1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
|
"""An internal module for wrapping the use of mappers."""
from __future__ import annotations
import sys
from typing import TYPE_CHECKING
from typing import Optional
from typing import cast
import numpy as np
import pyvista
from pyvista.core.utilities.arrays import FieldAssociation
from pyvista.core.utilities.arrays import convert_array
from pyvista.core.utilities.arrays import convert_string_array
from pyvista.core.utilities.arrays import raise_not_matching
from pyvista.core.utilities.helpers import wrap
from pyvista.core.utilities.misc import abstract_class
from pyvista.core.utilities.misc import no_new_attr
from . import _vtk
from .colors import Color
from .colors import get_cmap_safe
from .lookup_table import LookupTable
from .tools import normalize
from .utilities.algorithms import set_algorithm_input
if TYPE_CHECKING: # pragma: no cover
from pyvista.core._typing_core import BoundsLike
@abstract_class
class _BaseMapper(_vtk.vtkAbstractMapper):
"""Base Mapper with methods common to other mappers."""
_new_attr_exceptions = ('_theme',)
def __init__(self, theme=None, **kwargs):
self._theme = pyvista.themes.Theme()
if theme is None:
# copy global theme to ensure local property theme is fixed
# after creation.
self._theme.load_theme(pyvista.global_theme)
else:
self._theme.load_theme(theme)
self.lookup_table = LookupTable()
self.interpolate_before_map = kwargs.get(
'interpolate_before_map',
self._theme.interpolate_before_map,
)
@property
def bounds(self) -> BoundsLike: # numpydoc ignore=RT01
"""Return the bounds of this mapper.
Examples
--------
>>> import pyvista as pv
>>> mapper = pv.DataSetMapper(dataset=pv.Cube())
>>> mapper.bounds
(-0.5, 0.5, -0.5, 0.5, -0.5, 0.5)
"""
return self.GetBounds()
def copy(self) -> _BaseMapper:
"""Create a copy of this mapper.
Returns
-------
pyvista.DataSetMapper
A copy of this dataset mapper.
Examples
--------
>>> import pyvista as pv
>>> mapper = pv.DataSetMapper(dataset=pv.Cube())
>>> mapper_copy = mapper.copy()
"""
new_mapper = type(self)(theme=self._theme)
# even though this uses ShallowCopy, the new mapper no longer retains
# any connection with the original
new_mapper.ShallowCopy(self)
if hasattr(self, 'dataset'):
new_mapper.dataset = self.dataset
return new_mapper
@property
def scalar_range(self) -> tuple[float, float]: # numpydoc ignore=RT01
"""Return or set the scalar range.
Examples
--------
Return the scalar range of a mapper.
>>> import pyvista as pv
>>> mesh = pv.Sphere()
>>> pl = pv.Plotter()
>>> actor = pl.add_mesh(mesh, scalars=mesh.points[:, 2])
>>> actor.mapper.scalar_range
(-0.5, 0.5)
>>> pl.close()
Return the scalar range of a composite dataset. In this example it's
set to its default value of ``(0.0, 1.0)``.
>>> import pyvista as pv
>>> dataset = pv.MultiBlock(
... [pv.Cube(), pv.Sphere(center=(0, 0, 1))]
... )
>>> pl = pv.Plotter()
>>> actor, mapper = pl.add_composite(dataset)
>>> mapper.scalar_range
(0.0, 1.0)
>>> pl.close()
"""
return self.GetScalarRange()
@scalar_range.setter
def scalar_range(self, clim): # numpydoc ignore=GL08
self.SetScalarRange(*clim)
@property
def lookup_table(self) -> pyvista.LookupTable: # numpydoc ignore=RT01
"""Return or set the lookup table.
Examples
--------
Return the lookup table of a dataset mapper.
>>> import pyvista as pv
>>> mesh = pv.Sphere()
>>> pl = pv.Plotter()
>>> actor = pl.add_mesh(
... mesh, scalars=mesh.points[:, 2], cmap='bwr'
... )
>>> actor.mapper.lookup_table
LookupTable (...)
Table Range: (-0.5, 0.5)
N Values: 256
Above Range Color: None
Below Range Color: None
NAN Color: Color(name='darkgray', hex='#a9a9a9ff', opacity=255)
Log Scale: False
Color Map: "bwr"
Return the lookup table of a composite dataset mapper.
>>> import pyvista as pv
>>> dataset = pv.MultiBlock(
... [pv.Cube(), pv.Sphere(center=(0, 0, 1))]
... )
>>> pl = pv.Plotter()
>>> actor, mapper = pl.add_composite(dataset)
>>> mapper.lookup_table # doctest:+SKIP
<vtkmodules.vtkCommonCore.vtkLookupTable(...) at ...>
"""
return self.GetLookupTable()
@lookup_table.setter
def lookup_table(self, table): # numpydoc ignore=GL08
self.SetLookupTable(table)
@property
def color_mode(self) -> str: # numpydoc ignore=RT01
"""Return or set the color mode.
Either ``'direct'``, or ``'map'``.
* ``'direct'`` - All integer types are treated as colors with values in
the range 0-255 and floating types are treated as colors with values
in the range 0.0-1.0
* ``'map'`` - All scalar data will be mapped through the lookup table.
"""
mode = self.GetColorModeAsString().lower()
if mode == 'mapscalars':
return 'map'
return 'direct'
@color_mode.setter
def color_mode(self, value: str): # numpydoc ignore=GL08
if value == 'direct':
self.SetColorModeToDirectScalars()
elif value == 'map':
self.SetColorModeToMapScalars()
else:
raise ValueError('Color mode must be either "default", "direct" or "map"')
@property
def interpolate_before_map(self) -> bool: # numpydoc ignore=RT01
"""Return or set the interpolation of scalars before mapping.
Enabling makes for a smoother scalars display. When ``False``,
OpenGL will interpolate the mapped colors which can result in
showing colors that are not present in the color map.
Examples
--------
Disable interpolation before mapping.
>>> import pyvista as pv
>>> dataset = pv.MultiBlock(
... [pv.Cube(), pv.Sphere(center=(0, 0, 1))]
... )
>>> dataset[0].point_data['data'] = dataset[0].points[:, 2]
>>> dataset[1].point_data['data'] = dataset[1].points[:, 2]
>>> pl = pv.Plotter()
>>> actor, mapper = pl.add_composite(
... dataset,
... show_scalar_bar=False,
... n_colors=3,
... cmap='bwr',
... )
>>> mapper.interpolate_before_map = False
>>> pl.show()
Enable interpolation before mapping.
>>> pl = pv.Plotter()
>>> actor, mapper = pl.add_composite(
... dataset,
... show_scalar_bar=False,
... n_colors=3,
... cmap='bwr',
... )
>>> mapper.interpolate_before_map = True
>>> pl.show()
See :ref:`interpolate_before_mapping_example` for additional
explanation regarding this attribute.
"""
return bool(self.GetInterpolateScalarsBeforeMapping())
@interpolate_before_map.setter
def interpolate_before_map(self, value: bool): # numpydoc ignore=GL08
self.SetInterpolateScalarsBeforeMapping(value)
@property
def array_name(self) -> str: # numpydoc ignore=RT01
"""Return or set the array name or number and component to color by.
Examples
--------
Show the name of the active scalars in the mapper.
>>> import pyvista as pv
>>> mesh = pv.Sphere()
>>> mesh['my_scalars'] = mesh.points[:, 2]
>>> pl = pv.Plotter()
>>> actor = pl.add_mesh(mesh, scalars='my_scalars')
>>> actor.mapper.array_name
'my_scalars'
>>> pl.close()
"""
return self.GetArrayName()
@array_name.setter
def array_name(self, name: str): # numpydoc ignore=GL08
"""Return or set the array name or number and component to color by."""
self.SetArrayName(name)
@property
def scalar_map_mode(self) -> str: # numpydoc ignore=RT01
"""Return or set the scalar map mode.
Examples
--------
Show that the scalar map mode is set to ``'point'`` when setting the
active scalars to point data.
>>> import pyvista as pv
>>> dataset = pv.MultiBlock(
... [pv.Cube(), pv.Sphere(center=(0, 0, 1))]
... )
>>> dataset[0].point_data['data'] = dataset[0].points[:, 2]
>>> dataset[1].point_data['data'] = dataset[1].points[:, 2]
>>> pl = pv.Plotter()
>>> actor, mapper = pl.add_composite(
... dataset, scalars='data', show_scalar_bar=False
... )
>>> mapper.scalar_map_mode
'point'
>>> pl.close()
"""
# map vtk strings to more sensible strings
vtk_to_pv = {
'Default': 'default',
'UsePointData': 'point',
'UseCellData': 'cell',
'UsePointFieldData': 'point_field',
'UseCellFieldData': 'cell_field',
'UseFieldData': 'field',
}
return vtk_to_pv[self.GetScalarModeAsString()]
@scalar_map_mode.setter
def scalar_map_mode(self, scalar_mode: str | FieldAssociation): # numpydoc ignore=GL08
if isinstance(scalar_mode, FieldAssociation):
scalar_mode = scalar_mode.name
scalar_mode = scalar_mode.lower()
if scalar_mode == 'default':
self.SetScalarModeToDefault()
elif scalar_mode == 'point':
self.SetScalarModeToUsePointData()
elif scalar_mode == 'cell':
self.SetScalarModeToUseCellData()
elif scalar_mode == 'point_field':
self.SetScalarModeToUsePointFieldData()
elif scalar_mode == 'cell_field':
self.SetScalarModeToUseCellFieldData()
elif scalar_mode == 'field':
self.SetScalarModeToUseFieldData()
else:
raise ValueError(
f'Invalid `scalar_map_mode` "{scalar_mode}". Should be either '
'"default", "point", "cell", "point_field", "cell_field" or "field".',
)
@property
def scalar_visibility(self) -> bool: # numpydoc ignore=RT01
"""Return or set the scalar visibility.
Examples
--------
Show that scalar visibility is ``False``.
>>> import pyvista as pv
>>> mesh = pv.Sphere()
>>> pl = pv.Plotter()
>>> actor = pl.add_mesh(mesh)
>>> actor.mapper.scalar_visibility
False
>>> pl.close()
Show that scalar visibility is ``True``.
>>> import pyvista as pv
>>> dataset = pv.MultiBlock(
... [pv.Cube(), pv.Sphere(center=(0, 0, 1))]
... )
>>> dataset[0].point_data['data'] = dataset[0].points[:, 2]
>>> dataset[1].point_data['data'] = dataset[1].points[:, 2]
>>> pl = pv.Plotter()
>>> actor, mapper = pl.add_composite(dataset, scalars='data')
>>> mapper.scalar_visibility
True
>>> pl.close()
"""
return bool(self.GetScalarVisibility())
@scalar_visibility.setter
def scalar_visibility(self, value: bool): # numpydoc ignore=GL08
self.SetScalarVisibility(value)
def update(self):
"""Update this mapper."""
self.Update()
@no_new_attr
class _DataSetMapper(_BaseMapper):
"""Base wrapper for _vtk.vtkDataSetMapper.
Parameters
----------
dataset : pyvista.DataSet, optional
Dataset to assign to this mapper.
theme : pyvista.plotting.themes.Theme, optional
Plot-specific theme.
"""
_cmap = None
def __init__(
self,
dataset: pyvista.DataSet | None = None,
theme: pyvista.themes.Theme | None = None,
):
"""Initialize this class."""
super().__init__(theme=theme)
if dataset is not None:
self.dataset = dataset
@property
def dataset(self) -> pyvista.core.dataset.DataSet | None: # numpydoc ignore=RT01
"""Return or set the dataset assigned to this mapper."""
return cast(Optional[pyvista.DataSet], wrap(self.GetInputAsDataSet()))
@dataset.setter
def dataset(
self,
obj: pyvista.core.dataset.DataSet | _vtk.vtkAlgorithm | _vtk.vtkAlgorithmOutput,
): # numpydoc ignore=GL08
set_algorithm_input(self, obj)
def as_rgba(self): # numpydoc ignore=GL08
"""Convert the active scalars to RGBA.
This method is used to convert the active scalars to a fixed RGBA array
and is used for certain mappers that do not support the "map" color
mode.
"""
if self.color_mode == 'direct':
return
self.dataset.point_data.pop('__rgba__', None)
self._configure_scalars_mode(
self.lookup_table(self.dataset.active_scalars),
'__rgba__',
self.scalar_map_mode,
True,
)
def _configure_scalars_mode(
self,
scalars,
scalars_name,
preference,
direct_scalars_color_mode,
):
"""Configure scalar mode.
Parameters
----------
scalars : numpy.ndarray
Array of scalars to assign to the mapper.
scalars_name : str
If the name of this array exists, scalars is ignored. Otherwise,
the scalars will be added to the existing dataset and this
parameter is the name to assign the scalars.
preference : str
Either ``'point'`` or ``'cell'``.
direct_scalars_color_mode : bool
When ``True``, scalars are treated as RGB colors. When
``False``, scalars are mapped to the color table.
"""
if scalars.shape[0] == self.dataset.n_points and scalars.shape[0] == self.dataset.n_cells:
use_points = preference == 'point'
use_cells = not use_points
else:
use_points = scalars.shape[0] == self.dataset.n_points
use_cells = scalars.shape[0] == self.dataset.n_cells
# Scalars interpolation approach
if use_points:
if (
scalars_name not in self.dataset.point_data
or scalars_name == pyvista.DEFAULT_SCALARS_NAME
):
self.dataset.point_data.set_array(scalars, scalars_name, False)
self.dataset.active_scalars_name = scalars_name
self.scalar_map_mode = 'point'
elif use_cells:
if (
scalars_name not in self.dataset.cell_data
or scalars_name == pyvista.DEFAULT_SCALARS_NAME
):
self.dataset.cell_data.set_array(scalars, scalars_name, False)
self.dataset.active_scalars_name = scalars_name
self.scalar_map_mode = 'cell'
else:
raise_not_matching(scalars, self.dataset)
self.color_mode = 'direct' if direct_scalars_color_mode else 'map'
def set_scalars(
self,
scalars,
scalars_name,
n_colors=256,
scalar_bar_args=None,
rgb=None,
component=None,
preference='point',
custom_opac=False,
annotations=None,
log_scale=False,
nan_color=None,
above_color=None,
below_color=None,
cmap=None,
flip_scalars=False,
opacity=None,
categories=False,
clim=None,
):
"""Set the scalars on this mapper.
Parameters
----------
scalars : numpy.ndarray
Array of scalars to assign to the mapper.
scalars_name : str
If the name of this array exists, scalars is ignored. Otherwise,
the scalars will be added to the existing dataset and this
parameter is the name to assign the scalars.
n_colors : int, default: 256
Number of colors to use when displaying scalars.
scalar_bar_args : dict, optional
Dictionary of keyword arguments to pass when adding the
scalar bar to the scene. For options, see
:func:`pyvista.Plotter.add_scalar_bar`.
rgb : bool, default: False
If an 2 dimensional array is passed as the scalars, plot
those values as RGB(A) colors. ``rgba`` is also an
accepted alias for this. Opacity (the A) is optional. If
a scalars array ending with ``"_rgba"`` is passed, the default
becomes ``True``. This can be overridden by setting this
parameter to ``False``.
component : int, optional
Set component of vector valued scalars to plot. Must be
nonnegative, if supplied. If ``None``, the magnitude of
the vector is plotted.
preference : str, default: 'Point'
When ``dataset.n_points == dataset.n_cells`` and setting scalars,
this parameter sets how the scalars will be mapped to the mesh.
Can be either ``'point'`` or ``'cell'``.
custom_opac : bool, default: False
Use custom opacity.
annotations : dict, optional
Pass a dictionary of annotations. Keys are the float
values in the scalars range to annotate on the scalar bar
and the values are the string annotations.
log_scale : bool, default: False
Use log scale when mapping data to colors. Scalars less
than zero are mapped to the smallest representable
positive float.
nan_color : pyvista.ColorLike, optional
The color to use for all ``NaN`` values in the plotted
scalar array.
above_color : pyvista.ColorLike, optional
Solid color for values below the scalars range
(``clim``). This will automatically set the scalar bar
``above_label`` to ``'above'``.
below_color : pyvista.ColorLike, optional
Solid color for values below the scalars range
(``clim``). This will automatically set the scalar bar
``below_label`` to ``'below'``.
cmap : str, list, or pyvista.LookupTable
Name of the Matplotlib colormap to use when mapping the
``scalars``. See available Matplotlib colormaps. Only applicable
for when displaying ``scalars``.
``colormap`` is also an accepted alias for this. If
``colorcet`` or ``cmocean`` are installed, their colormaps can be
specified by name.
You can also specify a list of colors to override an existing
colormap with a custom one. For example, to create a three color
colormap you might specify ``['green', 'red', 'blue']``.
This parameter also accepts a :class:`pyvista.LookupTable`. If this
is set, all parameters controlling the color map like ``n_colors``
will be ignored.
flip_scalars : bool, default: False
Flip direction of cmap. Most colormaps allow ``*_r`` suffix to do
this as well.
opacity : str or numpy.ndarray, optional
Opacity mapping for the scalars array.
A string can also be specified to map the scalars range to a
predefined opacity transfer function (options include: 'linear',
'linear_r', 'geom', 'geom_r'). Or you can pass a custom made
transfer function that is an array either ``n_colors`` in length or
shorter.
categories : bool, default: False
If set to ``True``, then the number of unique values in the scalar
array will be used as the ``n_colors`` argument.
clim : Sequence, optional
Color bar range for scalars. Defaults to minimum and
maximum of scalars array. Example: ``(-1, 2)``.
"""
if scalar_bar_args is None:
scalar_bar_args = {'n_colors': n_colors}
if not isinstance(scalars, np.ndarray):
scalars = np.asarray(scalars)
# Set the array title for when it is added back to the mesh
if custom_opac:
scalars_name = '__custom_rgba'
if not np.issubdtype(scalars.dtype, np.number) and not isinstance(
cmap,
pyvista.LookupTable,
):
# we can rapidly handle bools
if scalars.dtype == np.bool_:
cats = np.array([b'False', b'True'], dtype='|S5')
values = np.array([0, 1])
clim = [-0.5, 1.5]
else:
# If str array, digitize and annotate
cats, scalars = np.unique(scalars.astype('|S'), return_inverse=True)
values = np.unique(scalars)
clim = [np.min(values) - 0.5, np.max(values) + 0.5]
scalars_name = f'{scalars_name}-digitized'
n_colors = len(cats)
scalar_bar_args.setdefault('n_labels', 0)
self.lookup_table.SetAnnotations(convert_array(values), convert_string_array(cats))
# Use only the real component if an array is complex
if np.issubdtype(scalars.dtype, np.complexfloating):
scalars = scalars.astype(float)
scalars_name = f'{scalars_name}-real'
if scalars.ndim != 1:
if rgb:
pass
elif scalars.ndim == 2 and (
scalars.shape[0] == self.dataset.n_points
or scalars.shape[0] == self.dataset.n_cells
):
if not isinstance(component, (int, type(None))):
raise TypeError('component must be either None or an integer')
if component is None:
scalars = np.linalg.norm(scalars.copy(), axis=1)
scalars_name = f'{scalars_name}-normed'
elif component < scalars.shape[1] and component >= 0:
scalars = np.array(scalars[:, component]).copy()
scalars_name = f'{scalars_name}-{component}'
else:
raise ValueError(
'Component must be nonnegative and less than the '
f'dimensionality of the scalars array: {scalars.shape[1]}',
)
else:
scalars = scalars.ravel()
if scalars.dtype == np.bool_:
scalars = scalars.astype(np.float64)
# Set scalars range
if clim is None:
clim = [np.nanmin(scalars), np.nanmax(scalars)]
elif isinstance(clim, (int, float)):
clim = [-clim, clim]
if log_scale:
if clim[0] <= 0:
clim = [sys.float_info.min, clim[1]]
if np.any(clim) and not rgb:
self.scalar_range = clim[0], clim[1]
if isinstance(cmap, pyvista.LookupTable):
self.lookup_table = cmap
self.scalar_range = self.lookup_table.scalar_range
else:
self.lookup_table.scalar_range = self.scalar_range
# Set default map
if cmap is None:
cmap = pyvista.global_theme.cmap if self._theme is None else self._theme.cmap
# have to add the attribute to pass it onward to some classes
if isinstance(cmap, str):
self._cmap = cmap
if categories:
if categories is True:
n_colors = len(np.unique(scalars))
elif isinstance(categories, int):
n_colors = categories
self.lookup_table.apply_cmap(cmap, n_colors)
# Set opactities
if isinstance(opacity, np.ndarray) and not custom_opac:
self.lookup_table.apply_opacity(opacity)
if flip_scalars:
self.lookup_table.values[:] = self.lookup_table.values[::-1]
if custom_opac:
# need to round the colors here since we're
# directly displaying the colors
hue = normalize(scalars, minimum=clim[0], maximum=clim[1])
scalars = np.round(hue * n_colors) / n_colors
scalars = get_cmap_safe(cmap)(scalars) * 255
scalars[:, -1] *= opacity
scalars = scalars.astype(np.uint8)
# configure the lookup table
if nan_color:
self.lookup_table.nan_color = nan_color
if above_color:
self.lookup_table.above_range_color = above_color
scalar_bar_args.setdefault('above_label', 'above')
if below_color:
self.lookup_table.below_range_color = below_color
scalar_bar_args.setdefault('below_label', 'below')
if isinstance(annotations, dict):
self.lookup_table.annotations = annotations
self.lookup_table.log_scale = log_scale
self._configure_scalars_mode(
scalars,
scalars_name,
preference,
rgb or custom_opac,
)
if isinstance(self, PointGaussianMapper):
self.as_rgba()
@property
def cmap(self) -> str | None: # numpydoc ignore=RT01
"""Colormap assigned to this mapper."""
return self._cmap
@property
def resolve(self) -> str:
"""Set or return the global flag to avoid z-buffer resolution.
A global flag that controls whether the coincident topology
(e.g., a line on top of a polygon) is shifted to avoid
z-buffer resolution (and hence rendering problems).
If not off, there are two methods to choose from.
`polygon_offset` uses graphics systems calls to shift polygons,
lines, and points from each other.
`shift_zbuffer` is a legacy method that is used to remap the z-buffer
to distinguish vertices, lines, and polygons,
but does not always produce acceptable results.
You should only use the polygon_offset method (or none) at this point.
Returns
-------
str
Global flag to avoid z-buffer resolution.
Must be either `off`, `polygon_offset` or `shift_zbuffer`.
Examples
--------
>>> import pyvista as pv
>>> from pyvista import examples
>>> mesh = examples.download_tri_quadratic_hexahedron()
>>> surface_sep = mesh.separate_cells().extract_surface(
... nonlinear_subdivision=4
... )
>>> edges = surface_sep.extract_feature_edges()
>>> surface = mesh.extract_surface(nonlinear_subdivision=4)
>>> plotter = pv.Plotter()
>>> _ = plotter.add_mesh(
... surface, smooth_shading=True, split_sharp_edges=True
... )
>>> actor = plotter.add_mesh(edges, color='k', line_width=3)
>>> actor.mapper.resolve = "polygon_offset"
>>> plotter.show()
"""
vtk_to_pv = {
_vtk.VTK_RESOLVE_OFF: 'off',
_vtk.VTK_RESOLVE_POLYGON_OFFSET: 'polygon_offset',
_vtk.VTK_RESOLVE_SHIFT_ZBUFFER: 'shift_zbuffer',
}
return vtk_to_pv[self.GetResolveCoincidentTopology()]
@resolve.setter
def resolve(self, resolve): # numpydoc ignore=GL08
if resolve == 'off':
self.SetResolveCoincidentTopologyToOff()
elif resolve == 'polygon_offset':
self.SetResolveCoincidentTopologyToPolygonOffset()
elif resolve == 'shift_zbuffer':
self.SetResolveCoincidentTopologyToShiftZBuffer()
else:
raise ValueError('Resolve must be either "off", "polygon_offset" or "shift_zbuffer"')
def set_custom_opacity(self, opacity, color, n_colors, preference='point'):
"""Set custom opacity.
Parameters
----------
opacity : numpy.ndarray
Opacity array to color the dataset. Array length must match either
the number of points or cells.
color : pyvista.ColorLike
The color to use with the opacity array.
n_colors : int
Number of colors to use.
preference : str, default: 'point'
Either ``'point'`` or ``'cell'``. Used when the number of cells
matches the number of points.
"""
# Create a custom RGBA array to supply our opacity to
if opacity.size == self.dataset.n_points:
rgba = np.empty((self.dataset.n_points, 4), np.uint8)
elif opacity.size == self.dataset.n_cells:
rgba = np.empty((self.dataset.n_cells, 4), np.uint8)
else: # pragma: no cover
raise ValueError(
f"Opacity array size ({opacity.size}) does not equal "
f"the number of points ({self.dataset.n_points}) or the "
f"number of cells ({self.dataset.n_cells}).",
)
default_color = self._theme.color if self._theme is not None else pyvista.global_theme.color
rgba[:, :-1] = Color(color, default_color=default_color).int_rgb
rgba[:, -1] = np.around(opacity * 255)
self.color_mode = 'direct'
self.lookup_table.n_values = n_colors
self._configure_scalars_mode(rgba, '', preference, True)
def __repr__(self):
"""Representation of the mapper."""
mapper_attr = [
f'{type(self).__name__} ({hex(id(self))})',
f' Scalar visibility: {self.scalar_visibility}',
f' Scalar range: {self.scalar_range}',
f' Interpolate before mapping: {self.interpolate_before_map}',
f' Scalar map mode: {self.scalar_map_mode}',
f' Color mode: {self.color_mode}',
'',
]
mapper_attr.append('Attached dataset:')
mapper_attr.append(str(self.dataset))
return '\n'.join(mapper_attr)
class DataSetMapper(_DataSetMapper, _vtk.vtkDataSetMapper):
"""Wrap _vtk.vtkDataSetMapper.
Parameters
----------
dataset : pyvista.DataSet, optional
Dataset to assign to this mapper.
theme : pyvista.plotting.themes.Theme, optional
Plot-specific theme.
Examples
--------
Create a mapper outside :class:`pyvista.Plotter` and assign it to an
actor.
>>> import pyvista as pv
>>> mesh = pv.Cube()
>>> mapper = pv.DataSetMapper(dataset=mesh)
>>> actor = pv.Actor(mapper=mapper)
>>> actor.plot()
"""
def __init__(
self,
dataset: pyvista.DataSet | None = None,
theme: pyvista.themes.Theme | None = None,
):
"""Initialize this class."""
super().__init__(dataset=dataset, theme=theme)
@no_new_attr
class PointGaussianMapper(_DataSetMapper, _vtk.vtkPointGaussianMapper):
"""Wrap vtkPointGaussianMapper.
Parameters
----------
theme : pyvista.Theme, optional
The theme to be used.
emissive : bool, optional
Whether or not the point should appear emissive. Default is set by the
theme's ``lighting_params.emissive``.
scale_factor : float, default: 1.0
Scale factor applied to the point size.
"""
def __init__(self, theme=None, emissive=None, scale_factor=1.0) -> None:
super().__init__(theme=theme)
if emissive is None:
emissive = self._theme.lighting_params.emissive
self.emissive = emissive
self.scale_factor = scale_factor
@property
def emissive(self) -> bool: # numpydoc ignore=RT01
"""Set or return emissive.
This treats points as emissive light sources. Two points that overlap
will have their brightness combined.
"""
return bool(self.GetEmissive())
@emissive.setter
def emissive(self, value: bool): # numpydoc ignore=GL08
self.SetEmissive(value)
@property
def scale_factor(self) -> float: # numpydoc ignore=RT01
"""Set or return the scale factor.
Ranges from 0 to 1. A value of 0 will cause the splats to be rendered
as simple points. Defaults to 1.0.
"""
return self.GetScaleFactor()
@scale_factor.setter
def scale_factor(self, value: float): # numpydoc ignore=GL08
self.SetScaleFactor(value)
@property
def scale_array(self) -> str: # numpydoc ignore=RT01
"""Set or return the name of the array used to scale the splats.
Scalars used to scale the gaussian points. Accepts a string
name of an array that is present on the mesh.
Notes
-----
Setting this automatically sets ``scale_factor = 1.0``.
Examples
--------
Plot spheres using `style='points_gaussian'` style and scale them by
radius.
>>> import numpy as np
>>> import pyvista as pv
>>> n_spheres = 1_000
>>> pos = np.random.random((n_spheres, 3))
>>> rad = np.random.random(n_spheres) * 0.01
>>> pdata = pv.PolyData(pos)
>>> pdata['radius'] = rad
>>> pl = pv.Plotter()
>>> actor = pl.add_mesh(
... pdata,
... style='points_gaussian',
... emissive=False,
... render_points_as_spheres=True,
... )
>>> actor.mapper.scale_array = 'radius'
>>> pl.show()
"""
return self.GetScaleArray()
@scale_array.setter
def scale_array(self, name: str): # numpydoc ignore=GL08
if not self.dataset: # pragma: no cover
raise RuntimeError('Missing dataset.')
if name not in self.dataset.point_data:
available_arrays = ", ".join(self.dataset.point_data.keys())
raise KeyError(
f'Point array "{name}" does not exist. '
f'Available point arrays are: {available_arrays}',
)
self.scale_factor = 1.0
self.SetScaleArray(name)
def use_circular_splat(self, opacity: float = 1.0):
"""Set the fragment shader code to create a circular splat.
Parameters
----------
opacity : float, default: 1.0
Desired opacity between 0 and 1.
Notes
-----
This very close to ParaView's PointGaussianMapper, but uses opacity to
modify the scale as the opacity cannot be set from the actor's property.
"""
self.SetSplatShaderCode(
"//VTK::Color::Impl\n"
"float dist = dot(offsetVCVSOutput.xy,offsetVCVSOutput.xy);\n"
"if (dist > 1.0) {\n"
" discard;\n"
"} else {\n"
f" float scale = ({opacity} - dist);\n"
" ambientColor *= scale;\n"
" diffuseColor *= scale;\n"
"}\n",
)
# maintain consistency with the default style
self.scale_factor *= 1.5
def use_default_splat(self):
"""Clear the fragment shader and use the default splat."""
self.SetSplatShaderCode(None)
self.scale_factor /= 1.5
def __repr__(self):
"""Representation of the Gaussian mapper."""
mapper_attr = [
f'{type(self).__name__} ({hex(id(self))})',
f' Scalar visibility: {self.scalar_visibility}',
f' Scalar range: {self.scalar_range}',
f' Emissive: {self.emissive}',
f' Scale Factor: {self.scale_factor}',
f' Using custom splat: {self.GetSplatShaderCode() is None}',
'',
]
mapper_attr.append('Attached dataset:')
mapper_attr.append(str(self.dataset))
return '\n'.join(mapper_attr)
@abstract_class
class _BaseVolumeMapper(_BaseMapper):
"""Volume mapper class to override methods and attributes for to volume mappers."""
def __init__(self, theme=None):
"""Initialize this class."""
super().__init__(theme=theme)
self._lut = LookupTable()
self._scalar_range = (0.0, 256.0)
@property
def interpolate_before_map(self): # numpydoc ignore=RT01
"""Interpolate before map is not supported with volume mappers."""
return
@interpolate_before_map.setter
def interpolate_before_map(self, *args): # numpydoc ignore=GL08
pass
@property
def dataset(self): # numpydoc ignore=RT01
"""Return or set the dataset assigned to this mapper."""
# GetInputAsDataSet unavailable on volume mappers
return wrap(self.GetDataSetInput())
@dataset.setter
def dataset(
self,
obj: pyvista.core.dataset.DataSet | _vtk.vtkAlgorithm | _vtk.vtkAlgorithmOutput,
):
set_algorithm_input(self, obj)
@property
def lookup_table(self): # numpydoc ignore=GL08 # numpydoc ignore=RT01
return self._lut
@lookup_table.setter
def lookup_table(self, lut): # numpydoc ignore=GL08
self._lut = lut
@property
def scalar_range(self) -> tuple[float, float]: # numpydoc ignore=RT01
"""Return or set the scalar range."""
return self._scalar_range
@scalar_range.setter
def scalar_range(self, clim): # numpydoc ignore=GL08
if self.lookup_table is not None:
self.lookup_table.SetRange(*clim)
self._scalar_range = tuple(clim)
@property
def blend_mode(self) -> str: # numpydoc ignore=RT01
"""Return or set the blend mode.
One of the following:
* ``"composite"``
* ``"maximum"``
* ``"minimum"``
* ``"average"``
* ``"additive"``
Also accepts integer values corresponding to
``vtk.vtkVolumeMapper.BlendModes``. For example
``vtk.vtkVolumeMapper.COMPOSITE_BLEND``.
"""
value = self.GetBlendMode()
mode = {0: 'composite', 1: 'maximum', 2: 'minimum', 3: 'average', 4: 'additive'}.get(value)
if mode is None: # pragma: no cover
raise NotImplementedError(f'Unsupported blend mode return value {value}')
return mode
@blend_mode.setter
def blend_mode(self, value: str | int): # numpydoc ignore=GL08
if isinstance(value, int):
self.SetBlendMode(value)
elif isinstance(value, str):
value = value.lower()
if value in ['additive', 'add', 'sum']:
self.SetBlendModeToAdditive()
elif value in ['average', 'avg', 'average_intensity']:
self.SetBlendModeToAverageIntensity()
elif value in ['composite', 'comp']:
self.SetBlendModeToComposite()
elif value in ['maximum', 'max', 'maximum_intensity']:
self.SetBlendModeToMaximumIntensity()
elif value in ['minimum', 'min', 'minimum_intensity']:
self.SetBlendModeToMinimumIntensity()
else:
raise ValueError(
f'Blending mode {value!r} invalid. '
'Please choose either "additive", '
'"composite", "minimum" or "maximum".',
)
else:
raise TypeError(f'`blend_mode` should be either an int or str, not `{type(value)}`')
def __del__(self):
self._lut = None
class FixedPointVolumeRayCastMapper(_BaseVolumeMapper, _vtk.vtkFixedPointVolumeRayCastMapper):
"""Wrap _vtk.vtkFixedPointVolumeRayCastMapper."""
class GPUVolumeRayCastMapper(_BaseVolumeMapper, _vtk.vtkGPUVolumeRayCastMapper):
"""Wrap _vtk.vtkGPUVolumeRayCastMapper."""
class OpenGLGPUVolumeRayCastMapper(_BaseVolumeMapper, _vtk.vtkOpenGLGPUVolumeRayCastMapper):
"""Wrap _vtk.vtkOpenGLGPUVolumeRayCastMapper."""
class SmartVolumeMapper(_BaseVolumeMapper, _vtk.vtkSmartVolumeMapper):
"""Wrap _vtk.vtkSmartVolumeMapper."""
class UnstructuredGridVolumeRayCastMapper(
_BaseVolumeMapper, _vtk.vtkUnstructuredGridVolumeRayCastMapper
):
"""Wrap _vtk.vtkUnstructuredGridVolumeMapper."""
|