1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
|
"""Module containing geometry helper functions."""
from __future__ import annotations
import os
import sys
from typing import Sequence
import numpy as np
import pyvista
from pyvista.core import _vtk_core as _vtk
from .helpers import wrap
def voxelize(mesh, density=None, check_surface=True):
"""Voxelize mesh to UnstructuredGrid.
Parameters
----------
mesh : pyvista.DataSet
Mesh to voxelize.
density : float | array_like[float]
The uniform size of the voxels when single float passed.
A list of densities along x,y,z directions.
Defaults to 1/100th of the mesh length.
check_surface : bool, default: True
Specify whether to check the surface for closure. If on, then the
algorithm first checks to see if the surface is closed and
manifold. If the surface is not closed and manifold, a runtime
error is raised.
Returns
-------
pyvista.UnstructuredGrid
Voxelized unstructured grid of the original mesh.
Notes
-----
Prior to version 0.39.0, this method improperly handled the order of
structured coordinates.
Examples
--------
Create an equal density voxelized mesh.
>>> import pyvista as pv
>>> from pyvista import examples
>>> mesh = examples.download_bunny_coarse().clean()
>>> vox = pv.voxelize(mesh, density=0.01)
>>> vox.plot(show_edges=True)
Create a voxelized mesh using unequal density dimensions.
>>> vox = pv.voxelize(mesh, density=[0.01, 0.005, 0.002])
>>> vox.plot(show_edges=True)
"""
if not pyvista.is_pyvista_dataset(mesh):
mesh = wrap(mesh)
if density is None:
density = mesh.length / 100
if isinstance(density, (int, float, np.number)):
density_x, density_y, density_z = [density] * 3
elif isinstance(density, (Sequence, np.ndarray)):
density_x, density_y, density_z = density
else:
raise TypeError(f'Invalid density {density!r}, expected number or array-like.')
# check and pre-process input mesh
surface = mesh.extract_geometry() # filter preserves topology
if not surface.faces.size:
# we have a point cloud or an empty mesh
raise ValueError('Input mesh must have faces for voxelization.')
if not surface.is_all_triangles:
# reduce chance for artifacts, see gh-1743
surface.triangulate(inplace=True)
x_min, x_max, y_min, y_max, z_min, z_max = mesh.bounds
x = np.arange(x_min, x_max, density_x)
y = np.arange(y_min, y_max, density_y)
z = np.arange(z_min, z_max, density_z)
x, y, z = np.meshgrid(x, y, z, indexing='ij')
# indexing='ij' is used here in order to make grid and ugrid with x-y-z ordering, not y-x-z ordering
# see https://github.com/pyvista/pyvista/pull/4365
# Create unstructured grid from the structured grid
grid = pyvista.StructuredGrid(x, y, z)
ugrid = pyvista.UnstructuredGrid(grid)
# get part of the mesh within the mesh's bounding surface.
selection = ugrid.select_enclosed_points(surface, tolerance=0.0, check_surface=check_surface)
mask = selection.point_data['SelectedPoints'].view(np.bool_)
# extract cells from point indices
return ugrid.extract_points(mask)
def voxelize_volume(mesh, density=None, check_surface=True):
"""Voxelize mesh to create a RectilinearGrid voxel volume.
Creates a voxel volume that encloses the input mesh and discretizes the cells
within the volume that intersect or are contained within the input mesh.
``InsideMesh``, an array in ``cell_data``, is ``1`` for cells inside and ``0`` outside.
Parameters
----------
mesh : pyvista.DataSet
Mesh to voxelize.
density : float | array_like[float]
The uniform size of the voxels when single float passed.
Nonuniform voxel size if a list of values are passed along x,y,z directions.
Defaults to 1/100th of the mesh length.
check_surface : bool, default: True
Specify whether to check the surface for closure. If on, then the
algorithm first checks to see if the surface is closed and
manifold. If the surface is not closed and manifold, a runtime
error is raised.
Returns
-------
pyvista.RectilinearGrid
RectilinearGrid as voxelized volume with discretized cells.
See Also
--------
pyvista.voxelize
pyvista.DataSetFilters.select_enclosed_points
Examples
--------
Create an equal density voxel volume from input mesh.
>>> import pyvista as pv
>>> import numpy as np
Load file from PyVista examples.
>>> from pyvista import examples
>>> mesh = examples.download_cow()
Create an equal density voxel volume and plot the result.
>>> vox = pv.voxelize_volume(mesh, density=0.15)
>>> cpos = [(15, 3, 15), (0, 0, 0), (0, 0, 0)]
>>> vox.plot(scalars='InsideMesh', show_edges=True, cpos=cpos)
Slice the voxel volume to view ``InsideMesh``.
>>> slices = vox.slice_orthogonal()
>>> slices.plot(scalars='InsideMesh', show_edges=True)
Create a voxel volume from unequal density dimensions and plot result.
>>> vox = pv.voxelize_volume(mesh, density=[0.15, 0.15, 0.5])
>>> vox.plot(scalars='InsideMesh', show_edges=True, cpos=cpos)
Slice the unequal density voxel volume to view ``InsideMesh``.
>>> slices = vox.slice_orthogonal()
>>> slices.plot(scalars='InsideMesh', show_edges=True, cpos=cpos)
"""
mesh = wrap(mesh)
if density is None:
density = mesh.length / 100
if isinstance(density, (int, float, np.number)):
density_x, density_y, density_z = [density] * 3
elif isinstance(density, (Sequence, np.ndarray)):
density_x, density_y, density_z = density
else:
raise TypeError(f'Invalid density {density!r}, expected number or array-like.')
# check and pre-process input mesh
surface = mesh.extract_geometry() # filter preserves topology
if not surface.faces.size:
# we have a point cloud or an empty mesh
raise ValueError('Input mesh must have faces for voxelization.')
if not surface.is_all_triangles:
# reduce chance for artifacts, see gh-1743
surface.triangulate(inplace=True)
x_min, x_max, y_min, y_max, z_min, z_max = mesh.bounds
x = np.arange(x_min, x_max, density_x)
y = np.arange(y_min, y_max, density_y)
z = np.arange(z_min, z_max, density_z)
# Create a RectilinearGrid
voi = pyvista.RectilinearGrid(x, y, z)
# get part of the mesh within the mesh's bounding surface.
selection = voi.select_enclosed_points(surface, tolerance=0.0, check_surface=check_surface)
mask_vol = selection.point_data['SelectedPoints'].view(np.bool_)
# Get voxels that fall within input mesh boundaries
cell_ids = np.unique(voi.extract_points(np.argwhere(mask_vol))["vtkOriginalCellIds"])
# Create new element of grid where all cells _within_ mesh boundary are
# given new name 'MeshCells' and a discrete value of 1
voi['InsideMesh'] = np.zeros(voi.n_cells)
voi['InsideMesh'][cell_ids] = 1
return voi
def create_grid(dataset, dimensions=(101, 101, 101)):
"""Create a uniform grid surrounding the given dataset.
The output grid will have the specified dimensions and is commonly used
for interpolating the input dataset.
Parameters
----------
dataset : DataSet
Input dataset used as a reference for the grid creation.
dimensions : tuple of int, default: (101, 101, 101)
The dimensions of the grid to be created. Each value in the tuple
represents the number of grid points along the corresponding axis.
Raises
------
NotImplementedError
If the dimensions parameter is set to None. Currently, the function
does not support automatically determining the "optimal" grid size
based on the sparsity of the points in the input dataset.
Returns
-------
ImageData
A uniform grid with the specified dimensions that surrounds the input
dataset.
"""
bounds = np.array(dataset.bounds)
if dimensions is None:
# TODO: we should implement an algorithm to automatically determine an
# "optimal" grid size by looking at the sparsity of the points in the
# input dataset - I actually think VTK might have this implemented
# somewhere
raise NotImplementedError('Please specify dimensions.')
dimensions = np.array(dimensions, dtype=int)
image = pyvista.ImageData()
image.dimensions = dimensions
dims = dimensions - 1
dims[dims == 0] = 1
image.spacing = (bounds[1::2] - bounds[:-1:2]) / dims
image.origin = bounds[::2]
return image
def grid_from_sph_coords(theta, phi, r):
"""Create a structured grid from arrays of spherical coordinates.
Parameters
----------
theta : array_like[float]
Azimuthal angle in degrees ``[0, 360]``.
phi : array_like[float]
Polar (zenith) angle in degrees ``[0, 180]``.
r : array_like[float]
Distance (radius) from the point of origin.
Returns
-------
pyvista.StructuredGrid
Structured grid.
"""
x, y, z = np.meshgrid(np.radians(theta), np.radians(phi), r)
# Transform grid to cartesian coordinates
x_cart = z * np.sin(y) * np.cos(x)
y_cart = z * np.sin(y) * np.sin(x)
z_cart = z * np.cos(y)
# Make a grid object
return pyvista.StructuredGrid(x_cart, y_cart, z_cart)
def transform_vectors_sph_to_cart(theta, phi, r, u, v, w): # numpydoc ignore=RT02
"""Transform vectors from spherical (r, phi, theta) to cartesian coordinates (z, y, x).
Note the "reverse" order of arrays's axes, commonly used in geosciences.
Parameters
----------
theta : array_like[float]
Azimuthal angle in degrees ``[0, 360]`` of shape ``(M,)``.
phi : array_like[float]
Polar (zenith) angle in degrees ``[0, 180]`` of shape ``(N,)``.
r : array_like[float]
Distance (radius) from the point of origin of shape ``(P,)``.
u : array_like[float]
X-component of the vector of shape ``(P, N, M)``.
v : array_like[float]
Y-component of the vector of shape ``(P, N, M)``.
w : array_like[float]
Z-component of the vector of shape ``(P, N, M)``.
Returns
-------
u_t, v_t, w_t : :class:`numpy.ndarray`
Arrays of transformed x-, y-, z-components, respectively.
"""
xx, yy, _ = np.meshgrid(np.radians(theta), np.radians(phi), r, indexing="ij")
th, ph = xx.squeeze(), yy.squeeze()
# Transform wind components from spherical to cartesian coordinates
# https://en.wikipedia.org/wiki/Vector_fields_in_cylindrical_and_spherical_coordinates
u_t = np.sin(ph) * np.cos(th) * w + np.cos(ph) * np.cos(th) * v - np.sin(th) * u
v_t = np.sin(ph) * np.sin(th) * w + np.cos(ph) * np.sin(th) * v + np.cos(th) * u
w_t = np.cos(ph) * w - np.sin(ph) * v
return u_t, v_t, w_t
def cartesian_to_spherical(x, y, z):
"""Convert 3D Cartesian coordinates to spherical coordinates.
Parameters
----------
x, y, z : numpy.ndarray
Cartesian coordinates.
Returns
-------
r : numpy.ndarray
Radial distance.
phi : numpy.ndarray
Angle (radians) with respect to the polar axis. Also known
as polar angle.
theta : numpy.ndarray
Angle (radians) of rotation from the initial meridian plane.
Also known as azimuthal angle.
Examples
--------
>>> import numpy as np
>>> import pyvista as pv
>>> grid = pv.ImageData(dimensions=(3, 3, 3))
>>> x, y, z = grid.points.T
>>> r, phi, theta = pv.cartesian_to_spherical(x, y, z)
"""
xy2 = x**2 + y**2
r = np.sqrt(xy2 + z**2)
phi = np.arctan2(np.sqrt(xy2), z) # the polar angle in radian angles
theta = np.arctan2(y, x) # the azimuth angle in radian angles
return r, phi, theta
def spherical_to_cartesian(r, phi, theta):
"""Convert Spherical coordinates to 3D Cartesian coordinates.
Parameters
----------
r : numpy.ndarray
Radial distance.
phi : numpy.ndarray
Angle (radians) with respect to the polar axis. Also known
as polar angle.
theta : numpy.ndarray
Angle (radians) of rotation from the initial meridian plane.
Also known as azimuthal angle.
Returns
-------
numpy.ndarray, numpy.ndarray, numpy.ndarray
Cartesian coordinates.
"""
s = np.sin(phi)
x = r * s * np.cos(theta)
y = r * s * np.sin(theta)
z = r * np.cos(phi)
return x, y, z
def merge(
datasets,
merge_points=True,
main_has_priority=True,
progress_bar=False,
):
"""Merge several datasets.
.. note::
The behavior of this filter varies from the
:func:`PolyDataFilters.boolean_union` filter. This filter
does not attempt to create a manifold mesh and will include
internal surfaces when two meshes overlap.
Parameters
----------
datasets : sequence[:class:`pyvista.Dataset`]
Sequence of datasets. Can be of any :class:`pyvista.Dataset`.
merge_points : bool, default: True
Merge equivalent points when ``True``.
main_has_priority : bool, default: True
When this parameter is ``True`` and ``merge_points=True``, the arrays
of the merging grids will be overwritten by the original main mesh.
progress_bar : bool, default: False
Display a progress bar to indicate progress.
Returns
-------
pyvista.DataSet
:class:`pyvista.PolyData` if all items in datasets are
:class:`pyvista.PolyData`, otherwise returns a
:class:`pyvista.UnstructuredGrid`.
Examples
--------
Merge two polydata datasets.
>>> import pyvista as pv
>>> sphere = pv.Sphere(center=(0, 0, 1))
>>> cube = pv.Cube()
>>> mesh = pv.merge([cube, sphere])
>>> mesh.plot()
"""
if not isinstance(datasets, Sequence):
raise TypeError(f"Expected a sequence, got {type(datasets).__name__}")
if len(datasets) < 1:
raise ValueError("Expected at least one dataset.")
first = datasets[0]
if not isinstance(first, pyvista.DataSet):
raise TypeError(f"Expected pyvista.DataSet, not {type(first).__name__}")
return datasets[0].merge(
datasets[1:],
merge_points=merge_points,
main_has_priority=main_has_priority,
progress_bar=progress_bar,
)
def perlin_noise(amplitude, freq: Sequence[float], phase: Sequence[float]):
"""Return the implicit function that implements Perlin noise.
Uses ``vtk.vtkPerlinNoise`` and computes a Perlin noise field as
an implicit function. ``vtk.vtkPerlinNoise`` is a concrete
implementation of ``vtk.vtkImplicitFunction``. Perlin noise,
originally described by Ken Perlin, is a non-periodic and
continuous noise function useful for modeling real-world objects.
The amplitude and frequency of the noise pattern are
adjustable. This implementation of Perlin noise is derived closely
from Greg Ward's version in Graphics Gems II.
Parameters
----------
amplitude : float
Amplitude of the noise function.
``amplitude`` can be negative. The noise function varies
randomly between ``-|Amplitude|`` and
``|Amplitude|``. Therefore the range of values is
``2*|Amplitude|`` large. The initial amplitude is 1.
freq : sequence[float]
The frequency, or physical scale, of the noise function
(higher is finer scale).
The frequency can be adjusted per axis, or the same for all axes.
phase : sequence[float]
Set/get the phase of the noise function.
This parameter can be used to shift the noise function within
space (perhaps to avoid a beat with a noise pattern at another
scale). Phase tends to repeat about every unit, so a phase of
0.5 is a half-cycle shift.
Returns
-------
vtk.vtkPerlinNoise
Instance of ``vtk.vtkPerlinNoise`` to a Perlin noise field as an
implicit function. Use with :func:`pyvista.sample_function()
<pyvista.core.utilities.features.sample_function>`.
Examples
--------
Create a Perlin noise function with an amplitude of 0.1, frequency
for all axes of 1, and a phase of 0 for all axes.
>>> import pyvista as pv
>>> noise = pv.perlin_noise(0.1, (1, 1, 1), (0, 0, 0))
Sample Perlin noise over a structured grid and plot it.
>>> grid = pv.sample_function(noise, [0, 5, 0, 5, 0, 5])
>>> grid.plot()
"""
noise = _vtk.vtkPerlinNoise()
noise.SetAmplitude(amplitude)
noise.SetFrequency(freq)
noise.SetPhase(phase)
return noise
def sample_function(
function: _vtk.vtkImplicitFunction,
bounds: Sequence[float] = (-1.0, 1.0, -1.0, 1.0, -1.0, 1.0),
dim: Sequence[int] = (50, 50, 50),
compute_normals: bool = False,
output_type: np.dtype = np.double, # type: ignore[assignment, type-arg]
capping: bool = False,
cap_value: float = sys.float_info.max,
scalar_arr_name: str = "scalars",
normal_arr_name: str = "normals",
progress_bar: bool = False,
):
"""Sample an implicit function over a structured point set.
Uses ``vtk.vtkSampleFunction``
This method evaluates an implicit function and normals at each
point in a ``vtk.vtkStructuredPoints``. The user can specify the
sample dimensions and location in space to perform the sampling.
To create closed surfaces (in conjunction with the
vtkContourFilter), capping can be turned on to set a particular
value on the boundaries of the sample space.
Parameters
----------
function : vtk.vtkImplicitFunction
Implicit function to evaluate. For example, the function
generated from :func:`perlin_noise() <pyvista.core.utilities.features.perlin_noise>`.
bounds : sequence[float], default: (-1.0, 1.0, -1.0, 1.0, -1.0, 1.0)
Specify the bounds in the format of:
- ``(xmin, xmax, ymin, ymax, zmin, zmax)``.
dim : sequence[float], default: (50, 50, 50)
Dimensions of the data on which to sample in the format of
``(xdim, ydim, zdim)``.
compute_normals : bool, default: False
Enable or disable the computation of normals.
output_type : numpy.dtype, default: numpy.double
Set the output scalar type. One of the following:
- ``np.float64``
- ``np.float32``
- ``np.int64``
- ``np.uint64``
- ``np.int32``
- ``np.uint32``
- ``np.int16``
- ``np.uint16``
- ``np.int8``
- ``np.uint8``
capping : bool, default: False
Enable or disable capping. If capping is enabled, then the outer
boundaries of the structured point set are set to cap value. This can
be used to ensure surfaces are closed.
cap_value : float, default: sys.float_info.max
Capping value used with the ``capping`` parameter.
scalar_arr_name : str, default: "scalars"
Set the scalar array name for this data set.
normal_arr_name : str, default: "normals"
Set the normal array name for this data set.
progress_bar : bool, default: False
Display a progress bar to indicate progress.
Returns
-------
pyvista.ImageData
Uniform grid with sampled data.
Examples
--------
Sample Perlin noise over a structured grid in 3D.
>>> import pyvista as pv
>>> noise = pv.perlin_noise(0.1, (1, 1, 1), (0, 0, 0))
>>> grid = pv.sample_function(
... noise, [0, 3.0, -0, 1.0, 0, 1.0], dim=(60, 20, 20)
... )
>>> grid.plot(
... cmap='gist_earth_r', show_scalar_bar=False, show_edges=True
... )
Sample Perlin noise in 2D and plot it.
>>> noise = pv.perlin_noise(0.1, (5, 5, 5), (0, 0, 0))
>>> surf = pv.sample_function(noise, dim=(200, 200, 1))
>>> surf.plot()
See :ref:`perlin_noise_2d_example` for a full example using this function.
"""
# internal import to avoide circular dependency
from pyvista.core.filters import _update_alg
samp = _vtk.vtkSampleFunction()
samp.SetImplicitFunction(function)
samp.SetSampleDimensions(dim)
samp.SetModelBounds(bounds)
samp.SetComputeNormals(compute_normals)
samp.SetCapping(capping)
samp.SetCapValue(cap_value)
samp.SetNormalArrayName(normal_arr_name)
samp.SetScalarArrayName(scalar_arr_name)
if output_type == np.float64:
samp.SetOutputScalarTypeToDouble()
elif output_type == np.float32:
samp.SetOutputScalarTypeToFloat()
elif output_type == np.int64:
if os.name == 'nt':
raise ValueError('This function on Windows only supports int32 or smaller')
samp.SetOutputScalarTypeToLong()
elif output_type == np.uint64:
if os.name == 'nt':
raise ValueError('This function on Windows only supports int32 or smaller')
samp.SetOutputScalarTypeToUnsignedLong()
elif output_type == np.int32:
samp.SetOutputScalarTypeToInt()
elif output_type == np.uint32:
samp.SetOutputScalarTypeToUnsignedInt()
elif output_type == np.int16:
samp.SetOutputScalarTypeToShort()
elif output_type == np.uint16:
samp.SetOutputScalarTypeToUnsignedShort()
elif output_type == np.int8:
samp.SetOutputScalarTypeToChar()
elif output_type == np.uint8:
samp.SetOutputScalarTypeToUnsignedChar()
else:
raise ValueError(f'Invalid output_type {output_type}')
_update_alg(samp, progress_bar=progress_bar, message='Sampling')
return wrap(samp.GetOutput())
|