File: composite_mapper.py

package info (click to toggle)
python-pyvista 0.44.1-11
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 159,804 kB
  • sloc: python: 72,164; sh: 118; makefile: 68
file content (881 lines) | stat: -rw-r--r-- 29,817 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
"""Module containing composite data mapper."""

from __future__ import annotations

from itertools import cycle
import sys
import weakref

import numpy as np

import pyvista
from pyvista import vtk_version_info
from pyvista.core.utilities.arrays import convert_array
from pyvista.core.utilities.arrays import convert_string_array
from pyvista.core.utilities.misc import _check_range

from . import _vtk
from .colors import Color
from .colors import get_cycler
from .mapper import _BaseMapper


class BlockAttributes:
    """Block attributes used to set the attributes of a block.

    Parameters
    ----------
    block : pyvista.DataObject
        PyVista data object.

    attr : pyvista.plotting.composite_mapper.CompositeAttributes
        Parent attributes.

    Notes
    -----
    This class employs VTK's flat indexing and allows for accessing both
    the blocks of a composite dataset as well as the entire composite
    dataset. If there is only one composite dataset, ``A``, which contains
    datasets ``[b, c]``, the indexing would be ``[A, b, c]``.

    If there are two composite datasets ``[B, C]`` in one composite
    dataset, ``A``, each of which containing three additional datasets
    ``[d, e, f]``, and ``[g, h, i]``, respectively, then the head node,
    ``A``, would be the zero index, followed by the first child, ``B``,
    followed by all the children of ``B``, ``[d, e, f]``. In data
    structures, this flat indexing would be known as "Depth-first search"
    and the entire indexing would be::

       [A, B, d, e, f, C, g, h, i]

    Note how the composite datasets themselves are capitalized and are
    accessible in the flat indexing, and not just the datasets.

    Examples
    --------
    Add a sphere and a cube as a multiblock dataset to a plotter and then
    change the visibility and color of the blocks. Note how the index of the
    cube is ``1`` as the index of the entire multiblock is ``0``.

    >>> import pyvista as pv
    >>> dataset = pv.MultiBlock([pv.Cube(), pv.Sphere(center=(0, 0, 1))])
    >>> pl = pv.Plotter()
    >>> actor, mapper = pl.add_composite(dataset)
    >>> mapper.block_attr[1].color = 'b'
    >>> mapper.block_attr[1].opacity = 0.1
    >>> mapper.block_attr[1]
    Composite Block Addr=... Attributes
    Visible:   None
    Opacity:   0.1
    Color:     Color(name='blue', hex='#0000ffff', opacity=255)
    Pickable   None

    """

    def __init__(self, block, attr):
        """Initialize the block attributes class."""
        self._block = block
        self.__attr = weakref.ref(attr)

    @property
    def _attr(self):
        """Return the CompositeAttributes."""
        return self.__attr()

    @property
    def _has_color(self):
        """Return if a block has its color set."""
        return self._attr.HasBlockColor(self._block)

    @property
    def _has_visibility(self):
        """Return if a block has its visibility set."""
        return self._attr.HasBlockVisibility(self._block)

    @property
    def _has_opacity(self):
        """Return if a block has its opacity set."""
        return self._attr.HasBlockOpacity(self._block)

    @property
    def _has_pickable(self):
        """Return if a block has its pickability set."""
        return self._attr.HasBlockPickability(self._block)

    @property
    def color(self):  # numpydoc ignore=RT01
        """Get or set the color of a block.

        Examples
        --------
        Set the colors of a composite dataset to red and blue.

        Note how the zero index is the entire multiblock, so we have to add 1
        to our indexing to access the right block.

        >>> import pyvista as pv
        >>> dataset = pv.MultiBlock(
        ...     [pv.Cube(), pv.Sphere(center=(0, 0, 1))]
        ... )
        >>> pl = pv.Plotter()
        >>> actor, mapper = pl.add_composite(dataset)
        >>> mapper.block_attr[1].color = 'r'
        >>> mapper.block_attr[2].color = 'b'
        >>> pl.show()

        """
        if not self._has_color:
            return None
        return Color(tuple(self._attr.GetBlockColor(self._block)))

    @color.setter
    def color(self, new_color):  # numpydoc ignore=GL08
        if new_color is None:
            self._attr.RemoveBlockColor(self._block)
            self._attr.Modified()
            return
        self._attr.SetBlockColor(self._block, Color(new_color).float_rgb)

    @property
    def visible(self) -> bool | None:  # numpydoc ignore=RT01
        """Get or set the visibility of a block.

        Examples
        --------
        Hide the first block of a composite dataset.

        Note how the zero index is the entire multiblock, so we have to add 1
        to our indexing to access the right block.

        >>> import pyvista as pv
        >>> dataset = pv.MultiBlock(
        ...     [pv.Cube(), pv.Sphere(center=(0, 0, 1))]
        ... )
        >>> pl = pv.Plotter()
        >>> actor, mapper = pl.add_composite(dataset)
        >>> mapper.block_attr[1].visible = False
        >>> pl.show()

        """
        if not self._has_visibility:
            return None
        return self._attr.GetBlockVisibility(self._block)

    @visible.setter
    def visible(self, new_visible: bool):  # numpydoc ignore=GL08
        if new_visible is None:
            self._attr.RemoveBlockVisibility(self._block)
            self._attr.Modified()
            return
        self._attr.SetBlockVisibility(self._block, new_visible)

    @property
    def opacity(self) -> float | None:  # numpydoc ignore=RT01
        """Get or set the opacity of a block.

        If opacity has not been set this will be ``None``.

        Warnings
        --------
        VTK 9.0.3 has a bug where changing the opacity to less than 1.0 also
        changes the edge visibility on the block that is partially transparent.

        Examples
        --------
        Change the opacity of the second block of the dataset.

        Note how the zero index is the entire multiblock, so we have to add 1
        to our indexing to access the right block.

        >>> import pyvista as pv
        >>> dataset = pv.MultiBlock(
        ...     [pv.Cube(), pv.Sphere(center=(0, 0, 1))]
        ... )
        >>> pl = pv.Plotter()
        >>> actor, mapper = pl.add_composite(dataset)
        >>> mapper.block_attr[2].opacity = 0.5
        >>> pl.show()

        """
        if not self._has_opacity:
            return None
        return self._attr.GetBlockOpacity(self._block)

    @opacity.setter
    def opacity(self, new_opacity: float):  # numpydoc ignore=GL08
        if new_opacity is None:
            self._attr.RemoveBlockOpacity(self._block)
            self._attr.Modified()
            return

        _check_range(new_opacity, (0, 1), 'opacity')
        self._attr.SetBlockOpacity(self._block, new_opacity)

    @property
    def pickable(self) -> bool | None:  # numpydoc ignore=RT01
        """Get or set the pickability of a block.

        Examples
        --------
        Make the cube of a multiblock dataset pickable and the sphere unpickable.

        Note how the zero index is the entire multiblock, so we have to add 1
        to our indexing to access the right block.

        >>> import pyvista as pv
        >>> dataset = pv.MultiBlock(
        ...     [pv.Cube(), pv.Sphere(center=(0, 0, 1))]
        ... )
        >>> pl = pv.Plotter()
        >>> actor, mapper = pl.add_composite(dataset)
        >>> mapper.block_attr[1].pickable = True
        >>> mapper.block_attr[2].pickable = False
        >>> pl.close()

        See :ref:`composite_picking_example` for a full example using block
        picking.

        """
        if not self._has_pickable:
            return None
        return self._attr.GetBlockPickability(self._block)

    @pickable.setter
    def pickable(self, new_pickable: bool):  # numpydoc ignore=GL08
        if new_pickable is None:
            self._attr.RemoveBlockPickability(self._block)
            self._attr.Modified()
            return
        self._attr.SetBlockPickability(self._block, new_pickable)

    def __repr__(self):
        """Representation of block properties."""
        return '\n'.join(
            [
                f'Composite Block {self._block.memory_address} Attributes',
                f'Visible:   {self.visible}',
                f'Opacity:   {self.opacity}',
                f'Color:     {self.color}',
                f'Pickable   {self.pickable}',
            ],
        )


class CompositeAttributes(_vtk.vtkCompositeDataDisplayAttributes):
    """Block attributes.

    Parameters
    ----------
    mapper : pyvista.plotting.composite_mapper.CompositePolyDataMapper
        Parent mapper.

    dataset : pyvista.MultiBlock
        Multiblock dataset.

    Notes
    -----
    This class employs VTK's flat indexing and allows for accessing both
    the blocks of a composite dataset as well as the entire composite
    dataset. If there is only one composite dataset, ``A``, which contains
    datasets ``[b, c]``, the indexing would be ``[A, b, c]``.

    If there are two composite datasets ``[B, C]`` in one composite
    dataset, ``A``, each of which containing three additional datasets
    ``[d, e, f]``, and ``[g, h, i]``, respectively, then the head node,
    ``A``, would be the zero index, followed by the first child, ``B``,
    followed by all the children of ``B``, ``[d, e, f]``. In data
    structures, this flat indexing would be known as "Depth-first search"
    and the entire indexing would be::

       [A, B, d, e, f, C, g, h, i]

    Note how the composite datasets themselves are capitalized and are
    accessible in the flat indexing, and not just the datasets.

    Examples
    --------
    Add a sphere and a cube as a multiblock dataset to a plotter and then
    change the visibility and color of the blocks. Note how the index of the
    cube is ``1`` as the index of the entire multiblock is ``0``.

    >>> import pyvista as pv
    >>> dataset = pv.MultiBlock([pv.Cube(), pv.Sphere(center=(0, 0, 1))])
    >>> pl = pv.Plotter()
    >>> actor, mapper = pl.add_composite(dataset)
    >>> mapper.block_attr[1].color = 'b'
    >>> mapper.block_attr[1].opacity = 0.1
    >>> mapper.block_attr[1]
    Composite Block Addr=... Attributes
    Visible:   None
    Opacity:   0.1
    Color:     Color(name='blue', hex='#0000ffff', opacity=255)
    Pickable   None

    """

    def __init__(self, mapper, dataset):
        """Initialize CompositeAttributes."""
        super().__init__()
        mapper.SetCompositeDataDisplayAttributes(self)
        self._dataset = dataset

    def reset_visibilities(self):
        """Reset the visibility of all blocks.

        Examples
        --------
        Hide the first block of a composite dataset and then show all by
        resetting visibilities.

        Note how the zero index is the entire multiblock, so we have to add 1
        to our indexing to access the right block.

        >>> import pyvista as pv
        >>> dataset = pv.MultiBlock(
        ...     [pv.Cube(), pv.Sphere(center=(0, 0, 1))]
        ... )
        >>> pl = pv.Plotter()
        >>> actor, mapper = pl.add_composite(dataset)
        >>> mapper.block_attr[1].visible = False
        >>> mapper.block_attr.reset_visibilities()
        >>> pl.show()

        """
        self.RemoveBlockVisibilities()

    def reset_pickabilities(self):
        """Reset the pickability of all blocks.

        Examples
        --------
        Make the cube of a multiblock dataset pickable and the sphere
        unpickable, then reset it.

        Note how the zero index is the entire multiblock, so we have to add 1
        to our indexing to access the right block.

        >>> import pyvista as pv
        >>> dataset = pv.MultiBlock(
        ...     [pv.Cube(), pv.Sphere(center=(0, 0, 1))]
        ... )
        >>> pl = pv.Plotter()
        >>> actor, mapper = pl.add_composite(dataset)
        >>> mapper.block_attr[1].pickable = True
        >>> mapper.block_attr[2].pickable = False
        >>> mapper.block_attr.reset_pickabilities()
        >>> [
        ...     mapper.block_attr[1].pickable,
        ...     mapper.block_attr[2].pickable,
        ... ]
        [None, None]
        >>> pl.close()

        """
        self.RemoveBlockPickabilities()

    def reset_colors(self):
        """Reset the color of all blocks.

        Examples
        --------
        Set individual block colors and then reset them.

        >>> import pyvista as pv
        >>> dataset = pv.MultiBlock(
        ...     [pv.Cube(), pv.Sphere(center=(0, 0, 1))]
        ... )
        >>> pl = pv.Plotter()
        >>> actor, mapper = pl.add_composite(dataset, color='w')
        >>> mapper.block_attr[1].color = 'r'
        >>> mapper.block_attr[2].color = 'b'
        >>> mapper.block_attr.reset_colors()
        >>> pl.show()

        """
        self.RemoveBlockColors()

    def reset_opacities(self):
        """Reset the opacities of all blocks.

        Examples
        --------
        Change the opacity of the second block of the dataset then reset all
        opacities.

        Note how the zero index is the entire multiblock, so we have to add 1
        to our indexing to access the right block.

        >>> import pyvista as pv
        >>> dataset = pv.MultiBlock(
        ...     [pv.Cube(), pv.Sphere(center=(0, 0, 1))]
        ... )
        >>> pl = pv.Plotter()
        >>> actor, mapper = pl.add_composite(dataset)
        >>> mapper.block_attr[2].opacity = 0.5
        >>> mapper.block_attr.reset_opacities()
        >>> pl.show()

        """
        self.RemoveBlockOpacities()

    def get_block(self, index):
        """Return a block by its flat index.

        Parameters
        ----------
        index : int
            Flat index of the block to retrieve.

        Returns
        -------
        pyvista.DataObject
            PyVista data object.

        Notes
        -----
        This method employs VTK's flat indexing and allows for accessing both
        the blocks of a composite dataset as well as the entire composite
        dataset. If there is only one composite dataset, ``A``, which contains
        datasets ``[b, c]``, the indexing would be ``[A, b, c]``.

        If there are two composite datasets ``[B, C]`` in one composite
        dataset, ``A``, each of which containing three additional datasets
        ``[d, e, f]``, and ``[g, h, i]``, respectively, then the head node,
        ``A``, would be the zero index, followed by the first child, ``B``,
        followed by all the children of ``B``, ``[d, e, f]``. In data
        structures, this flat indexing would be known as "Depth-first search"
        and the entire indexing would be::

           [A, B, d, e, f, C, g, h, i]

        Note how the composite datasets themselves are capitalized and are
        accessible in the flat indexing, and not just the datasets.

        Examples
        --------
        Add a composite dataset to a plotter and access its block attributes.
        Note how the zero index is the entire multiblock and you can use ``1``
        and ``2`` to access the individual sub-blocks.

        >>> import pyvista as pv
        >>> dataset = pv.MultiBlock(
        ...     [pv.Cube(), pv.Sphere(center=(0, 0, 1))]
        ... )
        >>> pl = pv.Plotter()
        >>> actor, mapper = pl.add_composite(dataset)
        >>> mapper.block_attr.get_block(0)
        MultiBlock (...)
          N Blocks    2
          X Bounds    -0.500, 0.500
          Y Bounds    -0.500, 0.500
          Z Bounds    -0.500, 1.500

        Note this is the same as using ``__getitem__``

        >>> mapper.block_attr[0]
        Composite Block Addr=... Attributes
        Visible:   None
        Opacity:   None
        Color:     None
        Pickable   None

        """
        try:
            if vtk_version_info <= (9, 0, 3):  # pragma: no cover
                vtk_ref = _vtk.reference(0)  # needed for <=9.0.3
                block = self.DataObjectFromIndex(index, self._dataset, vtk_ref)
            else:
                block = self.DataObjectFromIndex(index, self._dataset)
        except OverflowError:
            raise KeyError(f'Invalid block key: {index}') from None
        if block is None:
            if index > len(self) - 1:
                raise KeyError(
                    f'index {index} is out of bounds. There are only {len(self)} blocks.',
                ) from None
        return block

    def __getitem__(self, index):
        """Return a block attribute by its flat index."""
        return BlockAttributes(self.get_block(index), self)

    def __len__(self):
        """Return the number of blocks in this dataset."""
        from pyvista import MultiBlock  # avoid circular

        # start with 1 as there is always a composite dataset and this is the
        # root of the tree
        cc = 1
        for dataset in self._dataset:
            if isinstance(dataset, MultiBlock):
                cc += len(dataset) + 1  # include the block itself
            else:
                cc += 1
        return cc

    def __iter__(self):
        """Return an iterator of all the block attributes."""
        for ii in range(len(self)):
            yield self[ii]


class CompositePolyDataMapper(
    _BaseMapper,
    (
        _vtk.vtkCompositePolyDataMapper  # type: ignore[misc]
        if vtk_version_info >= (9, 3)
        else _vtk.vtkCompositePolyDataMapper2
    ),
):
    """Composite PolyData mapper.

    Parameters
    ----------
    dataset : pyvista.MultiBlock, optional
        Multiblock dataset.

    theme : pyvista.plotting.themes.Theme, optional
        Plot-specific theme.

    color_missing_with_nan : bool, optional
        Color any missing values with the ``nan_color``. This is useful
        when not all blocks of the composite dataset have the specified
        ``scalars``.

    interpolate_before_map : bool, optional
        Enabling makes for a smoother scalars display.  Default is
        ``True``.  When ``False``, OpenGL will interpolate the
        mapped colors which can result is showing colors that are
        not present in the color map.

    """

    def __init__(
        self,
        dataset=None,
        theme=None,
        color_missing_with_nan=None,
        interpolate_before_map=None,
    ):
        """Initialize this composite mapper."""
        super().__init__(theme=theme)
        # this must be added to set the color, opacity, and visibility of
        # individual blocks
        self._attr = CompositeAttributes(self, dataset)
        self.dataset = dataset

        if color_missing_with_nan is not None:
            self.color_missing_with_nan = color_missing_with_nan
        if interpolate_before_map is not None:
            self.interpolate_before_map = interpolate_before_map

    @property
    def dataset(self) -> pyvista.MultiBlock:  # numpydoc ignore=RT01
        """Return the composite dataset assigned to this mapper.

        Examples
        --------
        >>> import pyvista as pv
        >>> dataset = pv.MultiBlock(
        ...     [pv.Cube(), pv.Sphere(center=(0, 0, 1))]
        ... )
        >>> pl = pv.Plotter()
        >>> actor, mapper = pl.add_composite(dataset)
        >>> mapper.dataset
        MultiBlock (...)
          N Blocks    2
          X Bounds    -0.500, 0.500
          Y Bounds    -0.500, 0.500
          Z Bounds    -0.500, 1.500

        """
        return self._dataset

    @dataset.setter
    def dataset(self, obj: pyvista.MultiBlock):  # numpydoc ignore=GL08
        self.SetInputDataObject(obj)
        self._dataset = obj
        self._attr._dataset = obj

    @property
    def block_attr(self) -> CompositeAttributes:  # numpydoc ignore=RT01
        """Return the block attributes.

        Notes
        -----
        ``block_attr`` employs VTK's flat indexing and allows for accessing
        both the blocks of a composite dataset as well as the entire composite
        dataset. If there is only one composite dataset, ``A``, which contains
        datasets ``[b, c]``, the indexing would be ``[A, b, c]``.

        If there are two composite datasets ``[B, C]`` in one composite
        dataset, ``A``, each of which containing three additional datasets
        ``[d, e, f]``, and ``[g, h, i]``, respectively, then the head node,
        ``A``, would be the zero index, followed by the first child, ``B``,
        followed by all the children of ``B``, ``[d, e, f]``. In data
        structures, this flat indexing would be known as "Depth-first search"
        and the entire indexing would be::

           [A, B, d, e, f, C, g, h, i]

        Examples
        --------
        Add a sphere and a cube as a multiblock dataset to a plotter and then
        change the visibility and color of the blocks.

        >>> import pyvista as pv
        >>> dataset = pv.MultiBlock(
        ...     [pv.Cube(), pv.Sphere(center=(0, 0, 1))]
        ... )
        >>> pl = pv.Plotter()
        >>> actor, mapper = pl.add_composite(dataset)
        >>> mapper.block_attr[1].color = 'b'
        >>> mapper.block_attr[1].opacity = 0.1
        >>> mapper.block_attr[1]
        Composite Block Addr=... Attributes
        Visible:   None
        Opacity:   0.1
        Color:     Color(name='blue', hex='#0000ffff', opacity=255)
        Pickable   None

        """
        return self._attr

    @property
    def color_missing_with_nan(self) -> bool:  # numpydoc ignore=RT01
        """Color missing arrays with the NaN color.

        Examples
        --------
        Enable coloring missing values with NaN.

        >>> import pyvista as pv
        >>> dataset = pv.MultiBlock(
        ...     [pv.Cube(), pv.Sphere(center=(0, 0, 1))]
        ... )
        >>> dataset[0].point_data['data'] = dataset[0].points[:, 2]
        >>> pl = pv.Plotter()
        >>> actor, mapper = pl.add_composite(
        ...     dataset, scalars='data', show_scalar_bar=False
        ... )
        >>> mapper.nan_color = 'r'
        >>> mapper.color_missing_with_nan = True
        >>> pl.show()

        """
        return self.GetColorMissingArraysWithNanColor()

    @color_missing_with_nan.setter
    def color_missing_with_nan(self, value: bool):  # numpydoc ignore=GL08
        self.SetColorMissingArraysWithNanColor(value)

    def set_unique_colors(self, color_cycler=True):
        """Set each block of the dataset to a unique color.

        This uses ``matplotlib``'s color cycler by default.

        When a custom color cycler, or a sequence of
        color-like objects, is passed it sets the blocks
        to the corresponding colors.

        Parameters
        ----------
        color_cycler : bool | str | cycler.Cycler | sequence[ColorLike]
            The sequence of colors to cycle through,
            if ``True``, uses matplotlib cycler.

        Examples
        --------
        Set each block of the composite dataset to a unique color.

        >>> import pyvista as pv
        >>> dataset = pv.MultiBlock(
        ...     [pv.Cube(), pv.Sphere(center=(0, 0, 1))]
        ... )
        >>> pl = pv.Plotter()
        >>> actor, mapper = pl.add_composite(dataset)
        >>> mapper.set_unique_colors()
        >>> mapper.block_attr[1].color
        Color(name='tab:orange', hex='#ff7f0eff', opacity=255)
        >>> mapper.block_attr[2].color
        Color(name='tab:green', hex='#2ca02cff', opacity=255)
        """
        self.scalar_visibility = False

        if isinstance(color_cycler, bool):
            colors = cycle(get_cycler("matplotlib"))
        else:
            colors = cycle(get_cycler(color_cycler))

        for attr in self.block_attr:
            attr.color = next(colors)['color']

    def set_scalars(
        self,
        scalars_name,
        preference,
        component,
        annotations,
        rgb,
        scalar_bar_args,
        n_colors,
        nan_color,
        above_color,
        below_color,
        clim,
        cmap,
        flip_scalars,
        log_scale,
    ):
        """Set the scalars of the mapper.

        Parameters
        ----------
        scalars_name : str
            Name of the scalars in the dataset. Must already exist in at least
            of the blocks.

        preference : str
            For each block, when ``block.n_points == block.n_cells`` and
            setting scalars, this parameter sets how the scalars will be mapped
            to the mesh.  Default ``'point'``, causes the scalars will be
            associated with the mesh points.  Can be either ``'point'`` or
            ``'cell'``.

        component : int
            Set component of vector valued scalars to plot.  Must be
            nonnegative, if supplied. If ``None``, the magnitude of
            the vector is plotted.

        annotations : dict
            Pass a dictionary of annotations. Keys are the float
            values in the scalars range to annotate on the scalar bar
            and the values are the string annotations.

        rgb : bool
            If the ``scalars_name`` corresponds to a 2 dimensional array, plot
            those values as RGB(A) colors.

        scalar_bar_args : dict
            Dictionary of keyword arguments to pass when adding the
            scalar bar to the scene. For options, see
            :func:`pyvista.Plotter.add_scalar_bar`.

        n_colors : int
            Number of colors to use when displaying scalars.

        nan_color : ColorLike
            The color to use for all ``NaN`` values in the plotted
            scalar array.

        above_color : ColorLike
            Solid color for values below the scalars range
            (``clim``). This will automatically set the scalar bar
            ``above_label`` to ``'above'``.

        below_color : ColorLike
            Solid color for values below the scalars range
            (``clim``). This will automatically set the scalar bar
            ``below_label`` to ``'below'``.

        clim : Sequence
            Color bar range for scalars.  Defaults to minimum and
            maximum of scalars array.  Example: ``[-1, 2]``. ``rng``
            is also an accepted alias for this.

        cmap : str, list, or pyvista.LookupTable
            Name of the Matplotlib colormap to use when mapping the
            ``scalars``.  See available Matplotlib colormaps.  Only applicable
            for when displaying ``scalars``.
            ``colormap`` is also an accepted alias for this. If
            ``colorcet`` or ``cmocean`` are installed, their colormaps can be
            specified by name.

            You can also specify a list of colors to override an existing
            colormap with a custom one.  For example, to create a three color
            colormap you might specify ``['green', 'red', 'blue']``.

            This parameter also accepts a :class:`pyvista.LookupTable`. If this
            is set, all parameters controlling the color map like ``n_colors``
            will be ignored.
            are installed, their colormaps can be specified by name.

        flip_scalars : bool
            Flip direction of cmap. Most colormaps allow ``*_r``
            suffix to do this as well.

        log_scale : bool
            Use log scale when mapping data to colors. Scalars less
            than zero are mapped to the smallest representable
            positive float.

        Returns
        -------
        dict
            Dictionary of scalar bar arguments.

        """
        self._orig_scalars_name = scalars_name

        field, scalars_name, dtype = self._dataset._activate_plotting_scalars(
            scalars_name,
            preference,
            component,
            rgb,
        )

        self.scalar_visibility = True
        if rgb:
            self.color_mode = 'direct'
            return scalar_bar_args
        else:
            self.scalar_map_mode = field.name.lower()

        scalar_bar_args.setdefault('title', scalars_name)

        if clim is None:
            clim = self._dataset.get_data_range(scalars_name, allow_missing=True)
        self.scalar_range = clim

        if log_scale:
            if clim[0] <= 0:
                clim = [sys.float_info.min, clim[1]]

        if isinstance(cmap, pyvista.LookupTable):
            self.lookup_table = cmap
        else:
            if dtype == np.bool_:
                cats = np.array([b'False', b'True'], dtype='|S5')
                values = np.array([0, 1])
                n_colors = 2
                scalar_bar_args.setdefault('n_labels', 0)
                self.lookup_table.SetAnnotations(convert_array(values), convert_string_array(cats))
                clim = [-0.5, 1.5]

            self.lookup_table.log_scale = log_scale

            if isinstance(annotations, dict):
                self.lookup_table.annotations = annotations

            # self.lookup_table.SetNumberOfTableValues(n_colors)
            if nan_color:
                self.lookup_table.nan_color = nan_color
            if above_color:
                self.lookup_table.above_range_color = above_color
                scalar_bar_args.setdefault('above_label', 'above')
            if below_color:
                self.lookup_table.below_range_color = below_color
                scalar_bar_args.setdefault('below_label', 'below')

            if cmap is None:
                cmap = pyvista.global_theme.cmap if self._theme is None else self._theme.cmap

            if cmap is not None:
                self.lookup_table.apply_cmap(cmap, n_colors, flip_scalars)
            else:  # pragma: no cover
                if flip_scalars:
                    self.lookup_table.SetHueRange(0.0, 0.66667)
                else:
                    self.lookup_table.SetHueRange(0.66667, 0.0)

        return scalar_bar_args