File: misc.py

package info (click to toggle)
python-pyvista 0.44.1-11
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 159,804 kB
  • sloc: python: 72,164; sh: 118; makefile: 68
file content (314 lines) | stat: -rw-r--r-- 8,186 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
"""Miscellaneous core utilities."""

from __future__ import annotations

import enum
from functools import lru_cache
import importlib
import sys
import threading
import traceback
from typing import TYPE_CHECKING
from typing import Sequence
from typing import TypeVar
import warnings

import numpy as np

if TYPE_CHECKING:  # pragma: no cover
    from .._typing_core import VectorLike

T = TypeVar('T', bound='AnnotatedIntEnum')


def assert_empty_kwargs(**kwargs):
    """Assert that all keyword arguments have been used (internal helper).

    If any keyword arguments are passed, a ``TypeError`` is raised.

    Parameters
    ----------
    **kwargs : dict
        Keyword arguments passed to the function.

    Returns
    -------
    bool
        ``True`` when successful.

    Raises
    ------
    TypeError
        If any keyword arguments are passed, a ``TypeError`` is raised.

    """
    n = len(kwargs)
    if n == 0:
        return True
    caller = sys._getframe(1).f_code.co_name
    keys = list(kwargs.keys())
    bad_arguments = ', '.join([f'"{key}"' for key in keys])
    grammar = 'is an invalid keyword argument' if n == 1 else 'are invalid keyword arguments'
    message = f"{bad_arguments} {grammar} for `{caller}`"
    raise TypeError(message)


def check_valid_vector(point: VectorLike[float], name: str = '') -> None:
    """
    Check if a vector contains three components.

    Parameters
    ----------
    point : VectorLike[float]
        Input vector to check. Must be an iterable with exactly three components.
    name : str, optional
        Name to use in the error messages. If not provided, "Vector" will be used.

    Raises
    ------
    TypeError
        If the input is not an iterable.
    ValueError
        If the input does not have exactly three components.

    """
    if not isinstance(point, (Sequence, np.ndarray)):
        raise TypeError(f'{name} must be a length three iterable of floats.')
    if len(point) != 3:
        if name == '':
            name = 'Vector'
        raise ValueError(f'{name} must be a length three iterable of floats.')


def abstract_class(cls_):  # numpydoc ignore=RT01
    """Decorate a class, overriding __new__.

    Preventing a class from being instantiated similar to abc.ABCMeta
    but does not require an abstract method.

    Parameters
    ----------
    cls_ : type
        The class to be decorated as abstract.

    """

    def __new__(cls, *args, **kwargs):
        if cls is cls_:
            raise TypeError(f'{cls.__name__} is an abstract class and may not be instantiated.')
        return super(cls_, cls).__new__(cls)

    cls_.__new__ = __new__
    return cls_


class AnnotatedIntEnum(int, enum.Enum):
    """Annotated enum type."""

    annotation: str

    def __new__(cls, value, annotation: str):
        """Initialize."""
        obj = int.__new__(cls, value)
        obj._value_ = value
        obj.annotation = annotation
        return obj

    @classmethod
    def from_str(cls, input_str):
        """Create an enum member from a string.

        Parameters
        ----------
        input_str : str
            The string representation of the annotation for the enum member.

        Returns
        -------
        AnnotatedIntEnum
            The enum member with the specified annotation.

        Raises
        ------
        ValueError
            If there is no enum member with the specified annotation.
        """
        for value in cls:
            if value.annotation.lower() == input_str.lower():
                return value
        raise ValueError(f"{cls.__name__} has no value matching {input_str}")

    @classmethod
    def from_any(cls: type[T], value: T | int | str) -> T:
        """Create an enum member from a string, int, etc.

        Parameters
        ----------
        value : int | str | AnnotatedIntEnum
            The value used to determine the corresponding enum member.

        Returns
        -------
        AnnotatedIntEnum
            The enum member matching the specified value.

        Raises
        ------
        ValueError
            If there is no enum member matching the specified value.
        """
        if isinstance(value, cls):
            return value
        elif isinstance(value, int):
            return cls(value)  # type: ignore[call-arg]
        elif isinstance(value, str):
            return cls.from_str(value)
        else:
            raise ValueError(f"{cls.__name__} has no value matching {value}")


@lru_cache(maxsize=None)
def has_module(module_name):
    """Return if a module can be imported.

    Parameters
    ----------
    module_name : str
        Name of the module to check.

    Returns
    -------
    bool
        ``True`` if the module can be imported, otherwise ``False``.
    """
    module_spec = importlib.util.find_spec(module_name)
    return module_spec is not None


def try_callback(func, *args):
    """Wrap a given callback in a try statement.

    Parameters
    ----------
    func : callable
        Callable object.

    *args
        Any arguments.

    """
    try:
        func(*args)
    except Exception:
        etype, exc, tb = sys.exc_info()
        stack = traceback.extract_tb(tb)[1:]
        formatted_exception = 'Encountered issue in callback (most recent call last):\n' + ''.join(
            traceback.format_list(stack) + traceback.format_exception_only(etype, exc),
        ).rstrip('\n')
        warnings.warn(formatted_exception)


def threaded(fn):
    """Call a function using a thread.

    Parameters
    ----------
    fn : callable
        Callable object.

    Returns
    -------
    function
        Wrapped function.

    """

    def wrapper(*args, **kwargs):  # numpydoc ignore=GL08
        thread = threading.Thread(target=fn, args=args, kwargs=kwargs)
        thread.start()
        return thread

    return wrapper


class conditional_decorator:
    """Conditional decorator for methods.

    Parameters
    ----------
    dec : callable
        The decorator to be applied conditionally.
    condition : bool
        Condition to match. If ``True``, the decorator is applied. If
        ``False``, the function is returned unchanged.

    """

    def __init__(self, dec, condition):
        """Initialize."""
        self.decorator = dec
        self.condition = condition

    def __call__(self, func):
        """Call the decorated function if condition is matched."""
        if not self.condition:
            # Return the function unchanged, not decorated.
            return func
        return self.decorator(func)


def _check_range(value, rng, parm_name):
    """Check if a parameter is within a range."""
    if value < rng[0] or value > rng[1]:
        raise ValueError(
            f'The value {float(value)} for `{parm_name}` is outside the acceptable range {tuple(rng)}.',
        )


def no_new_attr(cls):  # numpydoc ignore=RT01
    """Override __setattr__ to not permit new attributes."""
    if not hasattr(cls, '_new_attr_exceptions'):
        cls._new_attr_exceptions = []

    def __setattr__(self, name, value):
        """Do not allow setting attributes."""
        if (
            hasattr(self, name)
            or name in cls._new_attr_exceptions
            or name in self._new_attr_exceptions
        ):
            object.__setattr__(self, name, value)
        else:
            raise AttributeError(
                f'Attribute "{name}" does not exist and cannot be added to type '
                f'{self.__class__.__name__}',
            )

    cls.__setattr__ = __setattr__
    return cls


def _reciprocal(x, tol=1e-8):
    """Compute the element-wise reciprocal and avoid division by zero.

    The reciprocal of elements with an absolute value less than a
    specified tolerance is computed as zero.

    Parameters
    ----------
    x : array_like
        Input array.
    tol : float
        Tolerance value. Values smaller than ``tol`` have a reciprocal of zero.

    Returns
    -------
    numpy.ndarray
        Element-wise reciprocal of the input.

    """
    x = np.array(x)
    zero = np.abs(x) < tol
    x[~zero] = np.reciprocal(x[~zero])
    x[zero] = 0
    return x