations

from collections import deque
from itertools import count
from itertools import islice
from typing import TYPE_CHECKING

import numpy as np

import pyvista
from pyvista.core import _vtk_core as _vtk

if TYPE_CHECKING:  # pragma: no cover
    from pyvista.core._typing_core import MatrixLike
    from pyvista.core._typing_core import NumpyArray


def ncells_from_cells(cells: NumpyArray[int]) -> int:
    """Get the number of cells from a VTK cell connectivity array.

    Parameters
    ----------
    cells : numpy.ndarray
        A VTK cell connectivity array.

    Returns
    -------
    int
        The number of cells extracted from the given cell connectivity array.

    """
    consumer: deque[NumpyArray[int]] = deque(maxlen=0)
    it = cells.flat
    for n_cells in count():  # noqa: B007
        skip = next(it, None)
        if skip is None:
            break
        consumer.extend(islice(it, skip))  # type: ignore[arg-type]
    return n_cells


def numpy_to_idarr(
    ind: MatrixLike[int],
    deep: bool = False,
    return_ind: bool = False,
) -> tuple[_vtk.vtkIdTypeArray, NumpyArray[int]] | _vtk.vtkIdTypeArray:
    """Safely convert a numpy array to a vtkIdTypeArray.

    Parameters
    ----------
    ind : sequence[int]
        Input sequence to be converted to a vtkIdTypeArray. Can be either a mask
        or an integer array-like.
    deep : bool, default: False
        If ``True``, deep copy the input data. If ``False``, do not deep copy
        the input data.
    return_ind : bool, default: False
        If ``True``, also return the input array after it has been cast to the
        proper dtype.

    Returns
    -------
    vtkIdTypeArray
        Converted array as a vtkIdTypeArray.
    numpy.ndarray
        The input array after it has been cast to the proper dtype. Only
        returned if `return_ind` is set to ``True``.

    Raises
    ------
    TypeError
        If the input array is not a mask or an integer array-like.

    """
    ind = np.asarray(ind)

    # np.asarray will eat anything, so we have to weed out bogus inputs
    if not issubclass(ind.dtype.type, (np.bool_, np.integer)):
        raise TypeError('Indices must be either a mask or an integer array-like')

    if ind.dtype == np.bool_:
        ind = ind.nonzero()[0].astype(pyvista.ID_TYPE)
    elif ind.dtype != pyvista.ID_TYPE:
        ind = ind.astype(pyvista.ID_TYPE)
    elif not ind.flags['C_CONTIGUOUS']:
        ind = np.ascontiguousarray(ind, dtype=pyvista.ID_TYPE)

    # must ravel or segfault when saving MultiBlock
    vtk_idarr = _vtk.numpy_to_vtkIdTypeArray(ind.ravel(), deep=deep)
    if return_ind:
        return vtk_idarr, ind
    return vtk_idarr


def create_mixed_cells(mixed_cell_dict, nr_points=None):
    """Generate the required cell arrays for the creation of a pyvista.UnstructuredGrid from a cell dictionary.

    This function generates all required cell arrays according to a given cell
    dictionary. The given cell-dictionary should contain a proper
    mapping of vtk_type -> np.ndarray (int), where the given ndarray
    for each cell-type has to be an array of dimensions [N, D] or
    [N*D], where N is the number of cells and D is the size of the
    cells for the given type (e.g. 3 for triangles).  Multiple
    vtk_type keys with associated arrays can be present in one
    dictionary.  This function only accepts cell types of fixed size
    and not dynamic sized cells like ``vtk.VTK_POLYGON``

    Parameters
    ----------
    mixed_cell_dict : dict
        A dictionary that maps VTK-Enum-types (e.g. VTK_TRIANGLE) to
        np.ndarrays of type int.  The ``np.ndarrays`` describe the cell
        connectivity.
    nr_points : int, optional
        Number of points of the grid. Used only to allow additional runtime
        checks for invalid indices.

    Returns
    -------
    cell_types : numpy.ndarray (uint8)
        Types of each cell.

    cell_arr : numpy.ndarray (int)
        VTK-cell array.

    Raises
    ------
    ValueError
        If any of the cell types are not supported, have dynamic sized
        cells, map to values with wrong size, or cell indices point
        outside the given number of points.

    Examples
    --------
    Create the cell arrays containing two triangles.

    This will generate cell arrays to generate a mesh with two
    disconnected triangles from 6 points.

    >>> import numpy as np
    >>> import vtk
    >>> from pyvista.core.utilities.cells import create_mixed_cells
    >>> cell_types, cell_arr = create_mixed_cells(
    ...     {vtk.VTK_TRIANGLE: np.array([[0, 1, 2], [3, 4, 5]])}
    ... )
    """
    from .cell_type_helper import enum_cell_type_nr_points_map

    if not np.all([k in enum_cell_type_nr_points_map for k in mixed_cell_dict.keys()]):
        raise ValueError("Found unknown or unsupported VTK cell type in your requested cells")

    if not np.all([enum_cell_type_nr_points_map[k] > 0 for k in mixed_cell_dict.keys()]):
        raise ValueError(
            "You requested a cell type with variable length, which can't be used in this method",
        )

    final_cell_types = []
    final_cell_arr = []
    for elem_t, cells_arr in mixed_cell_dict.items():
        nr_points_per_elem = enum_cell_type_nr_points_map[elem_t]
        if (
            not isinstance(cells_arr, np.ndarray)
            or not np.issubdtype(cells_arr.dtype, np.integer)
            or cells_arr.ndim not in [1, 2]
            or (cells_arr.ndim == 1 and cells_arr.size % nr_points_per_elem != 0)
            or (cells_arr.ndim == 2 and cells_arr.shape[-1] != nr_points_per_elem)
        ):
            raise ValueError(
                f"Expected an np.ndarray of size [N, {nr_points_per_elem}] or [N*{nr_points_per_elem}] with an integral type",
            )

        if np.any(cells_arr < 0):
            raise ValueError(f"Non-valid index (<0) given for cells of type {elem_t}")

        if nr_points is not None and np.any(cells_arr >= nr_points):
            raise ValueError(f"Non-valid index (>={nr_points}) given for cells of type {elem_t}")

        if cells_arr.ndim == 1:  # Flattened array present
            cells_arr = cells_arr.reshape([-1, nr_points_per_elem])

        nr_elems = cells_arr.shape[0]
        final_cell_types.append(np.array([elem_t] * nr_elems, dtype=np.uint8))
        final_cell_arr.append(
            np.concatenate(
                [np.ones_like(cells_arr[..., :1]) * nr_points_per_elem, cells_arr],
                axis=-1,
            ).reshape([-1]),
        )

    final_cell_types = np.concatenate(final_cell_types)
    final_cell_arr = np.concatenate(final_cell_arr)

    return final_cell_types, final_cell_arr


def get_mixed_cells(vtkobj):
    """Create the cells dictionary from the given pyvista.UnstructuredGrid.

    This functions creates a cells dictionary (see
    create_mixed_cells), with a mapping vtk_type -> np.ndarray (int)
    for fixed size cell types. The returned dictionary will have
    arrays of size [N, D], where N is the number of cells and D is the
    size of the cells for the given type (e.g. 3 for triangles).

    Parameters
    ----------
    vtkobj : pyvista.UnstructuredGrid
        The unstructured grid for which the cells dictionary should be computed.

    Returns
    -------
    dict
        Dictionary of cells.

    Raises
    ------
    ValueError
        If vtkobj is not a pyvista.UnstructuredGrid, any of the
        present cells are unsupported, or have dynamic cell sizes,
        like VTK_POLYGON.
    """
    from .cell_type_helper import enum_cell_type_nr_points_map

    return_dict = {}

    if not isinstance(vtkobj, pyvista.UnstructuredGrid):
        raise ValueError("Expected a pyvista object")

    nr_cells = vtkobj.n_cells
    if nr_cells == 0:
        return None

    cell_types = vtkobj.celltypes
    cells = vtkobj.cells

    unique_cell_types = np.unique(cell_types)

    if not np.all([k in enum_cell_type_nr_points_map for k in unique_cell_types]):
        raise ValueError("Found unknown or unsupported VTK cell type in the present cells")

    if not np.all([enum_cell_type_nr_points_map[k] > 0 for k in unique_cell_types]):
        raise ValueError(
            "You requested a cell-dictionary with a variable length cell, which is not supported "
            "currently",
        )

    cell_sizes = np.zeros_like(cell_types)
    for cell_type in unique_cell_types:
        mask = cell_types == cell_type
        cell_sizes[mask] = enum_cell_type_nr_points_map[cell_type]

    cell_ends = np.cumsum(cell_sizes + 1)
    cell_starts = np.concatenate([np.array([0], dtype=cell_ends.dtype), cell_ends[:-1]]) + 1

    for cell_type in unique_cell_types:
        cell_size = enum_cell_type_nr_points_map[cell_type]
        mask = cell_types == cell_type
        current_cell_starts = cell_starts[mask]

        cells_inds = current_cell_starts[..., np.newaxis] + np.arange(cell_size)[np.newaxis].astype(
            cell_starts.dtype,
        )

        return_dict[cell_type] = cells[cells_inds]

    return return_dict