1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
|
"""Miscellaneous core utilities."""
from __future__ import annotations
import enum
from functools import lru_cache
import importlib
import sys
import threading
import traceback
from typing import TYPE_CHECKING
from typing import Sequence
from typing import TypeVar
import warnings
import numpy as np
if TYPE_CHECKING: # pragma: no cover
from .._typing_core import VectorLike
T = TypeVar('T', bound='AnnotatedIntEnum')
def assert_empty_kwargs(**kwargs):
"""Assert that all keyword arguments have been used (internal helper).
If any keyword arguments are passed, a ``TypeError`` is raised.
Parameters
----------
**kwargs : dict
Keyword arguments passed to the function.
Returns
-------
bool
``True`` when successful.
Raises
------
TypeError
If any keyword arguments are passed, a ``TypeError`` is raised.
"""
n = len(kwargs)
if n == 0:
return True
caller = sys._getframe(1).f_code.co_name
keys = list(kwargs.keys())
bad_arguments = ', '.join([f'"{key}"' for key in keys])
grammar = 'is an invalid keyword argument' if n == 1 else 'are invalid keyword arguments'
message = f"{bad_arguments} {grammar} for `{caller}`"
raise TypeError(message)
def check_valid_vector(point: VectorLike[float], name: str = '') -> None:
"""
Check if a vector contains three components.
Parameters
----------
point : VectorLike[float]
Input vector to check. Must be an iterable with exactly three components.
name : str, optional
Name to use in the error messages. If not provided, "Vector" will be used.
Raises
------
TypeError
If the input is not an iterable.
ValueError
If the input does not have exactly three components.
"""
if not isinstance(point, (Sequence, np.ndarray)):
raise TypeError(f'{name} must be a length three iterable of floats.')
if len(point) != 3:
if name == '':
name = 'Vector'
raise ValueError(f'{name} must be a length three iterable of floats.')
def abstract_class(cls_): # numpydoc ignore=RT01
"""Decorate a class, overriding __new__.
Preventing a class from being instantiated similar to abc.ABCMeta
but does not require an abstract method.
Parameters
----------
cls_ : type
The class to be decorated as abstract.
"""
def __new__(cls, *args, **kwargs):
if cls is cls_:
raise TypeError(f'{cls.__name__} is an abstract class and may not be instantiated.')
return super(cls_, cls).__new__(cls)
cls_.__new__ = __new__
return cls_
class AnnotatedIntEnum(int, enum.Enum):
"""Annotated enum type."""
annotation: str
def __new__(cls, value, annotation: str):
"""Initialize."""
obj = int.__new__(cls, value)
obj._value_ = value
obj.annotation = annotation
return obj
@classmethod
def from_str(cls, input_str):
"""Create an enum member from a string.
Parameters
----------
input_str : str
The string representation of the annotation for the enum member.
Returns
-------
AnnotatedIntEnum
The enum member with the specified annotation.
Raises
------
ValueError
If there is no enum member with the specified annotation.
"""
for value in cls:
if value.annotation.lower() == input_str.lower():
return value
raise ValueError(f"{cls.__name__} has no value matching {input_str}")
@classmethod
def from_any(cls: type[T], value: T | int | str) -> T:
"""Create an enum member from a string, int, etc.
Parameters
----------
value : int | str | AnnotatedIntEnum
The value used to determine the corresponding enum member.
Returns
-------
AnnotatedIntEnum
The enum member matching the specified value.
Raises
------
ValueError
If there is no enum member matching the specified value.
"""
if isinstance(value, cls):
return value
elif isinstance(value, int):
return cls(value) # type: ignore[call-arg]
elif isinstance(value, str):
return cls.from_str(value)
else:
raise ValueError(f"{cls.__name__} has no value matching {value}")
@lru_cache(maxsize=None)
def has_module(module_name):
"""Return if a module can be imported.
Parameters
----------
module_name : str
Name of the module to check.
Returns
-------
bool
``True`` if the module can be imported, otherwise ``False``.
"""
module_spec = importlib.util.find_spec(module_name)
return module_spec is not None
def try_callback(func, *args):
"""Wrap a given callback in a try statement.
Parameters
----------
func : callable
Callable object.
*args
Any arguments.
"""
try:
func(*args)
except Exception:
etype, exc, tb = sys.exc_info()
stack = traceback.extract_tb(tb)[1:]
formatted_exception = 'Encountered issue in callback (most recent call last):\n' + ''.join(
traceback.format_list(stack) + traceback.format_exception_only(etype, exc),
).rstrip('\n')
warnings.warn(formatted_exception)
def threaded(fn):
"""Call a function using a thread.
Parameters
----------
fn : callable
Callable object.
Returns
-------
function
Wrapped function.
"""
def wrapper(*args, **kwargs): # numpydoc ignore=GL08
thread = threading.Thread(target=fn, args=args, kwargs=kwargs)
thread.start()
return thread
return wrapper
class conditional_decorator:
"""Conditional decorator for methods.
Parameters
----------
dec : callable
The decorator to be applied conditionally.
condition : bool
Condition to match. If ``True``, the decorator is applied. If
``False``, the function is returned unchanged.
"""
def __init__(self, dec, condition):
"""Initialize."""
self.decorator = dec
self.condition = condition
def __call__(self, func):
"""Call the decorated function if condition is matched."""
if not self.condition:
# Return the function unchanged, not decorated.
return func
return self.decorator(func)
def _check_range(value, rng, parm_name):
"""Check if a parameter is within a range."""
if value < rng[0] or value > rng[1]:
raise ValueError(
f'The value {float(value)} for `{parm_name}` is outside the acceptable range {tuple(rng)}.',
)
def no_new_attr(cls): # numpydoc ignore=RT01
"""Override __setattr__ to not permit new attributes."""
if not hasattr(cls, '_new_attr_exceptions'):
cls._new_attr_exceptions = []
def __setattr__(self, name, value):
"""Do not allow setting attributes."""
if (
hasattr(self, name)
or name in cls._new_attr_exceptions
or name in self._new_attr_exceptions
):
object.__setattr__(self, name, value)
else:
raise AttributeError(
f'Attribute "{name}" does not exist and cannot be added to type '
f'{self.__class__.__name__}',
)
cls.__setattr__ = __setattr__
return cls
def _reciprocal(x, tol=1e-8):
"""Compute the element-wise reciprocal and avoid division by zero.
The reciprocal of elements with an absolute value less than a
specified tolerance is computed as zero.
Parameters
----------
x : array_like
Input array.
tol : float
Tolerance value. Values smaller than ``tol`` have a reciprocal of zero.
Returns
-------
numpy.ndarray
Element-wise reciprocal of the input.
"""
x = np.array(x)
zero = np.abs(x) < tol
x[~zero] = np.reciprocal(x[~zero])
x[zero] = 0
return x
|