File: plotter.py

package info (click to toggle)
python-pyvista 0.44.1-11
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 159,804 kB
  • sloc: python: 72,164; sh: 118; makefile: 68
file content (7195 lines) | stat: -rw-r--r-- 263,929 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
"""PyVista plotting module."""

from __future__ import annotations

from collections.abc import Iterable
import contextlib
from contextlib import contextmanager
from contextlib import suppress
from copy import deepcopy
import ctypes
from functools import wraps
import io
import logging
import os
from pathlib import Path
import platform
import sys
import textwrap
from threading import Thread
import time
from typing import TYPE_CHECKING
import uuid
import warnings
import weakref

import matplotlib as mpl
import numpy as np
import scooby

import pyvista
from pyvista.core.errors import MissingDataError
from pyvista.core.errors import PyVistaDeprecationWarning
from pyvista.core.utilities.arrays import FieldAssociation
from pyvista.core.utilities.arrays import _coerce_pointslike_arg
from pyvista.core.utilities.arrays import convert_array
from pyvista.core.utilities.arrays import get_array
from pyvista.core.utilities.arrays import get_array_association
from pyvista.core.utilities.arrays import raise_not_matching
from pyvista.core.utilities.helpers import is_pyvista_dataset
from pyvista.core.utilities.helpers import wrap
from pyvista.core.utilities.misc import abstract_class
from pyvista.core.utilities.misc import assert_empty_kwargs

from . import _vtk
from ._plotting import _common_arg_parser
from ._plotting import prepare_smooth_shading
from ._plotting import process_opacity
from ._property import Property
from .actor import Actor
from .colors import Color
from .colors import get_cmap_safe
from .composite_mapper import CompositePolyDataMapper
from .errors import RenderWindowUnavailable
from .mapper import DataSetMapper
from .mapper import FixedPointVolumeRayCastMapper
from .mapper import GPUVolumeRayCastMapper
from .mapper import OpenGLGPUVolumeRayCastMapper
from .mapper import PointGaussianMapper
from .mapper import SmartVolumeMapper
from .mapper import UnstructuredGridVolumeRayCastMapper
from .picking import PickingHelper
from .render_window_interactor import RenderWindowInteractor
from .renderer import Camera
from .renderer import Renderer
from .renderers import Renderers
from .scalar_bars import ScalarBars
from .text import CornerAnnotation
from .text import Text
from .text import TextProperty
from .texture import numpy_to_texture
from .themes import Theme
from .tools import normalize  # noqa: F401
from .tools import opacity_transfer_function  # noqa: F401
from .tools import parse_font_family  # noqa: F401
from .utilities.algorithms import active_scalars_algorithm
from .utilities.algorithms import algorithm_to_mesh_handler
from .utilities.algorithms import decimation_algorithm
from .utilities.algorithms import extract_surface_algorithm
from .utilities.algorithms import pointset_to_polydata_algorithm
from .utilities.algorithms import set_algorithm_input
from .utilities.algorithms import triangulate_algorithm
from .utilities.gl_checks import uses_egl
from .utilities.regression import image_from_window
from .utilities.regression import run_image_filter
from .volume import Volume
from .volume_property import VolumeProperty
from .widgets import WidgetHelper

if TYPE_CHECKING:  # pragma: no cover
    from pyvista.core._typing_core import BoundsLike

SUPPORTED_FORMATS = [".png", ".jpeg", ".jpg", ".bmp", ".tif", ".tiff"]

# EXPERIMENTAL: permit pyvista to kill the render window
KILL_DISPLAY = platform.system() == 'Linux' and os.environ.get('PYVISTA_KILL_DISPLAY')
if KILL_DISPLAY:  # pragma: no cover
    # this won't work under wayland
    try:
        X11 = ctypes.CDLL("libX11.so")
        X11.XCloseDisplay.argtypes = [ctypes.c_void_p]
    except OSError:
        warnings.warn('PYVISTA_KILL_DISPLAY: Unable to load X11.\nProbably using wayland')
        KILL_DISPLAY = False


def close_all():
    """Close all open/active plotters and clean up memory.

    Returns
    -------
    bool
        ``True`` when all plotters have been closed.

    """
    for pl in list(_ALL_PLOTTERS.values()):
        if not pl._closed:
            pl.close()
    _ALL_PLOTTERS.clear()
    return True


log = logging.getLogger(__name__)
log.setLevel('CRITICAL')
log.addHandler(logging.StreamHandler())


def _warn_xserver():  # pragma: no cover
    """Check if plotting is supported and persist this state.

    Check once and cache this value between calls.  Warn the user if
    plotting is not supported.  Configured to check on Linux and Mac
    OS since the Windows check is not quick.

    """
    # disable windows check until we can get a fast way of verifying
    # if windows has a windows manager (which it generally does)
    if os.name == 'nt':
        return

    if not hasattr(_warn_xserver, 'has_support'):
        _warn_xserver.has_support = pyvista.system_supports_plotting()

    if not _warn_xserver.has_support:
        # check if a display has been set
        if 'DISPLAY' in os.environ:
            return

        # finally, check if using a backend that doesn't require an xserver
        if pyvista.global_theme.jupyter_backend in [
            'client',
            'html',
        ]:
            return

        # Check if VTK has EGL support
        if uses_egl():
            return

        warnings.warn(
            '\n'
            'This system does not appear to be running an xserver.\n'
            'PyVista will likely segfault when rendering.\n\n'
            'Try starting a virtual frame buffer with xvfb, or using\n '
            ' ``pyvista.start_xvfb()``\n',
        )


@abstract_class
class BasePlotter(PickingHelper, WidgetHelper):
    """Base plotting class.

    To be used by the :class:`pyvista.Plotter` and
    :class:`pyvistaqt.QtInteractor` classes.

    Parameters
    ----------
    shape : sequence[int] | str, optional
        Two item sequence of sub-render windows inside of the main window.
        Specify two across with ``shape=(2, 1)`` and a two by two grid
        with ``shape=(2, 2)``.  By default there is only one renderer.
        Can also accept a string descriptor as shape. For example:

        * ``shape="3|1"`` means 3 plots on the left and 1 on the right,
        * ``shape="4/2"`` means 4 plots on top and 2 at the bottom.

    border : bool, default: False
        Draw a border around each render window.

    border_color : ColorLike, default: 'k'
        Either a string, rgb list, or hex color string.  For example:

        * ``color='white'``
        * ``color='w'``
        * ``color=[1.0, 1.0, 1.0]``
        * ``color='#FFFFFF'``

    border_width : float, default: 2.0
        Width of the border in pixels when enabled.

    title : str, optional
        Window title.

    splitting_position : float, optional
        The splitting position of the renderers.

    groups : tuple, optional
        Grouping for renderers.

    row_weights : tuple
        Row weights for renderers.

    col_weights : tuple, optional
        Column weights for renderers.

    lighting : str, default: 'light kit'
        What lighting to set up for the plotter.  Accepted options:

        * ``'light_kit'``: a vtk Light Kit composed of 5 lights.
        * ``'three lights'``: illumination using 3 lights.
        * ``'none'``: no light sources at instantiation.

    theme : pyvista.plotting.themes.Theme, optional
        Plot-specific theme.

    image_scale : int, optional
        Scale factor when saving screenshots. Image sizes will be
        the ``window_size`` multiplied by this scale factor.

    **kwargs : dict, optional
        Additional keyword arguments.

    Examples
    --------
    Simple plotter example showing a blurred cube with a gradient background.

    >>> import pyvista as pv
    >>> pl = pv.Plotter()
    >>> _ = pl.add_mesh(pv.Cube())
    >>> pl.set_background('black', top='white')
    >>> pl.add_blurring()
    >>> pl.show()

    """

    mouse_position = None
    click_position = None

    def __init__(
        self,
        shape=(1, 1),
        border=None,
        border_color='k',
        border_width=2.0,
        title=None,
        splitting_position=None,
        groups=None,
        row_weights=None,
        col_weights=None,
        lighting='light kit',
        theme=None,
        image_scale=None,
        **kwargs,
    ):
        """Initialize base plotter."""
        super().__init__(**kwargs)  # cooperative multiple inheritance
        log.debug('BasePlotter init start')
        self._initialized = False

        self._theme = Theme()
        if theme is None:
            # copy global theme to ensure local plot theme is fixed
            # after creation.
            self._theme.load_theme(pyvista.global_theme)
        else:
            if not isinstance(theme, pyvista.plotting.themes.Theme):
                raise TypeError(
                    'Expected ``pyvista.plotting.themes.Theme`` for '
                    f'``theme``, not {type(theme).__name__}.',
                )
            self._theme.load_theme(theme)

        self.image_transparent_background = self._theme.transparent_background

        # optional function to be called prior to closing
        self.__before_close_callback = None
        self.mesh = None
        if title is None:
            title = self._theme.title
        self.title = str(title)

        # add renderers
        self.renderers = Renderers(
            self,
            shape,
            splitting_position,
            row_weights,
            col_weights,
            groups,
            border,
            border_color,
            border_width,
        )

        # This keeps track of scalars names already plotted and their ranges
        self._scalar_bars = ScalarBars(self)

        # track if the camera has been set up
        self._first_time = True
        # Keep track of the scale

        # track if render window has ever been rendered
        self._rendered = False

        self._on_render_callbacks = set()

        # this helps managing closed plotters
        self._closed = False

        # lighting style; be forgiving with input (accept underscores
        # and ignore case)
        lighting_normalized = str(lighting).replace('_', ' ').lower()
        if lighting_normalized == 'light kit':
            self.enable_lightkit()
        elif lighting_normalized == 'three lights':
            self.enable_3_lights()
        elif lighting_normalized != 'none':
            raise ValueError(f'Invalid lighting option "{lighting}".')

        # Track all active plotters. This has the side effect of ensuring that plotters are not
        # collected until `close()`. See https://github.com//pull/3216
        # This variable should be safe as a variable name
        self._id_name = f"P_{hex(id(self))}_{len(_ALL_PLOTTERS)}"
        _ALL_PLOTTERS[self._id_name] = self

        # Key bindings
        self.reset_key_events()
        log.debug('BasePlotter init stop')

        self._image_depth_null = None
        self.last_image_depth = None
        self.last_image = None
        self.last_vtksz = None
        self._has_background_layer = False
        if image_scale is None:
            image_scale = self._theme.image_scale
        self._image_scale = image_scale

        # set hidden line removal based on theme
        if self.theme.hidden_line_removal:
            self.enable_hidden_line_removal()

        self._initialized = True
        self._suppress_rendering = False

    @property
    def suppress_rendering(self):  # numpydoc ignore=RT01
        """Get or set whether to suppress render calls.

        Returns
        -------
        bool
            ``True`` when rendering is suppressed.

        """
        return self._suppress_rendering

    @suppress_rendering.setter
    def suppress_rendering(self, value):  # numpydoc ignore=GL08
        self._suppress_rendering = bool(value)

    @property
    def render_window(self):  # numpydoc ignore=RT01
        """Access the vtkRenderWindow attached to this plotter.

        If the plotter is closed, this will return ``None``.

        Returns
        -------
        vtk.vtkRenderWindow or None
            Render window if the plotter is not closed.

        Notes
        -----
        Subclass must set ``ren_win`` on initialization.
        """
        if not hasattr(self, 'ren_win'):
            return None
        return self.ren_win

    @property
    def theme(self):  # numpydoc ignore=RT01
        """Return or set the theme used for this plotter.

        Returns
        -------
        pyvista.Theme
            Theme of this plotter.

        Examples
        --------
        Use the dark theme for a plotter.

        >>> import pyvista as pv
        >>> from pyvista import themes
        >>> pl = pv.Plotter()
        >>> pl.theme = themes.DarkTheme()
        >>> actor = pl.add_mesh(pv.Sphere())
        >>> pl.show()

        """
        return self._theme

    @theme.setter
    def theme(self, theme):  # numpydoc ignore=GL08
        if not isinstance(theme, pyvista.plotting.themes.Theme):
            raise TypeError(
                'Expected a pyvista theme like '
                '``pyvista.plotting.themes.Theme``, '
                f'not {type(theme).__name__}.',
            )
        self._theme.load_theme(theme)

    def import_gltf(self, filename, set_camera=True):
        """Import a glTF file into the plotter.

        See https://www.khronos.org/gltf/ for more information.

        Parameters
        ----------
        filename : str | Path
            Path to the glTF file.

        set_camera : bool, default: True
            Set the camera viewing angle to one compatible with the
            default three.js perspective (``'xy'``).

        Examples
        --------
        >>> import pyvista as pv
        >>> from pyvista import examples
        >>> helmet_file = (
        ...     examples.gltf.download_damaged_helmet()
        ... )  # doctest:+SKIP
        >>> texture = (
        ...     examples.hdr.download_dikhololo_night()
        ... )  # doctest:+SKIP
        >>> pl = pv.Plotter()  # doctest:+SKIP
        >>> pl.import_gltf(helmet_file)  # doctest:+SKIP
        >>> pl.set_environment_texture(cubemap)  # doctest:+SKIP
        >>> pl.camera.zoom(1.8)  # doctest:+SKIP
        >>> pl.show()  # doctest:+SKIP

        See :ref:`load_gltf` for a full example using this method.

        """
        filename = Path(filename).expanduser().resolve()
        if not filename.is_file():
            raise FileNotFoundError(f'Unable to locate {filename}')

        # lazy import here to avoid importing unused modules
        from vtkmodules.vtkIOImport import vtkGLTFImporter

        importer = vtkGLTFImporter()
        if pyvista.vtk_version_info < (9, 2, 2):  # pragma no cover
            importer.SetFileName(str(filename))
        else:
            importer.SetFileName(filename)
        importer.SetRenderWindow(self.render_window)
        importer.Update()

        # register last actor in actors
        actor = self.renderer.GetActors().GetLastItem()
        name = actor.GetAddressAsString("")
        self.renderer._actors[name] = actor

        # set camera position to a three.js viewing perspective
        if set_camera:
            self.camera_position = 'xy'

    def import_vrml(self, filename):
        """Import a VRML file into the plotter.

        Parameters
        ----------
        filename : str | Path
            Path to the VRML file.

        Examples
        --------
        >>> import pyvista as pv
        >>> from pyvista import examples
        >>> sextant_file = (
        ...     examples.vrml.download_sextant()
        ... )  # doctest:+SKIP
        >>> pl = pv.Plotter()  # doctest:+SKIP
        >>> pl.import_vrml(sextant_file)  # doctest:+SKIP
        >>> pl.show()  # doctest:+SKIP

        See :ref:`load_vrml_example` for a full example using this method.

        """
        from vtkmodules.vtkIOImport import vtkVRMLImporter

        filename = Path(filename).expanduser().resolve()
        if not filename.is_file():
            raise FileNotFoundError(f'Unable to locate {filename}')

        # lazy import here to avoid importing unused modules
        importer = vtkVRMLImporter()
        if pyvista.vtk_version_info < (9, 2, 2):  # pragma no cover
            importer.SetFileName(str(filename))
        else:
            importer.SetFileName(filename)
        importer.SetRenderWindow(self.render_window)
        importer.Update()

    def import_3ds(self, filename):
        """Import a 3DS file into the plotter.

        .. versionadded:: 0.44.0

        Parameters
        ----------
        filename : str | Path
            Path to the 3DS file.

        Examples
        --------
        >>> import pyvista as pv
        >>> from pyvista import examples
        >>> download_3ds_file = examples.download_3ds.download_iflamigm()
        >>> pl = pv.Plotter()
        >>> pl.import_3ds(download_3ds_file)
        >>> pl.show()

        """
        from vtkmodules.vtkIOImport import vtk3DSImporter

        filename = Path(filename).expanduser().resolve()
        if not Path(filename).is_file():
            raise FileNotFoundError(f'Unable to locate {filename}')

        # lazy import here to avoid importing unused modules
        importer = vtk3DSImporter()
        if pyvista.vtk_version_info < (9, 2, 2):  # pragma no cover
            importer.SetFileName(str(filename))
        else:
            importer.SetFileName(filename)
        importer.SetRenderWindow(self.render_window)
        importer.Update()

    def import_obj(self, filename, filename_mtl=None):
        """Import from .obj wavefront files.

        .. versionadded:: 0.44.0

        Parameters
        ----------
        filename : str | Path
            Path to the .obj file.

        filename_mtl : str, optional
            Path to the .mtl file.

        Examples
        --------
        >>> import pyvista as pv
        >>> from pyvista import examples
        >>> download_obj_file = examples.download_room_surface_mesh(
        ...     load=False
        ... )
        >>> pl = pv.Plotter()
        >>> pl.import_obj(download_obj_file)
        >>> pl.show()

        Import an .obj file with a texture.

        >>> from pathlib import Path
        >>> filename = examples.download_doorman(load=False)
        >>> pl = pv.Plotter()
        >>> pl.import_obj(filename)
        >>> pl.show(cpos="xy")
        """
        from vtkmodules.vtkIOImport import vtkOBJImporter

        filename = Path(filename).expanduser().resolve()
        if not filename.is_file():
            raise FileNotFoundError(f'Unable to locate {filename}')

        # lazy import here to avoid importing unused modules
        importer = vtkOBJImporter()
        importer.SetFileName(filename)
        filename_mtl = filename.with_suffix('.mtl')
        if filename_mtl.is_file():
            importer.SetFileNameMTL(filename_mtl)
            importer.SetTexturePath(filename_mtl.parents[0])
        importer.SetRenderWindow(self.render_window)
        importer.Update()

    def export_html(self, filename):
        """Export this plotter as an interactive scene to a HTML file.

        Parameters
        ----------
        filename : str | Path
            Path to export the html file to.

        Returns
        -------
        StringIO
            If filename is None, returns the HTML as a StringIO object.

        Notes
        -----
        You will need ``trame`` installed.

        Examples
        --------
        >>> import pyvista as pv
        >>> from pyvista import examples
        >>> mesh = examples.load_uniform()
        >>> pl = pv.Plotter(shape=(1, 2))
        >>> _ = pl.add_mesh(
        ...     mesh, scalars='Spatial Point Data', show_edges=True
        ... )
        >>> pl.subplot(0, 1)
        >>> _ = pl.add_mesh(
        ...     mesh, scalars='Spatial Cell Data', show_edges=True
        ... )
        >>> pl.export_html('pv.html')  # doctest:+SKIP

        """
        try:
            from trame_vtk.tools.vtksz2html import write_html
        except ImportError:  # pragma: no cover
            raise ImportError('Please install trame-vtk to export')

        data = self.export_vtksz(filename=None)
        buffer = io.StringIO()
        write_html(data, buffer)
        buffer.seek(0)

        if filename is None:
            return buffer

        filename = Path(filename)
        if filename.suffix != ".html":
            filename += '.html'

        # Move to final destination
        with Path(filename).open('w', encoding='utf-8') as f:
            f.write(buffer.read())
            return None

    def export_vtksz(self, filename='scene-export.vtksz', format='zip'):  # noqa: A002
        """Export this plotter as a VTK.js OfflineLocalView file.

        The exported file can be viewed with the OfflineLocalView viewer
        available at https://kitware.github.io/vtk-js/examples/OfflineLocalView.html

        Parameters
        ----------
        filename : str | Path, optional
            Path to export the file to. Defaults to ``'scene-export.vtksz'``.

        format : str, optional
            The format of the exported file. Defaults to ``'zip'``. Can be
            either ``'zip'`` or ``'json'``.

        Returns
        -------
        str
            The exported filename.

        """
        try:
            from pyvista.trame import PyVistaLocalView
            from pyvista.trame.jupyter import elegantly_launch
            from pyvista.trame.views import get_server
        except ImportError:  # pragma: no cover
            raise ImportError('Please install trame to export')

        # Ensure trame server is launched
        server = get_server(pyvista.global_theme.trame.jupyter_server_name)
        if not server.running:
            elegantly_launch(pyvista.global_theme.trame.jupyter_server_name)

        view = PyVistaLocalView(self, trame_server=server)

        content = view.export(format=format)

        view.release_resources()
        # Make sure callbacks are unregistered
        self._on_render_callbacks.remove(view._plotter_render_callback)

        if filename is None:
            return content

        with Path(filename).open('wb') as f:
            f.write(content)

        return filename

    def export_gltf(self, filename, inline_data=True, rotate_scene=True, save_normals=True):
        """Export the current rendering scene as a glTF file.

        Visit https://gltf-viewer.donmccurdy.com/ for an online viewer.

        See https://vtk.org/doc/nightly/html/classvtkGLTFExporter.html
        for limitations regarding the exporter.

        Parameters
        ----------
        filename : str
            Path to export the gltf file to.

        inline_data : bool, default: True
            Sets if the binary data be included in the json file as a
            base64 string.  When ``True``, only one file is exported.

        rotate_scene : bool, default: True
            Rotate scene to be compatible with the glTF specifications.

        save_normals : bool, default: True
            Saves the point array ``'Normals'`` as ``'NORMAL'`` in
            the outputted scene.

        Notes
        -----
        The VTK exporter only supports :class:`pyvista.PolyData` datasets. If
        the plotter contains any non-PolyData datasets, these will be converted
        in the plotter, leading to a copy of the data internally.

        Examples
        --------
        Output a simple point cloud represented as balls.

        >>> import numpy as np
        >>> import pyvista as pv
        >>> rng = np.random.default_rng(seed=0)
        >>> point_cloud = rng.random((100, 3))
        >>> pdata = pv.PolyData(point_cloud)
        >>> pdata['orig_sphere'] = np.arange(100)
        >>> sphere = pv.Sphere(radius=0.02)
        >>> pc = pdata.glyph(scale=False, geom=sphere, orient=False)
        >>> pl = pv.Plotter()
        >>> _ = pl.add_mesh(
        ...     pc,
        ...     cmap='reds',
        ...     smooth_shading=True,
        ...     show_scalar_bar=False,
        ... )
        >>> pl.export_gltf('balls.gltf')  # doctest:+SKIP
        >>> pl.show()

        Output the orientation plotter.

        >>> from pyvista import demos
        >>> pl = demos.orientation_plotter()
        >>> pl.export_gltf('orientation_plotter.gltf')  # doctest:+SKIP
        >>> pl.show()

        """
        if self.render_window is None:
            raise RuntimeError('This plotter has been closed and is unable to export the scene.')

        from vtkmodules.vtkIOExport import vtkGLTFExporter

        # rotate scene to gltf compatible view
        renamed_arrays = []  # any renamed normal arrays
        if rotate_scene:
            for renderer in self.renderers:
                for actor in renderer.actors.values():
                    if hasattr(actor, 'RotateX'):
                        actor.RotateX(-90)
                        actor.RotateZ(-90)

                    if save_normals:
                        try:
                            mapper = actor.GetMapper()
                            if mapper is None:
                                continue
                            dataset = mapper.dataset
                            if not isinstance(dataset, pyvista.PolyData):
                                warnings.warn(
                                    'Plotter contains non-PolyData datasets. These have been '
                                    'overwritten with PolyData surfaces and are internally '
                                    'copies of the original datasets.',
                                )

                                try:
                                    dataset = dataset.extract_surface()
                                    mapper.SetInputData(dataset)
                                except:  # pragma: no cover
                                    warnings.warn(
                                        'During gLTF export, failed to convert some '
                                        'datasets to PolyData. Exported scene will not have '
                                        'all datasets.',
                                    )

                            if 'Normals' in dataset.point_data:
                                # By default VTK uses the 'Normals' point data for normals
                                # but gLTF uses NORMAL.
                                point_data = dataset.GetPointData()
                                array = point_data.GetArray('Normals')
                                array.SetName('NORMAL')
                                renamed_arrays.append(array)

                        except:  # pragma: no cover
                            pass

        exporter = vtkGLTFExporter()
        exporter.SetRenderWindow(self.render_window)
        exporter.SetFileName(filename)
        exporter.SetInlineData(inline_data)
        exporter.SetSaveNormal(save_normals)
        exporter.Update()

        # rotate back if applicable
        if rotate_scene:
            for renderer in self.renderers:
                for actor in renderer.actors.values():
                    if hasattr(actor, 'RotateX'):
                        actor.RotateZ(90)
                        actor.RotateX(90)

        # revert any renamed arrays
        for array in renamed_arrays:
            array.SetName('Normals')

    def export_vrml(self, filename):
        """Export the current rendering scene as a VRML file.

        See `vtk.VRMLExporter <https://vtk.org/doc/nightly/html/classvtkVRMLExporter.html>`_
        for limitations regarding the exporter.

        Parameters
        ----------
        filename : str | Path
            Filename to export the scene to.

        Examples
        --------
        >>> import pyvista as pv
        >>> from pyvista import examples
        >>> pl = pv.Plotter()
        >>> _ = pl.add_mesh(examples.load_hexbeam())
        >>> pl.export_vrml("sample")  # doctest:+SKIP

        """
        from vtkmodules.vtkIOExport import vtkVRMLExporter

        if self.render_window is None:
            raise RuntimeError("This plotter has been closed and cannot be shown.")

        exporter = vtkVRMLExporter()
        exporter.SetFileName(filename)
        exporter.SetRenderWindow(self.render_window)
        exporter.Write()

    def enable_hidden_line_removal(self, all_renderers=True):
        """Enable hidden line removal.

        Wireframe geometry will be drawn using hidden line removal if
        the rendering engine supports it.

        Disable this with :func:`disable_hidden_line_removal
        <Plotter.disable_hidden_line_removal>`.

        Parameters
        ----------
        all_renderers : bool, default: True
            If ``True``, applies to all renderers in subplots. If
            ``False``, then only applies to the active renderer.

        Examples
        --------
        Create a side-by-side plotter and render a sphere in wireframe
        with hidden line removal enabled on the left and disabled on
        the right.

        >>> import pyvista as pv
        >>> sphere = pv.Sphere(theta_resolution=20, phi_resolution=20)
        >>> pl = pv.Plotter(shape=(1, 2))
        >>> _ = pl.add_mesh(sphere, line_width=3, style='wireframe')
        >>> _ = pl.add_text("With hidden line removal")
        >>> pl.enable_hidden_line_removal(all_renderers=False)
        >>> pl.subplot(0, 1)
        >>> pl.disable_hidden_line_removal(all_renderers=False)
        >>> _ = pl.add_mesh(sphere, line_width=3, style='wireframe')
        >>> _ = pl.add_text("Without hidden line removal")
        >>> pl.show()

        """
        if all_renderers:
            for renderer in self.renderers:
                renderer.enable_hidden_line_removal()
        else:
            self.renderer.enable_hidden_line_removal()

    def disable_hidden_line_removal(self, all_renderers=True):
        """Disable hidden line removal.

        Enable again with :func:`enable_hidden_line_removal
        <Plotter.enable_hidden_line_removal>`.

        Parameters
        ----------
        all_renderers : bool, default: True
            If ``True``, applies to all renderers in subplots. If
            ``False``, then only applies to the active renderer.

        Examples
        --------
        Enable and then disable hidden line removal.

        >>> import pyvista as pv
        >>> pl = pv.Plotter()
        >>> pl.enable_hidden_line_removal()
        >>> pl.disable_hidden_line_removal()

        """
        if all_renderers:
            for renderer in self.renderers:
                renderer.disable_hidden_line_removal()
        else:
            self.renderer.disable_hidden_line_removal()

    @property
    def scalar_bar(self):  # numpydoc ignore=RT01
        """First scalar bar (kept for backwards compatibility).

        Returns
        -------
        vtk.vtkScalarBarActor
            First scalar bar actor.

        """
        return next(iter(self.scalar_bars.values()))

    @property
    def scalar_bars(self):  # numpydoc ignore=RT01
        """Scalar bars.

        Returns
        -------
        pyvista.ScalarBars
            Scalar bar object.

        Examples
        --------
        >>> import pyvista as pv
        >>> sphere = pv.Sphere()
        >>> sphere['Data'] = sphere.points[:, 2]
        >>> plotter = pv.Plotter()
        >>> _ = plotter.add_mesh(sphere)
        >>> plotter.scalar_bars
        Scalar Bar Title     Interactive
        "Data"               False

        Select a scalar bar actor based on the title of the bar.

        >>> plotter.scalar_bars['Data']
        <vtkmodules.vtkRenderingAnnotation.vtkScalarBarActor(...) at ...>

        """
        return self._scalar_bars

    @property
    def _before_close_callback(self):
        """Return the cached function (expecting a reference)."""
        if self.__before_close_callback is not None:
            return self.__before_close_callback()
        return None

    @_before_close_callback.setter
    def _before_close_callback(self, func):
        """Store a weakref.ref of the function being called."""
        if func is not None:
            self.__before_close_callback = weakref.ref(func)
        else:
            self.__before_close_callback = None

    @property
    def shape(self) -> tuple[int] | tuple[int, int]:
        """Return the shape of the plotter.

        Returns
        -------
        tuple[int] | tuple[int, int]
            Shape of the plotter.

        Examples
        --------
        Return the plotter shape.

        >>> import pyvista as pv
        >>> plotter = pv.Plotter(shape=(2, 2))
        >>> plotter.shape
        (2, 2)

        """
        return self.renderers.shape

    @property
    def renderer(self):  # numpydoc ignore=RT01
        """Return the active renderer.

        Returns
        -------
        pyvista.Renderer
            Active render.

        Examples
        --------
        >>> import pyvista as pv
        >>> pl = pv.Plotter()
        >>> pl.renderer
        <Renderer(...) at ...>

        """
        return self.renderers.active_renderer

    def subplot(self, index_row, index_column=None):
        """Set the active subplot.

        Parameters
        ----------
        index_row : int
            Index of the subplot to activate along the rows.

        index_column : int, optional
            Index of the subplot to activate along the columns.

        Examples
        --------
        Create a 2 wide plot and set the background of right-hand plot
        to orange.  Add a cube to the left plot and a sphere to the
        right.

        >>> import pyvista as pv
        >>> pl = pv.Plotter(shape=(1, 2))
        >>> actor = pl.add_mesh(pv.Cube())
        >>> pl.subplot(0, 1)
        >>> actor = pl.add_mesh(pv.Sphere())
        >>> pl.set_background('orange', all_renderers=False)
        >>> pl.show()

        """
        self.renderers.set_active_renderer(index_row, index_column)

    @wraps(Renderer.add_ruler)
    def add_ruler(self, *args, **kwargs):  # numpydoc ignore=PR01,RT01
        """Wrap ``Renderer.add_ruler``."""
        return self.renderer.add_ruler(*args, **kwargs)

    @wraps(Renderer.add_legend_scale)
    def add_legend_scale(self, *args, **kwargs):  # numpydoc ignore=PR01,RT01
        """Wrap ``Renderer.add_legend_scale``."""
        return self.renderer.add_legend_scale(*args, **kwargs)

    @wraps(Renderer.add_legend)
    def add_legend(self, *args, **kwargs):  # numpydoc ignore=PR01,RT01
        """Wrap ``Renderer.add_legend``."""
        return self.renderer.add_legend(*args, **kwargs)

    @wraps(Renderer.remove_legend)
    def remove_legend(self, *args, **kwargs):  # numpydoc ignore=PR01,RT01
        """Wrap ``Renderer.remove_legend``."""
        return self.renderer.remove_legend(*args, **kwargs)

    @property
    def legend(self):  # numpydoc ignore=RT01
        """Legend actor.

        There can only be one legend actor per renderer.  If
        ``legend`` is ``None``, there is no legend actor.

        Returns
        -------
        vtk.vtkLegendBoxActor
            Legend actor.

        """
        return self.renderer.legend

    @wraps(Renderer.add_floor)
    def add_floor(self, *args, **kwargs):  # numpydoc ignore=PR01,RT01
        """Wrap ``Renderer.add_floor``."""
        return self.renderer.add_floor(*args, **kwargs)

    @wraps(Renderer.remove_floors)
    def remove_floors(self, *args, **kwargs):  # numpydoc ignore=PR01,RT01
        """Wrap ``Renderer.remove_floors``."""
        return self.renderer.remove_floors(*args, **kwargs)

    def enable_3_lights(self, only_active=False):
        """Enable 3-lights illumination.

        This will replace all pre-existing lights in the scene.

        Parameters
        ----------
        only_active : bool, default: False
            If ``True``, only change the active renderer. The default
            is that every renderer is affected.

        Examples
        --------
        >>> from pyvista import demos
        >>> pl = demos.orientation_plotter()
        >>> pl.enable_3_lights()
        >>> pl.show()

        Note how this varies from the default plotting.

        >>> pl = demos.orientation_plotter()
        >>> pl.show()

        """

        def _to_pos(elevation, azimuth):
            theta = azimuth * np.pi / 180.0
            phi = (90.0 - elevation) * np.pi / 180.0
            x = np.sin(theta) * np.sin(phi)
            y = np.cos(phi)
            z = np.cos(theta) * np.sin(phi)
            return x, y, z

        renderers = [self.renderer] if only_active else self.renderers
        for renderer in renderers:
            renderer.remove_all_lights()

        # Inspired from Mayavi's version of Raymond Maple 3-lights illumination
        intensities = [1, 0.6, 0.5]
        all_angles = [(45.0, 45.0), (-30.0, -60.0), (-30.0, 60.0)]
        for intensity, angles in zip(intensities, all_angles):
            light = pyvista.Light(light_type='camera light')
            light.intensity = intensity
            light.position = _to_pos(*angles)
            for renderer in renderers:
                renderer.add_light(light)

    def disable_3_lights(self):
        """Please use ``enable_lightkit``, this method has been deprecated."""
        from pyvista.core.errors import DeprecationError

        raise DeprecationError('DEPRECATED: Please use ``enable_lightkit``')

    def enable_lightkit(self, only_active=False):
        """Enable the default light-kit lighting.

        See:
        https://www.researchgate.net/publication/2926068_LightKit_A_lighting_system_for_effective_visualization

        This will replace all pre-existing lights in the renderer.

        Parameters
        ----------
        only_active : bool, default: False
            If ``True``, only change the active renderer. The default is that
            every renderer is affected.

        Examples
        --------
        Create a plotter without any lights and then enable the
        default light kit.

        >>> import pyvista as pv
        >>> pl = pv.Plotter(lighting=None)
        >>> pl.enable_lightkit()
        >>> actor = pl.add_mesh(pv.Cube(), show_edges=True)
        >>> pl.show()

        """
        renderers = [self.renderer] if only_active else self.renderers

        light_kit = _vtk.vtkLightKit()
        for renderer in renderers:
            renderer.remove_all_lights()
            # Use the renderer as a vtkLightKit parser.
            # Feed it the LightKit, pop off the vtkLights, put back
            # pyvista Lights. This is the price we must pay for using
            # inheritance rather than composition.
            light_kit.AddLightsToRenderer(renderer)
            vtk_lights = renderer.lights
            renderer.remove_all_lights()
            for vtk_light in vtk_lights:
                light = pyvista.Light.from_vtk(vtk_light)
                renderer.add_light(light)
            renderer.LightFollowCameraOn()

    def enable_anti_aliasing(self, aa_type='ssaa', multi_samples=None, all_renderers=True):
        """Enable anti-aliasing.

        This tends to make edges appear softer and less pixelated.

        Parameters
        ----------
        aa_type : str, default: "ssaa"
            Anti-aliasing type. See the notes below. One of the following:

            * ``"ssaa"`` - Super-Sample Anti-Aliasing
            * ``"msaa"`` - Multi-Sample Anti-Aliasing
            * ``"fxaa"`` - Fast Approximate Anti-Aliasing

        multi_samples : int, optional
            The number of multi-samples when ``aa_type`` is ``"msaa"``. Note
            that using this setting automatically enables this for all
            renderers. Defaults to the theme multi_samples.

        all_renderers : bool, default: True
            If ``True``, applies to all renderers in subplots. If ``False``,
            then only applies to the active renderer.

        Notes
        -----
        SSAA, or Super-Sample Anti-Aliasing is a brute force method of
        anti-aliasing. It results in the best image quality but comes at a
        tremendous resource cost. SSAA works by rendering the scene at a higher
        resolution. The final image is produced by downsampling the
        massive source image using an averaging filter. This acts as a low pass
        filter which removes the high frequency components that would cause
        jaggedness.

        MSAA, or Multi-Sample Anti-Aliasing is an optimization of SSAA that
        reduces the amount of pixel shader evaluations that need to be computed
        by focusing on overlapping regions of the scene. The result is
        anti-aliasing along edges that is on par with SSAA and less
        anti-aliasing along surfaces as these make up the bulk of SSAA
        computations. MSAA is substantially less computationally expensive than
        SSAA and results in comparable image quality.

        FXAA, or Fast Approximate Anti-Aliasing is an Anti-Aliasing technique
        that is performed entirely in post processing. FXAA operates on the
        rasterized image rather than the scene geometry. As a consequence,
        forcing FXAA or using FXAA incorrectly can result in the FXAA filter
        smoothing out parts of the visual overlay that are usually kept sharp
        for reasons of clarity as well as smoothing out textures. FXAA is
        inferior to MSAA but is almost free computationally and is thus
        desirable on low end platforms.

        Examples
        --------
        Enable super-sample anti-aliasing (SSAA).

        >>> import pyvista as pv
        >>> pl = pv.Plotter()
        >>> pl.enable_anti_aliasing('ssaa')
        >>> _ = pl.add_mesh(pv.Sphere(), show_edges=True)
        >>> pl.show()

        See :ref:`anti_aliasing_example` for a full example demonstrating
        VTK's anti-aliasing approaches.

        """
        # apply MSAA to entire render window
        if aa_type == 'msaa':
            if self.render_window is None:
                raise AttributeError('The render window has been closed.')
            if multi_samples is None:
                multi_samples = self._theme.multi_samples
            self.render_window.SetMultiSamples(multi_samples)
            return
        elif aa_type not in ['ssaa', 'fxaa']:
            raise ValueError(
                f'Invalid `aa_type` "{aa_type}". Should be either "fxaa", "ssaa", or "msaa"',
            )
        else:
            # disable MSAA as SSAA or FXAA is being enabled
            self.render_window.SetMultiSamples(0)

        if all_renderers:
            for renderer in self.renderers:
                renderer.enable_anti_aliasing(aa_type)
        else:
            self.renderer.enable_anti_aliasing(aa_type)

    def disable_anti_aliasing(self, all_renderers=True):
        """Disable anti-aliasing.

        Parameters
        ----------
        all_renderers : bool, default: True
            If ``True``, applies to all renderers in subplots. If ``False``,
            then only applies to the active renderer.

        Examples
        --------
        >>> import pyvista as pv
        >>> pl = pv.Plotter()
        >>> pl.disable_anti_aliasing()
        >>> _ = pl.add_mesh(pv.Sphere(), show_edges=True)
        >>> pl.show()

        See :ref:`anti_aliasing_example` for a full example demonstrating
        VTK's anti-aliasing approaches.

        """
        self.render_window.SetMultiSamples(0)

        if all_renderers:
            for renderer in self.renderers:
                renderer.disable_anti_aliasing()
        else:
            self.renderer.disable_anti_aliasing()

    @wraps(Renderer.set_focus)
    def set_focus(self, *args, render=True, **kwargs):  # numpydoc ignore=PR01,RT01
        """Wrap ``Renderer.set_focus``."""
        log.debug('set_focus: %s, %s', str(args), str(kwargs))
        self.renderer.set_focus(*args, **kwargs)
        if render:
            self.render()

    @wraps(Renderer.set_position)
    def set_position(self, *args, render=True, **kwargs):  # numpydoc ignore=PR01,RT01
        """Wrap ``Renderer.set_position``."""
        self.renderer.set_position(*args, **kwargs)
        if render:
            self.render()

    @wraps(Renderer.set_viewup)
    def set_viewup(self, *args, render=True, **kwargs):  # numpydoc ignore=PR01,RT01
        """Wrap ``Renderer.set_viewup``."""
        self.renderer.set_viewup(*args, **kwargs)
        if render:
            self.render()

    @wraps(Renderer.add_orientation_widget)
    def add_orientation_widget(self, *args, **kwargs):  # numpydoc ignore=PR01,RT01
        """Wrap ``Renderer.add_orientation_widget``."""
        return self.renderer.add_orientation_widget(*args, **kwargs)

    @wraps(Renderer.add_axes)
    def add_axes(self, *args, **kwargs):  # numpydoc ignore=PR01,RT01
        """Wrap ``Renderer.add_axes``."""
        return self.renderer.add_axes(*args, **kwargs)

    @wraps(Renderer.add_box_axes)
    def add_box_axes(self, *args, **kwargs):  # numpydoc ignore=PR01,RT01
        """Wrap ``Renderer.add_box_axes``."""
        return self.renderer.add_box_axes(*args, **kwargs)

    @wraps(Renderer.add_north_arrow_widget)
    def add_north_arrow_widget(self, *args, **kwargs):  # numpydoc ignore=PR01,RT01
        """Wrap ``Renderer.add_north_arrow_widget``."""
        return self.renderer.add_north_arrow_widget(*args, **kwargs)

    @wraps(Renderer.hide_axes)
    def hide_axes(self, *args, **kwargs):  # numpydoc ignore=PR01,RT01
        """Wrap ``Renderer.hide_axes``."""
        return self.renderer.hide_axes(*args, **kwargs)

    @wraps(Renderer.show_axes)
    def show_axes(self, *args, **kwargs):  # numpydoc ignore=PR01,RT01
        """Wrap ``Renderer.show_axes``."""
        return self.renderer.show_axes(*args, **kwargs)

    @wraps(Renderer.update_bounds_axes)
    def update_bounds_axes(self, *args, **kwargs):  # numpydoc ignore=PR01,RT01
        """Wrap ``Renderer.update_bounds_axes``."""
        return self.renderer.update_bounds_axes(*args, **kwargs)

    @wraps(Renderer.add_chart)
    def add_chart(self, *args, **kwargs):  # numpydoc ignore=PR01,RT01
        """Wrap ``Renderer.add_chart``."""
        return self.renderer.add_chart(*args, **kwargs)

    @wraps(Renderer.remove_chart)
    def remove_chart(self, *args, **kwargs):  # numpydoc ignore=PR01,RT01
        """Wrap ``Renderer.remove_chart``."""
        return self.renderer.remove_chart(*args, **kwargs)

    @wraps(Renderers.set_chart_interaction)
    def set_chart_interaction(self, *args, **kwargs):  # numpydoc ignore=PR01,RT01
        """Wrap ``Renderers.set_chart_interaction``."""
        return self.renderers.set_chart_interaction(*args, **kwargs)

    @wraps(Renderer.add_actor)
    def add_actor(self, *args, **kwargs):  # numpydoc ignore=PR01,RT01
        """Wrap ``Renderer.add_actor``."""
        return self.renderer.add_actor(*args, **kwargs)

    @wraps(Renderer.enable_parallel_projection)
    def enable_parallel_projection(self, *args, **kwargs):  # numpydoc ignore=PR01,RT01
        """Wrap ``Renderer.enable_parallel_projection``."""
        return self.renderer.enable_parallel_projection(*args, **kwargs)

    @wraps(Renderer.disable_parallel_projection)
    def disable_parallel_projection(self, *args, **kwargs):  # numpydoc ignore=PR01,RT01
        """Wrap ``Renderer.disable_parallel_projection``."""
        return self.renderer.disable_parallel_projection(*args, **kwargs)

    @wraps(Renderer.enable_ssao)
    def enable_ssao(self, *args, **kwargs):  # numpydoc ignore=PR01,RT01
        """Wrap ``Renderer.enable_ssao``."""
        return self.renderer.enable_ssao(*args, **kwargs)

    @wraps(Renderer.disable_ssao)
    def disable_ssao(self, *args, **kwargs):  # numpydoc ignore=PR01,RT01
        """Wrap ``Renderer.disable_ssao``."""
        return self.renderer.disable_ssao(*args, **kwargs)

    @wraps(Renderer.enable_shadows)
    def enable_shadows(self, *args, **kwargs):  # numpydoc ignore=PR01,RT01
        """Wrap ``Renderer.enable_shadows``."""
        return self.renderer.enable_shadows(*args, **kwargs)

    @wraps(Renderer.disable_shadows)
    def disable_shadows(self, *args, **kwargs):  # numpydoc ignore=PR01,RT01
        """Wrap ``Renderer.disable_shadows``."""
        return self.renderer.disable_shadows(*args, **kwargs)

    @property
    def parallel_projection(self):  # numpydoc ignore=RT01
        """Return or set parallel projection state of active render window."""
        return self.renderer.parallel_projection

    @parallel_projection.setter
    def parallel_projection(self, state):  # numpydoc ignore=GL08
        self.renderer.parallel_projection = state

    @property
    def parallel_scale(self):  # numpydoc ignore=RT01
        """Return or set parallel scale of active render window."""
        return self.renderer.parallel_scale

    @parallel_scale.setter
    def parallel_scale(self, value):  # numpydoc ignore=GL08
        self.renderer.parallel_scale = value

    @wraps(Renderer.add_axes_at_origin)
    def add_axes_at_origin(self, *args, **kwargs):  # numpydoc ignore=PR01,RT01
        """Wrap ``Renderer.add_axes_at_origin``."""
        return self.renderer.add_axes_at_origin(*args, **kwargs)

    @wraps(Renderer.show_bounds)
    def show_bounds(self, *args, **kwargs):  # numpydoc ignore=PR01,RT01
        """Wrap ``Renderer.show_bounds``."""
        return self.renderer.show_bounds(*args, **kwargs)

    @wraps(Renderer.add_bounding_box)
    def add_bounding_box(self, *args, **kwargs):  # numpydoc ignore=PR01,RT01
        """Wrap ``Renderer.add_bounding_box``."""
        return self.renderer.add_bounding_box(*args, **kwargs)

    @wraps(Renderer.remove_bounding_box)
    def remove_bounding_box(self, *args, **kwargs):  # numpydoc ignore=PR01,RT01
        """Wrap ``Renderer.remove_bounding_box``."""
        return self.renderer.remove_bounding_box(*args, **kwargs)

    @wraps(Renderer.remove_bounds_axes)
    def remove_bounds_axes(self, *args, **kwargs):  # numpydoc ignore=PR01,RT01
        """Wrap ``Renderer.remove_bounds_axes``."""
        return self.renderer.remove_bounds_axes(*args, **kwargs)

    @wraps(Renderer.show_grid)
    def show_grid(self, *args, **kwargs):  # numpydoc ignore=PR01,RT01
        """Wrap ``Renderer.show_grid``."""
        return self.renderer.show_grid(*args, **kwargs)

    @wraps(Renderer.set_scale)
    def set_scale(self, *args, **kwargs):  # numpydoc ignore=PR01,RT01
        """Wrap ``Renderer.set_scale``."""
        return self.renderer.set_scale(*args, **kwargs)

    @wraps(Renderer.enable_depth_of_field)
    def enable_depth_of_field(self, *args, **kwargs):  # numpydoc ignore=PR01,RT01
        """Wrap ``Renderer.enable_depth_of_field``."""
        return self.renderer.enable_depth_of_field(*args, **kwargs)

    @wraps(Renderer.disable_depth_of_field)
    def disable_depth_of_field(self, *args, **kwargs):  # numpydoc ignore=PR01,RT01
        """Wrap ``Renderer.disable_depth_of_field``."""
        return self.renderer.disable_depth_of_field(*args, **kwargs)

    @wraps(Renderer.add_blurring)
    def add_blurring(self, *args, **kwargs):  # numpydoc ignore=PR01,RT01
        """Wrap ``Renderer.add_blurring``."""
        return self.renderer.add_blurring(*args, **kwargs)

    @wraps(Renderer.remove_blurring)
    def remove_blurring(self, *args, **kwargs):  # numpydoc ignore=PR01,RT01
        """Wrap ``Renderer.remove_blurring``."""
        return self.renderer.remove_blurring(*args, **kwargs)

    @wraps(Renderer.enable_eye_dome_lighting)
    def enable_eye_dome_lighting(self, *args, **kwargs):  # numpydoc ignore=PR01,RT01
        """Wrap ``Renderer.enable_eye_dome_lighting``."""
        return self.renderer.enable_eye_dome_lighting(*args, **kwargs)

    @wraps(Renderer.disable_eye_dome_lighting)
    def disable_eye_dome_lighting(self, *args, **kwargs):  # numpydoc ignore=PR01,RT01
        """Wrap ``Renderer.disable_eye_dome_lighting``."""
        self.renderer.disable_eye_dome_lighting(*args, **kwargs)

    @wraps(Renderer.reset_camera)
    def reset_camera(self, *args, **kwargs):  # numpydoc ignore=PR01,RT01
        """Wrap ``Renderer.reset_camera``."""
        self.renderer.reset_camera(*args, **kwargs)
        self.render()

    @wraps(Renderer.isometric_view)
    def isometric_view(self, *args, **kwargs):  # numpydoc ignore=PR01,RT01
        """Wrap ``Renderer.isometric_view``."""
        self.renderer.isometric_view(*args, **kwargs)

    @wraps(Renderer.view_isometric)
    def view_isometric(self, *args, **kwarg):  # numpydoc ignore=PR01,RT01
        """Wrap ``Renderer.view_isometric``."""
        self.renderer.view_isometric(*args, **kwarg)

    @wraps(Renderer.view_vector)
    def view_vector(self, *args, **kwarg):  # numpydoc ignore=PR01,RT01
        """Wrap ``Renderer.view_vector``."""
        self.renderer.view_vector(*args, **kwarg)

    @wraps(Renderer.view_xy)
    def view_xy(self, *args, **kwarg):  # numpydoc ignore=PR01,RT01
        """Wrap ``Renderer.view_xy``."""
        self.renderer.view_xy(*args, **kwarg)

    @wraps(Renderer.view_yx)
    def view_yx(self, *args, **kwarg):  # numpydoc ignore=PR01,RT01
        """Wrap ``Renderer.view_yx``."""
        self.renderer.view_yx(*args, **kwarg)

    @wraps(Renderer.view_xz)
    def view_xz(self, *args, **kwarg):  # numpydoc ignore=PR01,RT01
        """Wrap ``Renderer.view_xz``."""
        self.renderer.view_xz(*args, **kwarg)

    @wraps(Renderer.view_zx)
    def view_zx(self, *args, **kwarg):  # numpydoc ignore=PR01,RT01
        """Wrap ``Renderer.view_zx``."""
        self.renderer.view_zx(*args, **kwarg)

    @wraps(Renderer.view_yz)
    def view_yz(self, *args, **kwarg):  # numpydoc ignore=PR01,RT01
        """Wrap ``Renderer.view_yz``."""
        self.renderer.view_yz(*args, **kwarg)

    @wraps(Renderer.view_zy)
    def view_zy(self, *args, **kwarg):  # numpydoc ignore=PR01,RT01
        """Wrap ``Renderer.view_zy``."""
        self.renderer.view_zy(*args, **kwarg)

    @wraps(Renderer.disable)
    def disable(self, *args, **kwarg):  # numpydoc ignore=PR01,RT01
        """Wrap ``Renderer.disable``."""
        self.renderer.disable(*args, **kwarg)

    @wraps(Renderer.enable)
    def enable(self, *args, **kwarg):  # numpydoc ignore=PR01,RT01
        """Wrap ``Renderer.enable``."""
        self.renderer.enable(*args, **kwarg)

    @wraps(Renderer.enable_depth_peeling)
    def enable_depth_peeling(self, *args, **kwargs):  # numpydoc ignore=PR01,RT01
        """Wrap ``Renderer.enable_depth_peeling``."""
        if self.render_window is not None:
            result = self.renderer.enable_depth_peeling(*args, **kwargs)
            if result:
                self.render_window.AlphaBitPlanesOn()
            return result
        return None  # pragma: no cover

    @wraps(Renderer.disable_depth_peeling)
    def disable_depth_peeling(self):  # numpydoc ignore=PR01,RT01
        """Wrap ``Renderer.disable_depth_peeling``."""
        if self.render_window is not None:
            self.render_window.AlphaBitPlanesOff()
            return self.renderer.disable_depth_peeling()
        return None  # pragma: no cover

    @wraps(Renderer.get_default_cam_pos)
    def get_default_cam_pos(self, *args, **kwargs):  # numpydoc ignore=PR01,RT01
        """Wrap ``Renderer.get_default_cam_pos``."""
        return self.renderer.get_default_cam_pos(*args, **kwargs)

    @wraps(Renderer.remove_actor)
    def remove_actor(self, *args, **kwargs):  # numpydoc ignore=PR01,RT01
        """Wrap ``Renderer.remove_actor``."""
        for renderer in self.renderers:
            renderer.remove_actor(*args, **kwargs)
        return True

    @wraps(Renderer.set_environment_texture)
    def set_environment_texture(self, *args, **kwargs):  # numpydoc ignore=PR01,RT01
        """Wrap ``Renderer.set_environment_texture``."""
        return self.renderer.set_environment_texture(*args, **kwargs)

    @wraps(Renderer.remove_environment_texture)
    def remove_environment_texture(self, *args, **kwargs):  # numpydoc ignore=PR01,RT01
        """Wrap ``Renderer.remove_environment_texture``."""
        return self.renderer.remove_environment_texture(*args, **kwargs)

    #### Properties from Renderer ####

    @property
    def actors(self):  # numpydoc ignore=RT01
        """Return the actors of the active renderer.

        Returns
        -------
        dict
            Dictionary of active actors.

        """
        return self.renderer.actors

    @property
    def camera(self):  # numpydoc ignore=RT01
        """Return the active camera of the active renderer.

        Returns
        -------
        pyvista.Camera
            Camera from the active renderer.

        """
        if not self.renderer.camera.is_set:
            self.camera_position = self.get_default_cam_pos()
            self.reset_camera()
            self.renderer.camera.is_set = True
        return self.renderer.camera

    @camera.setter
    def camera(self, camera):  # numpydoc ignore=GL08
        self.renderer.camera = camera

    @property
    def camera_set(self):  # numpydoc ignore=RT01
        """Return or set if the camera of the active renderer has been set."""
        return self.renderer.camera.is_set

    @camera_set.setter
    def camera_set(self, is_set):  # numpydoc ignore=GL08
        self.renderer.camera.is_set = is_set

    @property
    def bounds(self) -> BoundsLike:  # numpydoc ignore=RT01
        """Return the bounds of the active renderer.

        Returns
        -------
        tuple[numpy.float64, numpy.float64, numpy.float64, numpy.float64, numpy.float64, numpy.float64]
            Bounds of the active renderer.

        Examples
        --------
        >>> import pyvista as pv
        >>> pl = pv.Plotter()
        >>> _ = pl.add_mesh(pv.Cube())
        >>> pl.bounds
        (-0.5, 0.5, -0.5, 0.5, -0.5, 0.5)

        """
        return self.renderer.bounds

    @property
    def length(self):  # numpydoc ignore=RT01
        """Return the length of the diagonal of the bounding box of the scene."""
        return self.renderer.length

    @property
    def center(self) -> tuple[float, float, float]:
        """Return the center of the active renderer.

        Returns
        -------
        list[numpy.float64, numpy.float64, numpy.float64]
            Center of the active renderer.

        Examples
        --------
        >>> import pyvista as pv
        >>> pl = pv.Plotter()
        >>> _ = pl.add_mesh(pv.Cube())
        >>> pl.center
        (0.0, 0.0, 0.0)

        """
        return self.renderer.center

    @property
    def _scalar_bar_slots(self):
        """Return the scalar bar slots of the active renderer."""
        return self.renderer._scalar_bar_slots

    @_scalar_bar_slots.setter
    def _scalar_bar_slots(self, value):
        """Set the scalar bar slots of the active renderer."""
        self.renderer._scalar_bar_slots = value

    @property
    def _scalar_bar_slot_lookup(self):
        """Return the scalar bar slot lookup of the active renderer."""
        return self.renderer._scalar_bar_slot_lookup

    @_scalar_bar_slot_lookup.setter
    def _scalar_bar_slot_lookup(self, value):
        self.renderer._scalar_bar_slot_lookup = value

    @property
    def scale(self):  # numpydoc ignore=RT01
        """Return the scaling of the active renderer."""
        return self.renderer.scale

    @scale.setter
    def scale(self, scale):  # numpydoc ignore=GL08
        self.renderer.set_scale(*scale)

    @property
    def camera_position(self):  # numpydoc ignore=RT01
        """Return camera position of the active render window.

        Examples
        --------
        Return camera's position and then reposition it via a list of tuples.

        >>> import pyvista as pv
        >>> from pyvista import examples
        >>> mesh = examples.download_bunny_coarse()
        >>> pl = pv.Plotter()
        >>> _ = pl.add_mesh(mesh, show_edges=True, reset_camera=True)
        >>> pl.camera_position
        [(0.02430, 0.0336, 0.9446),
         (0.02430, 0.0336, -0.02225),
         (0.0, 1.0, 0.0)]
        >>> pl.camera_position = [
        ...     (0.3914, 0.4542, 0.7670),
        ...     (0.0243, 0.0336, -0.0222),
        ...     (-0.2148, 0.8998, -0.3796),
        ... ]
        >>> pl.show()

        Set the camera position using a string and look at the ``'xy'`` plane.

        >>> pl = pv.Plotter()
        >>> _ = pl.add_mesh(mesh, show_edges=True)
        >>> pl.camera_position = 'xy'
        >>> pl.show()

        Set the camera position using a string and look at the ``'zy'`` plane.

        >>> pl = pv.Plotter()
        >>> _ = pl.add_mesh(mesh, show_edges=True)
        >>> pl.camera_position = 'zy'
        >>> pl.show()

        For more examples, see :ref:`cameras_api`.

        """
        return self.renderer.camera_position

    @camera_position.setter
    def camera_position(self, camera_location):  # numpydoc ignore=GL08
        self.renderer.camera_position = camera_location

    @property
    def background_color(self):  # numpydoc ignore=RT01
        """Return the background color of the active render window.

        Examples
        --------
        Set the background color to ``"pink"`` and plot it.

        >>> import pyvista as pv
        >>> pl = pv.Plotter()
        >>> _ = pl.add_mesh(pv.Cube(), show_edges=True)
        >>> pl.background_color = "pink"
        >>> pl.background_color
        Color(name='pink', hex='#ffc0cbff', opacity=255)
        >>> pl.show()

        """
        return self.renderers.active_renderer.background_color

    @background_color.setter
    def background_color(self, color):  # numpydoc ignore=GL08
        self.set_background(color)

    @property
    def window_size(self):  # numpydoc ignore=RT01
        """Return the render window size in ``(width, height)``.

        Examples
        --------
        Change the window size from ``200 x 200`` to ``400 x 400``.

        >>> import pyvista as pv
        >>> pl = pv.Plotter(window_size=[200, 200])
        >>> pl.window_size
        [200, 200]
        >>> pl.window_size = [400, 400]
        >>> pl.window_size
        [400, 400]

        """
        return list(self.render_window.GetSize())

    @window_size.setter
    def window_size(self, window_size):  # numpydoc ignore=GL08
        self.render_window.SetSize(window_size[0], window_size[1])
        self._window_size_unset = False
        self.render()

    @contextmanager
    def window_size_context(self, window_size=None):
        """Set the render window size in an isolated context.

        Parameters
        ----------
        window_size : sequence[int], optional
            Window size in pixels.  Defaults to :attr:`pyvista.Plotter.window_size`.

        Examples
        --------
        Take two different screenshots with two different window sizes.

        >>> import pyvista as pv
        >>> pl = pv.Plotter(off_screen=True)
        >>> _ = pl.add_mesh(pv.Cube())
        >>> with pl.window_size_context((400, 400)):
        ...     pl.screenshot('/tmp/small_screenshot.png')  # doctest:+SKIP
        ...
        >>> with pl.window_size_context((1000, 1000)):
        ...     pl.screenshot('/tmp/big_screenshot.png')  # doctest:+SKIP
        ...

        """
        # No op if not set
        if window_size is None:
            yield self
            return
        # If render window is not current
        if self.render_window is None:
            warnings.warn('Attempting to set window_size on an unavailable render widow.')
            yield self
            return
        size_before = self.window_size
        if window_size is not None:
            self.window_size = window_size
        try:
            yield self
        finally:
            # Sometimes the render window is destroyed within the context
            # and re-setting will fail
            if self.render_window is not None:
                self.window_size = size_before

    @property
    def image_depth(self):  # numpydoc ignore=RT01
        """Return a depth image representing current render window.

        Helper attribute for ``get_image_depth``.

        """
        return self.get_image_depth()

    def _check_rendered(self):
        """Check if the render window has been shown and raise an exception if not."""
        if not self._rendered:
            raise AttributeError(
                '\nThis plotter has not yet been set up and rendered '
                'with ``show()``.\n'
                'Consider setting ``off_screen=True`` '
                'for off screen rendering.\n',
            )

    def _check_has_ren_win(self):
        """Check if render window attribute exists and raise an exception if not."""
        if self.render_window is None:
            raise RenderWindowUnavailable('Render window is not available.')
        if not self.render_window.IsCurrent():
            raise RenderWindowUnavailable('Render window is not current.')

    def _make_render_window_current(self):
        if self.render_window is None:
            raise RenderWindowUnavailable('Render window is not available.')
        self.render_window.MakeCurrent()  # pragma: no cover

    @property
    def image(self):  # numpydoc ignore=RT01
        """Return an image array of current render window.

        Returns
        -------
        pyvista.pyvista_ndarray
            Image array of current render window.

        Examples
        --------
        >>> import pyvista as pv
        >>> pl = pv.Plotter(off_screen=True)
        >>> _ = pl.add_mesh(pv.Cube())
        >>> pl.show()
        >>> pl.image  # doctest:+SKIP

        """
        if self.render_window is None and self.last_image is not None:
            return self.last_image

        self._check_rendered()
        self._check_has_ren_win()

        data = image_from_window(self.render_window, scale=self.image_scale)
        if self.image_transparent_background:
            return data

        # ignore alpha channel
        return data[:, :, :-1]

    @property
    def image_scale(self) -> int:  # numpydoc ignore=RT01
        """Get or set the scale factor when saving a screenshot.

        This will scale up the screenshots taken of the render window to save a
        higher resolution image than what is rendered on screen.

        Image sizes will be the :py:attr:`window_size
        <pyvista.Plotter.window_size>` multiplied by this scale factor.

        Returns
        -------
        int
            Image scale factor.

        Examples
        --------
        Double the resolution of a screenshot.

        >>> import pyvista as pv
        >>> pl = pv.Plotter()
        >>> _ = pl.add_mesh(pv.Sphere())
        >>> pl.image_scale = 2
        >>> pl.screenshot('screenshot.png')  # doctest:+SKIP

        Set the image scale from ``Plotter``.

        >>> import pyvista as pv
        >>> pl = pv.Plotter(image_scale=2)
        >>> _ = pl.add_mesh(pv.Sphere())
        >>> pl.screenshot('screenshot.png')  # doctest:+SKIP

        """
        return self._image_scale

    @image_scale.setter
    def image_scale(self, value: int):  # numpydoc ignore=GL08
        value = int(value)
        if value < 1:
            raise ValueError('Scale factor must be a positive integer.')
        self._image_scale = value

    @contextmanager
    def image_scale_context(self, scale: int | None = None):
        """Set the image scale in an isolated context.

        Parameters
        ----------
        scale : int, optional
            Integer scale factor.  Defaults to :attr:`pyvista.Plotter.image_scale`.

        """
        scale_before = self.image_scale
        if scale is not None:
            self.image_scale = scale
        try:
            yield self
        finally:
            self.image_scale = scale_before

    def render(self):
        """Render the main window.

        Will not render until ``show`` has been called.

        Any render callbacks added with
        :func:`add_on_render_callback() <pyvista.Plotter.add_on_render_callback>`
        and the ``render_event=False`` option set will still execute on any call.
        """
        if self.render_window is not None and not self._first_time and not self._suppress_rendering:
            log.debug('Rendering')
            self.renderers.on_plotter_render()
            self.render_window.Render()
            self._rendered = True
        for callback in self._on_render_callbacks:
            callback(self)

    def add_on_render_callback(self, callback, render_event=False):
        """Add a method to be called post-render.

        Parameters
        ----------
        callback : callable
            The callback method to run post-render. This takes a single
            argument which is the plotter object.

        render_event : bool, default: False
            If ``True``, associate with all VTK RenderEvents. Otherwise, the
            callback is only handled on a successful ``render()`` from the
            PyVista plotter directly.

        """
        if render_event:
            for renderer in self.renderers:
                renderer.AddObserver(_vtk.vtkCommand.RenderEvent, lambda *args: callback(self))
        else:
            self._on_render_callbacks.add(callback)

    def clear_on_render_callbacks(self):
        """Clear all callback methods previously registered with ``render()``."""
        for renderer in self.renderers:
            renderer.RemoveObservers(_vtk.vtkCommand.RenderEvent)
        self._on_render_callbacks = set()

    @wraps(RenderWindowInteractor.add_key_event)
    def add_key_event(self, *args, **kwargs):  # numpydoc ignore=PR01,RT01
        """Wrap RenderWindowInteractor.add_key_event."""
        if hasattr(self, 'iren'):
            self.iren.add_key_event(*args, **kwargs)

    @wraps(RenderWindowInteractor.add_timer_event)
    def add_timer_event(self, *args, **kwargs):  # numpydoc ignore=PR01,RT01
        """Wrap RenderWindowInteractor.add_timer_event."""
        if hasattr(self, 'iren'):
            self.iren.add_timer_event(*args, **kwargs)

    @wraps(RenderWindowInteractor.clear_events_for_key)
    def clear_events_for_key(self, *args, **kwargs):  # numpydoc ignore=PR01,RT01
        """Wrap RenderWindowInteractor.clear_events_for_key."""
        if hasattr(self, 'iren'):
            self.iren.clear_events_for_key(*args, **kwargs)

    def store_mouse_position(self, *args):
        """Store mouse position."""
        if not hasattr(self, "iren"):
            raise AttributeError("This plotting window is not interactive.")
        self.mouse_position = self.iren.get_event_position()

    def store_click_position(self, *args):
        """Store click position in viewport coordinates."""
        if not hasattr(self, "iren"):
            raise AttributeError("This plotting window is not interactive.")
        self.click_position = self.iren.get_event_position()
        self.mouse_position = self.click_position

    def track_mouse_position(self):
        """Keep track of the mouse position.

        This will potentially slow down the interactor. No callbacks
        supported here - use
        :func:`pyvista.Plotter.track_click_position` instead.

        """
        self.iren.track_mouse_position(self.store_mouse_position)

    def untrack_mouse_position(self):
        """Stop tracking the mouse position."""
        self.iren.untrack_mouse_position()

    @wraps(RenderWindowInteractor.track_click_position)
    def track_click_position(self, *args, **kwargs):  # numpydoc ignore=PR01,RT01
        """Wrap RenderWindowInteractor.track_click_position."""
        self.iren.track_click_position(*args, **kwargs)

    @wraps(RenderWindowInteractor.untrack_click_position)
    def untrack_click_position(self, *args, **kwargs):  # numpydoc ignore=PR01,RT01
        """Stop tracking the click position."""
        self.iren.untrack_click_position(*args, **kwargs)

    @property
    def pickable_actors(self):  # numpydoc ignore=RT01
        """Return or set the pickable actors.

        When setting, this will be the list of actors to make
        pickable. All actors not in the list will be made unpickable.
        If ``actors`` is ``None``, all actors will be made unpickable.

        Returns
        -------
        list[pyvista.Actor]
            List of actors.

        Examples
        --------
        Add two actors to a :class:`pyvista.Plotter`, make one
        pickable, and then list the pickable actors.

        >>> import pyvista as pv
        >>> pl = pv.Plotter()
        >>> sphere_actor = pl.add_mesh(pv.Sphere())
        >>> cube_actor = pl.add_mesh(
        ...     pv.Cube(), pickable=False, style='wireframe'
        ... )
        >>> len(pl.pickable_actors)
        1

        Set the pickable actors to both actors.

        >>> pl.pickable_actors = [sphere_actor, cube_actor]
        >>> len(pl.pickable_actors)
        2

        Set the pickable actors to ``None``.

        >>> pl.pickable_actors = None
        >>> len(pl.pickable_actors)
        0

        """
        return [
            actor
            for renderer in self.renderers
            for actor in renderer.actors.values()
            if actor.GetPickable()
        ]

    @pickable_actors.setter
    def pickable_actors(self, actors=None):  # numpydoc ignore=GL08
        actors = [] if actors is None else actors
        if isinstance(actors, _vtk.vtkActor):
            actors = [actors]

        if not all(isinstance(actor, _vtk.vtkActor) for actor in actors):
            raise TypeError(
                f'Expected a vtkActor instance or a list of vtkActors, got '
                f'{[type(actor) for actor in actors]} instead.',
            )

        for renderer in self.renderers:
            for actor in renderer.actors.values():
                actor.SetPickable(actor in actors)

    def _prep_for_close(self):
        """Make sure a screenshot is acquired before closing.

        This doesn't actually close anything. It just preps the plotter for
        closing.
        """
        # Grab screenshot right before renderer closes
        self.last_image = self.screenshot(True, return_img=True)
        self.last_image_depth = self.get_image_depth()

    def increment_point_size_and_line_width(self, increment):
        """Increment point size and line width of all actors.

        For every actor in the scene, increment both its point size
        and line width by the given value.

        Parameters
        ----------
        increment : float
            Amount to increment point size and line width.

        """
        for renderer in self.renderers:
            for actor in renderer._actors.values():
                if hasattr(actor, "GetProperty"):
                    prop = actor.GetProperty()
                    if hasattr(prop, "SetPointSize"):
                        prop.SetPointSize(prop.GetPointSize() + increment)
                    if hasattr(prop, "SetLineWidth"):
                        prop.SetLineWidth(prop.GetLineWidth() + increment)
        self.render()

    def zoom_camera(self, value):
        """Zoom of the camera and render.

        Parameters
        ----------
        value : float or str
            Zoom of the camera. If a float, must be greater than 0. Otherwise,
            if a string, must be ``"tight"``. If tight, the plot will be zoomed
            such that the actors fill the entire viewport.

        """
        self.camera.zoom(value)
        self.render()

    def reset_key_events(self):
        """Reset all of the key press events to their defaults."""
        if not hasattr(self, 'iren'):
            return

        self.iren.clear_key_event_callbacks()

        self.add_key_event('q', self._prep_for_close)  # Add no matter what
        b_left_down_callback = lambda: self.iren.add_observer(
            'LeftButtonPressEvent',
            self.left_button_down,
        )
        self.add_key_event('b', b_left_down_callback)
        self.add_key_event('v', lambda: self.isometric_view_interactive())
        self.add_key_event('C', lambda: self.enable_cell_picking())
        self.add_key_event('Up', lambda: self.zoom_camera(1.05))
        self.add_key_event('Down', lambda: self.zoom_camera(0.95))
        self.add_key_event('plus', lambda: self.increment_point_size_and_line_width(1))
        self.add_key_event('minus', lambda: self.increment_point_size_and_line_width(-1))

    @wraps(RenderWindowInteractor.key_press_event)
    def key_press_event(self, *args, **kwargs):  # numpydoc ignore=PR01,RT01
        """Wrap RenderWindowInteractor.key_press_event."""
        self.iren.key_press_event(*args, **kwargs)

    def left_button_down(self, *args):
        """Register the event for a left button down click."""
        if hasattr(self.render_window, 'GetOffScreenFramebuffer'):
            if not self.render_window.GetOffScreenFramebuffer().GetFBOIndex():
                # must raise a runtime error as this causes a segfault on VTK9
                raise ValueError('Invoking helper with no framebuffer')
        # Get 2D click location on window
        click_pos = self.iren.get_event_position()

        # Get corresponding click location in the 3D plot
        picker = _vtk.vtkWorldPointPicker()
        picker.Pick(click_pos[0], click_pos[1], 0, self.renderer)
        self.pickpoint = np.asarray(picker.GetPickPosition()).reshape((-1, 3))
        if np.any(np.isnan(self.pickpoint)):
            self.pickpoint[:] = 0

    @wraps(RenderWindowInteractor.enable_trackball_style)
    def enable_trackball_style(self):  # numpydoc ignore=PR01,RT01
        """Wrap RenderWindowInteractor.enable_trackball_style."""
        self.iren.enable_trackball_style()

    @wraps(RenderWindowInteractor.enable_custom_trackball_style)
    def enable_custom_trackball_style(self, *args, **kwargs):  # numpydoc ignore=PR01,RT01
        """Wrap RenderWindowInteractor.enable_custom_trackball_style."""
        self.iren.enable_custom_trackball_style(*args, **kwargs)

    @wraps(RenderWindowInteractor.enable_trackball_actor_style)
    def enable_trackball_actor_style(self):  # numpydoc ignore=PR01,RT01
        """Wrap RenderWindowInteractor.enable_trackball_actor_style."""
        self.iren.enable_trackball_actor_style()

    @wraps(RenderWindowInteractor.enable_image_style)
    def enable_image_style(self):  # numpydoc ignore=PR01,RT01
        """Wrap RenderWindowInteractor.enable_image_style."""
        self.iren.enable_image_style()

    @wraps(RenderWindowInteractor.enable_joystick_style)
    def enable_joystick_style(self):  # numpydoc ignore=PR01,RT01
        """Wrap RenderWindowInteractor.enable_joystick_style."""
        self.iren.enable_joystick_style()

    @wraps(RenderWindowInteractor.enable_joystick_actor_style)
    def enable_joystick_actor_style(self):  # numpydoc ignore=PR01,RT01
        """Wrap RenderWindowInteractor.enable_joystick_actor_style."""
        self.iren.enable_joystick_actor_style()

    @wraps(RenderWindowInteractor.enable_zoom_style)
    def enable_zoom_style(self):  # numpydoc ignore=PR01,RT01
        """Wrap RenderWindowInteractor.enable_zoom_style."""
        self.iren.enable_zoom_style()

    @wraps(RenderWindowInteractor.enable_terrain_style)
    def enable_terrain_style(self, *args, **kwargs):  # numpydoc ignore=PR01,RT01
        """Wrap RenderWindowInteractor.enable_terrain_style."""
        self.iren.enable_terrain_style(*args, **kwargs)

    @wraps(RenderWindowInteractor.enable_rubber_band_style)
    def enable_rubber_band_style(self):  # numpydoc ignore=PR01,RT01
        """Wrap RenderWindowInteractor.enable_rubber_band_style."""
        self.iren.enable_rubber_band_style()

    @wraps(RenderWindowInteractor.enable_rubber_band_2d_style)
    def enable_rubber_band_2d_style(self):  # numpydoc ignore=PR01,RT01
        """Wrap RenderWindowInteractor.enable_rubber_band_2d_style."""
        self.iren.enable_rubber_band_2d_style()

    @wraps(RenderWindowInteractor.enable_2d_style)
    def enable_2d_style(self):  # numpydoc ignore=PR01,RT01
        """Wrap RenderWindowInteractor.enable_2d_style."""
        self.iren.enable_2d_style()

    def enable_stereo_render(self):
        """Enable anaglyph stereo rendering.

        Disable this with :func:`disable_stereo_render
        <Plotter.disable_stereo_render>`

        Examples
        --------
        Enable stereo rendering to show a cube as an anaglyph image.

        >>> import pyvista as pv
        >>> pl = pv.Plotter()
        >>> _ = pl.add_mesh(pv.Cube())
        >>> pl.enable_stereo_render()
        >>> pl.show()

        """
        if self.render_window is not None:
            self.render_window.SetStereoTypeToAnaglyph()
            self.render_window.StereoRenderOn()

    def disable_stereo_render(self):
        """Disable anaglyph stereo rendering.

        Enable again with :func:`enable_stereo_render
        <Plotter.enable_stereo_render>`

        Examples
        --------
        Enable and then disable stereo rendering. It should show a simple cube.

        >>> import pyvista as pv
        >>> pl = pv.Plotter()
        >>> _ = pl.add_mesh(pv.Cube())
        >>> pl.enable_stereo_render()
        >>> pl.disable_stereo_render()
        >>> pl.show()

        """
        if self.render_window is not None:
            self.render_window.StereoRenderOff()

    def hide_axes_all(self):
        """Hide the axes orientation widget in all renderers."""
        for renderer in self.renderers:
            renderer.hide_axes()

    def show_axes_all(self):
        """Show the axes orientation widget in all renderers.

        Examples
        --------
        >>> import pyvista as pv
        >>> from pyvista import examples
        >>>
        >>> mesh = examples.load_globe()
        >>> texture = examples.load_globe_texture()
        >>>
        >>> # create multi-window plot (1 row, 2 columns)
        >>> pl = pv.Plotter(shape=(1, 2))
        >>>
        >>> # activate subplot 1 and add a mesh
        >>> pl.subplot(0, 0)
        >>> _ = pl.add_mesh(mesh, texture=texture)
        >>>
        >>> # activate subplot 2 and add a mesh
        >>> pl.subplot(0, 1)
        >>> _ = pl.add_mesh(examples.load_airplane())
        >>>
        >>> # show the axes orientation widget in all subplots
        >>> pl.show_axes_all()
        >>>
        >>> # display the window
        >>> pl.show()

        """
        for renderer in self.renderers:
            renderer.show_axes()

    def isometric_view_interactive(self):
        """Set the current interactive render window to isometric view."""
        interactor = self.iren.get_interactor_style()
        renderer = interactor.GetCurrentRenderer()
        if renderer is None:
            renderer = self.renderer
        renderer.view_isometric()

    def update(self, stime=1, force_redraw=True):
        """Update window, redraw, process messages query.

        Parameters
        ----------
        stime : int, default: 1
            Duration of timer that interrupt vtkRenderWindowInteractor
            in milliseconds.

        force_redraw : bool, default: True
            Call ``render`` immediately.

        """
        if stime <= 0:
            stime = 1

        curr_time = time.time()
        if Plotter.last_update_time > curr_time:
            Plotter.last_update_time = curr_time

        if self.iren is not None:
            update_rate = self.iren.get_desired_update_rate()
            if (curr_time - Plotter.last_update_time) > (1.0 / update_rate):
                # Allow interaction for a brief moment during interactive updating
                # Use the non-blocking ProcessEvents method.
                self.iren.process_events()
                # Rerender
                self.render()
                Plotter.last_update_time = curr_time
                return

        if force_redraw:
            self.render()

    def add_composite(
        self,
        dataset,
        color=None,
        style=None,
        scalars=None,
        clim=None,
        show_edges=None,
        edge_color=None,
        point_size=None,
        line_width=None,
        opacity=1.0,
        flip_scalars=False,
        lighting=None,
        n_colors=256,
        interpolate_before_map=True,
        cmap=None,
        label=None,
        reset_camera=None,
        scalar_bar_args=None,
        show_scalar_bar=None,
        multi_colors=False,
        name=None,
        render_points_as_spheres=None,
        render_lines_as_tubes=None,
        smooth_shading=None,
        split_sharp_edges=None,
        ambient=None,
        diffuse=None,
        specular=None,
        specular_power=None,
        nan_color=None,
        nan_opacity=1.0,
        culling=None,
        rgb=None,
        below_color=None,
        above_color=None,
        annotations=None,
        pickable=True,
        preference="point",
        log_scale=False,
        pbr=None,
        metallic=None,
        roughness=None,
        render=True,
        component=None,
        color_missing_with_nan=False,
        copy_mesh=False,
        show_vertices=None,
        edge_opacity=None,
        **kwargs,
    ):
        """Add a composite dataset to the plotter.

        Parameters
        ----------
        dataset : pyvista.MultiBlock
            A :class:`pyvista.MultiBlock` dataset.

        color : ColorLike, default: :attr:`pyvista.plotting.themes.Theme.color`
            Use to make the entire mesh have a single solid color.
            Either a string, RGB list, or hex color string.  For example:
            ``color='white'``, ``color='w'``, ``color=[1.0, 1.0, 1.0]``, or
            ``color='#FFFFFF'``. Color will be overridden if scalars are
            specified. To color each element of the composite dataset
            individually, you will need to iteratively call ``add_mesh`` for
            each sub-dataset.

        style : str, default: 'wireframe'
            Visualization style of the mesh.  One of the following:
            ``style='surface'``, ``style='wireframe'``, ``style='points'``.
            Defaults to ``'surface'``. Note that ``'wireframe'`` only shows a
            wireframe of the outer geometry.

        scalars : str, optional
            Scalars used to "color" the points or cells of the dataset.
            Accepts only a string name of an array that is present on the
            composite dataset.

        clim : sequence[float], optional
            Two item color bar range for scalars.  Defaults to minimum and
            maximum of scalars array.  Example: ``[-1, 2]``. ``rng`` is
            also an accepted alias for this.

        show_edges : bool, default: :attr:`pyvista.global_theme.show_edges <pyvista.plotting.themes.Theme.show_edges>`
            Shows the edges of a mesh.  Does not apply to a wireframe
            representation.

        edge_color : ColorLike, default: :attr:`pyvista.global_theme.edge_color <pyvista.plotting.themes.Theme.edge_color>`
            The solid color to give the edges when ``show_edges=True``.
            Either a string, RGB list, or hex color string.

            Defaults to :attr:`pyvista.global_theme.edge_color
            <pyvista.plotting.themes.Theme.edge_color>`.

        point_size : float, default: 5.0
            Point size of any points in the dataset plotted. Also
            applicable when style='points'. Default ``5.0``.

        line_width : float, optional
            Thickness of lines.  Only valid for wireframe and surface
            representations.

        opacity : float, default: 1.0
            Opacity of the mesh. A single float value that will be applied
            globally opacity of the mesh and uniformly
            applied everywhere - should be between 0 and 1.

        flip_scalars : bool, default: False
            Flip direction of cmap. Most colormaps allow ``*_r``
            suffix to do this as well.

        lighting : bool, default: True
            Enable or disable view direction lighting.

        n_colors : int, default: 256
            Number of colors to use when displaying scalars.  The scalar bar
            will also have this many colors.

        interpolate_before_map : bool, default: True
            Enabling makes for a smoother scalars display.  When ``False``,
            OpenGL will interpolate the mapped colors which can result in
            showing colors that are not present in the color map.

        cmap : str | list, | pyvista.LookupTable, default: :attr:`pyvista.plotting.themes.Theme.cmap`
            If a string, this is the name of the ``matplotlib`` colormap to use
            when mapping the ``scalars``.  See available Matplotlib colormaps.
            Only applicable for when displaying ``scalars``.
            ``colormap`` is also an accepted alias
            for this. If ``colorcet`` or ``cmocean`` are installed, their
            colormaps can be specified by name.

            You can also specify a list of colors to override an existing
            colormap with a custom one.  For example, to create a three color
            colormap you might specify ``['green', 'red', 'blue']``.

            This parameter also accepts a :class:`pyvista.LookupTable`. If this
            is set, all parameters controlling the color map like ``n_colors``
            will be ignored.

        label : str, optional
            String label to use when adding a legend to the scene with
            :func:`pyvista.Plotter.add_legend`.

        reset_camera : bool, optional
            Reset the camera after adding this mesh to the scene. The default
            setting is ``None``, where the camera is only reset if this plotter
            has already been shown. If ``False``, the camera is not reset
            regardless of the state of the ``Plotter``. When ``True``, the
            camera is always reset.

        scalar_bar_args : dict, optional
            Dictionary of keyword arguments to pass when adding the
            scalar bar to the scene. For options, see
            :func:`pyvista.Plotter.add_scalar_bar`.

        show_scalar_bar : bool
            If ``False``, a scalar bar will not be added to the
            scene. Defaults to ``True`` unless ``rgba=True``.

        multi_colors : bool | str | cycler.Cycler | sequence[ColorLike], default: False
            Color each block by a solid color using a custom cycler.

            If ``True``, the default 'matplotlib' color cycler is used.

            See :func:`set_color_cycler<Plotter.set_color_cycler>` for usage of
            custom color cyclers.

        name : str, optional
            The name for the added mesh/actor so that it can be easily
            updated.  If an actor of this name already exists in the
            rendering window, it will be replaced by the new actor.

        render_points_as_spheres : bool, default: False
            Render points as spheres rather than dots.

        render_lines_as_tubes : bool, default: False
            Show lines as thick tubes rather than flat lines.  Control
            the width with ``line_width``.

        smooth_shading : bool, default: :attr`pyvista.plotting.themes.Theme.smooth_shading`
            Enable smooth shading when ``True`` using the Phong shading
            algorithm.  When ``False``, uses flat shading.  Automatically
            enabled when ``pbr=True``.  See :ref:`shading_example`.

        split_sharp_edges : bool, default: False
            Split sharp edges exceeding 30 degrees when plotting with smooth
            shading.  Control the angle with the optional keyword argument
            ``feature_angle``.  By default this is ``False`` unless overridden
            by the global or plotter theme.  Note that enabling this will
            create a copy of the input mesh within the plotter.  See
            :ref:`shading_example`.

        ambient : float, default: 0.0
            When lighting is enabled, this is the amount of light in
            the range of 0 to 1 (default 0.0) that reaches the actor
            when not directed at the light source emitted from the
            viewer.

        diffuse : float, default: 1.0
            The diffuse lighting coefficient.

        specular : float, default: 0.0
            The specular lighting coefficient.

        specular_power : float, default: 1.0
            The specular power. Between 0.0 and 128.0.

        nan_color : ColorLike, default: :attr:`pyvista.plotting.themes.Theme.nan_color`
            The color to use for all ``NaN`` values in the plotted
            scalar array.

        nan_opacity : float, default: 1.0
            Opacity of ``NaN`` values.  Should be between 0 and 1.

        culling : str, bool, default: False
            Does not render faces that are culled. This can be helpful for
            dense surface meshes, especially when edges are visible, but can
            cause flat meshes to be partially displayed. One of the following:

            * ``True`` - Enable backface culling
            * ``"b"`` - Enable backface culling
            * ``"back"`` - Enable backface culling
            * ``"backface"`` - Enable backface culling
            * ``"f"`` - Enable frontface culling
            * ``"front"`` - Enable frontface culling
            * ``"frontface"`` - Enable frontface culling
            * ``False`` - Disable both backface and frontface culling

        rgb : bool, default: False
            If an 2 dimensional array is passed as the scalars, plot
            those values as RGB(A) colors. ``rgba`` is also an
            accepted alias for this.  Opacity (the A) is optional.  If
            a scalars array ending with ``"_rgb"`` or ``"_rgba"`` is passed,
            the default becomes ``True``.  This can be overridden by setting
            this parameter to ``False``.

        below_color : ColorLike, optional
            Solid color for values below the scalars range
            (``clim``). This will automatically set the scalar bar
            ``below_label`` to ``'below'``.

        above_color : ColorLike, optional
            Solid color for values below the scalars range
            (``clim``). This will automatically set the scalar bar
            ``above_label`` to ``'above'``.

        annotations : dict, optional
            Pass a dictionary of annotations. Keys are the float
            values in the scalars range to annotate on the scalar bar
            and the values are the string annotations.

        pickable : bool, default: True
            Set whether this actor is pickable.

        preference : str, default: 'point'
            For each block, when ``block.n_points == block.n_cells`` and
            setting scalars, this parameter sets how the scalars will be mapped
            to the mesh.  For example, when ``'point'`` the scalars will be
            associated with the mesh points if available.  Can be either
            ``'point'`` or ``'cell'``.

        log_scale : bool, default: False
            Use log scale when mapping data to colors. Scalars less
            than zero are mapped to the smallest representable
            positive float.

        pbr : bool, default: False
            Enable physics based rendering (PBR) if the mesh is
            ``PolyData``.  Use the ``color`` argument to set the base
            color.

        metallic : float, default: 0.0
            Usually this value is either 0 or 1 for a real material
            but any value in between is valid. This parameter is only
            used by PBR interpolation.

        roughness : float, default: 0.5
            This value has to be between 0 (glossy) and 1 (rough). A
            glossy material has reflections and a high specular
            part. This parameter is only used by PBR
            interpolation.

        render : bool, default: True
            Force a render when ``True``.

        component : int, optional
            Set component of vector valued scalars to plot.  Must be
            nonnegative, if supplied. If ``None``, the magnitude of
            the vector is plotted.

        color_missing_with_nan : bool, default: False
            Color any missing values with the ``nan_color``. This is useful
            when not all blocks of the composite dataset have the specified
            ``scalars``.

        copy_mesh : bool, default: False
            If ``True``, a copy of the mesh will be made before adding it to
            the plotter.  This is useful if e.g. you would like to add the same
            mesh to a plotter multiple times and display different
            scalars. Setting ``copy_mesh`` to ``False`` is necessary if you
            would like to update the mesh after adding it to the plotter and
            have these updates rendered, e.g. by changing the active scalars or
            through an interactive widget.

        show_vertices : bool, optional
            When ``style`` is not ``'points'``, render the external surface
            vertices. The following optional keyword arguments may be used to
            control the style of the vertices:

            * ``vertex_color`` - The color of the vertices
            * ``vertex_style`` - Change style to ``'points_gaussian'``
            * ``vertex_opacity`` - Control the opacity of the vertices

        edge_opacity : float, optional
            Edge opacity of the mesh. A single float value that will be applied globally
            edge opacity of the mesh and uniformly applied everywhere - should be
            between 0 and 1.

            .. note::
                `edge_opacity` uses ``SetEdgeOpacity`` as the underlying method which
                requires VTK version 9.3 or higher. If ``SetEdgeOpacity`` is not
                available, `edge_opacity` is set to 1.

        **kwargs : dict, optional
            Optional keyword arguments.

        Returns
        -------
        pyvista.Actor
            Actor of the composite dataset.

        pyvista.CompositePolyDataMapper
            Composite PolyData mapper.

        Examples
        --------
        Add a sphere and a cube as a multiblock dataset to a plotter and then
        change the visibility and color of the blocks.

        Note index ``1`` and ``2`` are used to access the individual blocks of
        the composite dataset. This is because the :class:`pyvista.MultiBlock`
        is the root node of the "tree" and is index ``0``. This allows you to
        access individual blocks or the entire composite dataset itself in the
        case of multiple nested composite datasets.

        >>> import pyvista as pv
        >>> dataset = pv.MultiBlock(
        ...     [pv.Cube(), pv.Sphere(center=(0, 0, 1))]
        ... )
        >>> pl = pv.Plotter()
        >>> actor, mapper = pl.add_composite(dataset)
        >>> mapper.block_attr[1].color = 'b'
        >>> mapper.block_attr[1].opacity = 0.5
        >>> mapper.block_attr[2].color = 'r'
        >>> pl.show()

        """
        if not isinstance(dataset, _vtk.vtkCompositeDataSet):
            raise TypeError(f'Invalid type ({type(dataset)}). Must be a composite dataset.')
        # always convert
        dataset = dataset.as_polydata_blocks(copy_mesh)
        self.mesh = dataset  # for legacy behavior

        # Parse arguments
        (
            scalar_bar_args,
            split_sharp_edges,
            show_scalar_bar,
            feature_angle,
            render_points_as_spheres,
            smooth_shading,
            clim,
            cmap,
            culling,
            name,
            nan_color,
            color,
            texture,
            rgb,
            interpolation,
            remove_existing_actor,
            vertex_color,
            vertex_style,
            vertex_opacity,
        ) = _common_arg_parser(
            dataset,
            self._theme,
            n_colors,
            scalar_bar_args,
            split_sharp_edges,
            show_scalar_bar,
            render_points_as_spheres,
            smooth_shading,
            pbr,
            clim,
            cmap,
            culling,
            name,
            nan_color,
            nan_opacity,
            color,
            None,
            rgb,
            style,
            **kwargs,
        )
        if show_vertices is None:
            show_vertices = self._theme.show_vertices

        # Compute surface normals if using smooth shading
        if smooth_shading:
            dataset = dataset._compute_normals(
                cell_normals=False,
                split_vertices=True,
                feature_angle=feature_angle,
            )

        self.mapper = CompositePolyDataMapper(
            dataset,
            theme=self._theme,
            color_missing_with_nan=color_missing_with_nan,
            interpolate_before_map=interpolate_before_map,
        )

        actor, _ = self.add_actor(self.mapper, render=False)

        prop = Property(
            self._theme,
            interpolation=interpolation,
            metallic=metallic,
            roughness=roughness,
            point_size=point_size,
            ambient=ambient,
            diffuse=diffuse,
            specular=specular,
            specular_power=specular_power,
            show_edges=show_edges,
            color=self.renderer.next_color if color is None else color,
            style=style,
            edge_color=edge_color,
            render_points_as_spheres=render_points_as_spheres,
            render_lines_as_tubes=render_lines_as_tubes,
            lighting=lighting,
            line_width=line_width,
            opacity=opacity,
            culling=culling,
            edge_opacity=edge_opacity,
        )
        actor.SetProperty(prop)

        if label is not None:
            self._add_legend_label(actor, label, None, prop.color)

        # check if there are any consistent active scalars
        if color is not None:
            self.mapper.scalar_visibility = False
        elif multi_colors:
            self.mapper.set_unique_colors(multi_colors)
        else:
            if scalars is None:
                point_name, cell_name = dataset._get_consistent_active_scalars()
                if point_name and cell_name:
                    scalars = point_name if preference == "point" else cell_name
                else:
                    scalars = point_name if point_name is not None else cell_name

            elif not isinstance(scalars, str):
                raise TypeError(
                    f'`scalars` must be a string for `add_composite`, not ({type(scalars)})',
                )

            if scalars is not None:
                # enable rgb if the scalars name ends with rgb or rgba
                if rgb is None and scalars.endswith(('_rgb', '_rgba')):
                    rgb = True
                    show_scalar_bar = False

                scalar_bar_args = self.mapper.set_scalars(
                    scalars,
                    preference,
                    component,
                    annotations,
                    rgb,
                    scalar_bar_args,
                    n_colors,
                    nan_color,
                    above_color,
                    below_color,
                    clim,
                    cmap,
                    flip_scalars,
                    log_scale,
                )
            else:
                self.mapper.scalar_visibility = False

        # Only show scalar bar if there are scalars
        if show_scalar_bar and scalars is not None:
            self.add_scalar_bar(**scalar_bar_args)

        # by default reset the camera if the plotting window has been rendered
        if reset_camera is None:
            reset_camera = not self._first_time and not self.camera_set

        # add this immediately prior to adding the actor to ensure vertices
        # are rendered
        if show_vertices and style not in ['points', 'points_gaussian']:
            self.add_composite(
                dataset,
                style=vertex_style,
                point_size=point_size,
                color=vertex_color,
                render_points_as_spheres=render_points_as_spheres,
                name=f'{name}-vertices',
                opacity=vertex_opacity,
                lighting=lighting,
                render=False,
                show_vertices=False,
            )

        self.add_actor(
            actor,
            reset_camera=reset_camera,
            name=name,
            pickable=pickable,
            render=render,
            remove_existing_actor=remove_existing_actor,
        )

        return actor, self.mapper

    def add_mesh(
        self,
        mesh,
        color=None,
        style=None,
        scalars=None,
        clim=None,
        show_edges=None,
        edge_color=None,
        point_size=None,
        line_width=None,
        opacity=None,
        flip_scalars=False,
        lighting=None,
        n_colors=256,
        interpolate_before_map=None,
        cmap=None,
        label=None,
        reset_camera=None,
        scalar_bar_args=None,
        show_scalar_bar=None,
        multi_colors=False,
        name=None,
        texture=None,
        render_points_as_spheres=None,
        render_lines_as_tubes=None,
        smooth_shading=None,
        split_sharp_edges=None,
        ambient=None,
        diffuse=None,
        specular=None,
        specular_power=None,
        nan_color=None,
        nan_opacity=1.0,
        culling=None,
        rgb=None,
        categories=False,
        silhouette=None,
        use_transparency=False,
        below_color=None,
        above_color=None,
        annotations=None,
        pickable=True,
        preference="point",
        log_scale=False,
        pbr=None,
        metallic=None,
        roughness=None,
        render=True,
        user_matrix=None,
        component=None,
        emissive=None,
        copy_mesh=False,
        backface_params=None,
        show_vertices=None,
        edge_opacity=None,
        **kwargs,
    ):
        """Add any PyVista/VTK mesh or dataset that PyVista can wrap to the scene.

        This method is using a mesh representation to view the surfaces
        and/or geometry of datasets. For volume rendering, see
        :func:`pyvista.Plotter.add_volume`.

        To see the what most of the following parameters look like in action,
        please refer to :class:`pyvista.Property`.

        Parameters
        ----------
        mesh : pyvista.DataSet or pyvista.MultiBlock or vtk.vtkAlgorithm
            Any PyVista or VTK mesh is supported. Also, any dataset
            that :func:`pyvista.wrap` can handle including NumPy
            arrays of XYZ points. Plotting also supports VTK algorithm
            objects (``vtk.vtkAlgorithm`` and ``vtk.vtkAlgorithmOutput``).
            When passing an algorithm, the rendering pipeline will be
            connected to the passed algorithm to dynamically update
            the scene.

        color : ColorLike, optional
            Use to make the entire mesh have a single solid color.
            Either a string, RGB list, or hex color string.  For example:
            ``color='white'``, ``color='w'``, ``color=[1.0, 1.0, 1.0]``, or
            ``color='#FFFFFF'``. Color will be overridden if scalars are
            specified.

            Defaults to :attr:`pyvista.global_theme.color
            <pyvista.plotting.themes.Theme.color>`.

        style : str, optional
            Visualization style of the mesh.  One of the following:
            ``style='surface'``, ``style='wireframe'``, ``style='points'``,
            ``style='points_gaussian'``. Defaults to ``'surface'``. Note that
            ``'wireframe'`` only shows a wireframe of the outer geometry.
            ``'points_gaussian'`` can be modified with the ``emissive``,
            ``render_points_as_spheres`` options.

        scalars : str | numpy.ndarray, optional
            Scalars used to "color" the mesh.  Accepts a string name
            of an array that is present on the mesh or an array equal
            to the number of cells or the number of points in the
            mesh.  Array should be sized as a single vector. If both
            ``color`` and ``scalars`` are ``None``, then the active
            scalars are used.

        clim : sequence[float], optional
            Two item color bar range for scalars.  Defaults to minimum and
            maximum of scalars array.  Example: ``[-1, 2]``. ``rng`` is
            also an accepted alias for this.

        show_edges : bool, optional
            Shows the edges of a mesh.  Does not apply to a wireframe
            representation.

        edge_color : ColorLike, optional
            The solid color to give the edges when ``show_edges=True``.
            Either a string, RGB list, or hex color string.

            Defaults to :attr:`pyvista.global_theme.edge_color
            <pyvista.plotting.themes.Theme.edge_color>`.

        point_size : float, optional
            Point size of any nodes in the dataset plotted. Also
            applicable when style='points'. Default ``5.0``.

        line_width : float, optional
            Thickness of lines.  Only valid for wireframe and surface
            representations.  Default ``None``.

        opacity : float | str| array_like
            Opacity of the mesh. If a single float value is given, it
            will be the global opacity of the mesh and uniformly
            applied everywhere - should be between 0 and 1. A string
            can also be specified to map the scalars range to a
            predefined opacity transfer function (options include:
            ``'linear'``, ``'linear_r'``, ``'geom'``, ``'geom_r'``).
            A string could also be used to map a scalars array from
            the mesh to the opacity (must have same number of elements
            as the ``scalars`` argument). Or you can pass a custom
            made transfer function that is an array either
            ``n_colors`` in length or shorter.

        flip_scalars : bool, default: False
            Flip direction of cmap. Most colormaps allow ``*_r``
            suffix to do this as well.

        lighting : bool, optional
            Enable or disable view direction lighting. Default ``False``.

        n_colors : int, optional
            Number of colors to use when displaying scalars. Defaults to 256.
            The scalar bar will also have this many colors.

        interpolate_before_map : bool, optional
            Enabling makes for a smoother scalars display.  Default is
            ``True``.  When ``False``, OpenGL will interpolate the
            mapped colors which can result is showing colors that are
            not present in the color map.

        cmap : str | list | pyvista.LookupTable, default: :attr:`pyvista.plotting.themes.Theme.cmap`
            If a string, this is the name of the ``matplotlib`` colormap to use
            when mapping the ``scalars``.  See available Matplotlib colormaps.
            Only applicable for when displaying ``scalars``.
            ``colormap`` is also an accepted alias
            for this. If ``colorcet`` or ``cmocean`` are installed, their
            colormaps can be specified by name.

            You can also specify a list of colors to override an existing
            colormap with a custom one.  For example, to create a three color
            colormap you might specify ``['green', 'red', 'blue']``.

            This parameter also accepts a :class:`pyvista.LookupTable`. If this
            is set, all parameters controlling the color map like ``n_colors``
            will be ignored.

        label : str, optional
            String label to use when adding a legend to the scene with
            :func:`pyvista.Plotter.add_legend`.

        reset_camera : bool, optional
            Reset the camera after adding this mesh to the scene. The default
            setting is ``None``, where the camera is only reset if this plotter
            has already been shown. If ``False``, the camera is not reset
            regardless of the state of the ``Plotter``. When ``True``, the
            camera is always reset.

        scalar_bar_args : dict, optional
            Dictionary of keyword arguments to pass when adding the
            scalar bar to the scene. For options, see
            :func:`pyvista.Plotter.add_scalar_bar`.

        show_scalar_bar : bool, optional
            If ``False``, a scalar bar will not be added to the
            scene.

        multi_colors : bool | str | cycler.Cycler | sequence[ColorLike], default: False
            If a :class:`pyvista.MultiBlock` dataset is given this will color
            each block by a solid color using a custom cycler.

            If ``True``, the default 'matplotlib' color cycler is used.

            See :func:`set_color_cycler<Plotter.set_color_cycler>` for usage of
            custom color cycles.

        name : str, optional
            The name for the added mesh/actor so that it can be easily
            updated.  If an actor of this name already exists in the
            rendering window, it will be replaced by the new actor.

        texture : pyvista.Texture or np.ndarray, optional
            A texture to apply if the input mesh has texture
            coordinates.  This will not work with MultiBlock
            datasets.

        render_points_as_spheres : bool, optional
            Render points as spheres rather than dots.

        render_lines_as_tubes : bool, optional
            Show lines as thick tubes rather than flat lines.  Control
            the width with ``line_width``.

        smooth_shading : bool, optional
            Enable smooth shading when ``True`` using the Phong
            shading algorithm.  When ``False``, use flat shading.
            Automatically enabled when ``pbr=True``.  See
            :ref:`shading_example`.

        split_sharp_edges : bool, optional
            Split sharp edges exceeding 30 degrees when plotting with smooth
            shading.  Control the angle with the optional keyword argument
            ``feature_angle``.  By default this is ``False`` unless overridden
            by the global or plotter theme.  Note that enabling this will
            create a copy of the input mesh within the plotter.  See
            :ref:`shading_example`.

        ambient : float, optional
            When lighting is enabled, this is the amount of light in
            the range of 0 to 1 (default 0.0) that reaches the actor
            when not directed at the light source emitted from the
            viewer.

        diffuse : float, optional
            The diffuse lighting coefficient. Default 1.0.

        specular : float, optional
            The specular lighting coefficient. Default 0.0.

        specular_power : float, optional
            The specular power. Between 0.0 and 128.0.

        nan_color : ColorLike, optional
            The color to use for all ``NaN`` values in the plotted
            scalar array.

        nan_opacity : float, optional
            Opacity of ``NaN`` values.  Should be between 0 and 1.
            Default 1.0.

        culling : str, optional
            Does not render faces that are culled. Options are
            ``'front'`` or ``'back'``. This can be helpful for dense
            surface meshes, especially when edges are visible, but can
            cause flat meshes to be partially displayed.  Defaults to
            ``False``.

        rgb : bool, optional
            If an 2 dimensional array is passed as the scalars, plot
            those values as RGB(A) colors. ``rgba`` is also an
            accepted alias for this.  Opacity (the A) is optional.  If
            a scalars array ending with ``"_rgba"`` is passed, the default
            becomes ``True``.  This can be overridden by setting this
            parameter to ``False``.

        categories : bool, optional
            If set to ``True``, then the number of unique values in
            the scalar array will be used as the ``n_colors``
            argument.

        silhouette : dict, bool, optional
            If set to ``True``, plot a silhouette highlight for the
            mesh. This feature is only available for a triangulated
            ``PolyData``.  As a ``dict``, it contains the properties
            of the silhouette to display:

                * ``color``: ``ColorLike``, color of the silhouette
                * ``line_width``: ``float``, edge width
                * ``opacity``: ``float`` between 0 and 1, edge transparency
                * ``feature_angle``: If a ``float``, display sharp edges
                  exceeding that angle in degrees.
                * ``decimate``: ``float`` between 0 and 1, level of decimation

        use_transparency : bool, optional
            Invert the opacity mappings and make the values correspond
            to transparency.

        below_color : ColorLike, optional
            Solid color for values below the scalars range
            (``clim``). This will automatically set the scalar bar
            ``below_label`` to ``'below'``.

        above_color : ColorLike, optional
            Solid color for values below the scalars range
            (``clim``). This will automatically set the scalar bar
            ``above_label`` to ``'above'``.

        annotations : dict, optional
            Pass a dictionary of annotations. Keys are the float
            values in the scalars range to annotate on the scalar bar
            and the values are the string annotations.

        pickable : bool, optional
            Set whether this actor is pickable.

        preference : str, default: "point"
            When ``mesh.n_points == mesh.n_cells`` and setting
            scalars, this parameter sets how the scalars will be
            mapped to the mesh.  Default ``'point'``, causes the
            scalars will be associated with the mesh points.  Can be
            either ``'point'`` or ``'cell'``.

        log_scale : bool, default: False
            Use log scale when mapping data to colors. Scalars less
            than zero are mapped to the smallest representable
            positive float.

        pbr : bool, optional
            Enable physics based rendering (PBR) if the mesh is
            ``PolyData``.  Use the ``color`` argument to set the base
            color.

        metallic : float, optional
            Usually this value is either 0 or 1 for a real material
            but any value in between is valid. This parameter is only
            used by PBR interpolation.

        roughness : float, optional
            This value has to be between 0 (glossy) and 1 (rough). A
            glossy material has reflections and a high specular
            part. This parameter is only used by PBR
            interpolation.

        render : bool, default: True
            Force a render when ``True``.

        user_matrix : np.ndarray | vtk.vtkMatrix4x4, default: np.eye(4)
            Matrix passed to the Actor class before rendering. This affects the
            actor/rendering only, not the input volume itself. The user matrix is the
            last transformation applied to the actor before rendering. Defaults to the
            identity matrix.

        component : int, optional
            Set component of vector valued scalars to plot.  Must be
            nonnegative, if supplied. If ``None``, the magnitude of
            the vector is plotted.

        emissive : bool, optional
            Treat the points/splats as emissive light sources. Only valid for
            ``style='points_gaussian'`` representation.

        copy_mesh : bool, default: False
            If ``True``, a copy of the mesh will be made before adding it to
            the plotter.  This is useful if you would like to add the same
            mesh to a plotter multiple times and display different
            scalars. Setting ``copy_mesh`` to ``False`` is necessary if you
            would like to update the mesh after adding it to the plotter and
            have these updates rendered, e.g. by changing the active scalars or
            through an interactive widget. This should only be set to ``True``
            with caution. Defaults to ``False``. This is ignored if the input
            is a ``vtkAlgorithm`` subclass.

        backface_params : dict | pyvista.Property, optional
            A :class:`pyvista.Property` or a dict of parameters to use for
            backface rendering. This is useful for instance when the inside of
            oriented surfaces has a different color than the outside. When a
            :class:`pyvista.Property`, this is directly used for backface
            rendering. When a dict, valid keys are :class:`pyvista.Property`
            attributes, and values are corresponding values to use for the
            given property. Omitted keys (or the default of
            ``backface_params=None``) default to the corresponding frontface
            properties.

        show_vertices : bool, optional
            When ``style`` is not ``'points'``, render the external surface
            vertices. The following optional keyword arguments may be used to
            control the style of the vertices:

            * ``vertex_color`` - The color of the vertices
            * ``vertex_style`` - Change style to ``'points_gaussian'``
            * ``vertex_opacity`` - Control the opacity of the vertices

        edge_opacity : float, optional
            Edge opacity of the mesh. A single float value that will be applied globally
            edge opacity of the mesh and uniformly applied everywhere - should be
            between 0 and 1.

            .. note::
                `edge_opacity` uses ``SetEdgeOpacity`` as the underlying method which
                requires VTK version 9.3 or higher. If ``SetEdgeOpacity`` is not
                available, `edge_opacity` is set to 1.

        **kwargs : dict, optional
            Optional keyword arguments.

        Returns
        -------
        pyvista.plotting.actor.Actor
            Actor of the mesh.

        Examples
        --------
        Add a sphere to the plotter and show it with a custom scalar
        bar title.

        >>> import pyvista as pv
        >>> sphere = pv.Sphere()
        >>> sphere['Data'] = sphere.points[:, 2]
        >>> plotter = pv.Plotter()
        >>> _ = plotter.add_mesh(
        ...     sphere, scalar_bar_args={'title': 'Z Position'}
        ... )
        >>> plotter.show()

        Plot using RGB on a single cell.  Note that since the number of
        points and the number of cells are identical, we have to pass
        ``preference='cell'``.

        >>> import pyvista as pv
        >>> import numpy as np
        >>> vertices = np.array(
        ...     [
        ...         [0, 0, 0],
        ...         [1, 0, 0],
        ...         [0.5, 0.667, 0],
        ...         [0.5, 0.33, 0.667],
        ...     ]
        ... )
        >>> faces = np.hstack(
        ...     [[3, 0, 1, 2], [3, 0, 3, 2], [3, 0, 1, 3], [3, 1, 2, 3]]
        ... )
        >>> mesh = pv.PolyData(vertices, faces)
        >>> mesh.cell_data['colors'] = [
        ...     [255, 255, 255],
        ...     [0, 255, 0],
        ...     [0, 0, 255],
        ...     [255, 0, 0],
        ... ]
        >>> plotter = pv.Plotter()
        >>> _ = plotter.add_mesh(
        ...     mesh,
        ...     scalars='colors',
        ...     lighting=False,
        ...     rgb=True,
        ...     preference='cell',
        ... )
        >>> plotter.camera_position = 'xy'
        >>> plotter.show()

        Note how this varies from ``preference=='point'``.  This is
        because each point is now being individually colored, versus
        in ``preference=='point'``, each cell face is individually
        colored.

        >>> plotter = pv.Plotter()
        >>> _ = plotter.add_mesh(
        ...     mesh,
        ...     scalars='colors',
        ...     lighting=False,
        ...     rgb=True,
        ...     preference='point',
        ... )
        >>> plotter.camera_position = 'xy'
        >>> plotter.show()

        Plot a plane with a constant color and vary its opacity by point.

        >>> plane = pv.Plane()
        >>> plane.plot(
        ...     color='b',
        ...     opacity=np.linspace(0, 1, plane.n_points),
        ...     show_edges=True,
        ... )

        Plot the points of a sphere with Gaussian smoothing while coloring by z
        position.

        >>> mesh = pv.Sphere()
        >>> mesh.plot(
        ...     scalars=mesh.points[:, 2],
        ...     style='points_gaussian',
        ...     opacity=0.5,
        ...     point_size=10,
        ...     render_points_as_spheres=False,
        ...     show_scalar_bar=False,
        ... )

        Plot spheres using `points_gaussian` style and scale them by radius.

        >>> N_SPHERES = 1_000_000
        >>> rng = np.random.default_rng(seed=0)
        >>> pos = rng.random((N_SPHERES, 3))
        >>> rad = rng.random(N_SPHERES) * 0.01
        >>> pdata = pv.PolyData(pos)
        >>> pdata['radius'] = rad
        >>> pdata.plot(
        ...     style='points_gaussian',
        ...     emissive=False,
        ...     render_points_as_spheres=True,
        ... )

        """
        if user_matrix is None:
            user_matrix = np.eye(4)
        if style == 'points_gaussian':
            self.mapper = PointGaussianMapper(theme=self.theme, emissive=emissive)
        else:
            self.mapper = DataSetMapper(theme=self.theme)

        if render_lines_as_tubes and show_edges:
            warnings.warn(
                '`show_edges=True` not supported when `render_lines_as_tubes=True`. Ignoring `show_edges`.',
                UserWarning,
            )
            show_edges = False

        mesh, algo = algorithm_to_mesh_handler(mesh)

        # Convert the VTK data object to a pyvista wrapped object if necessary
        if not is_pyvista_dataset(mesh):
            mesh = wrap(mesh)
            if not is_pyvista_dataset(mesh):
                raise TypeError(
                    f'Object type ({type(mesh)}) not supported for plotting in PyVista.',
                )
        if isinstance(mesh, pyvista.PointSet):
            # cast to PointSet to PolyData
            if algo is not None:
                algo = pointset_to_polydata_algorithm(algo)
                mesh, algo = algorithm_to_mesh_handler(algo)
            else:
                mesh = mesh.cast_to_polydata(deep=False)
        elif isinstance(mesh, pyvista.MultiBlock):
            if algo is not None:
                raise TypeError(
                    'Algorithms with `MultiBlock` output type are not supported by `add_mesh` at this time.',
                )
            actor, _ = self.add_composite(
                mesh,
                color=color,
                style=style,
                scalars=scalars,
                clim=clim,
                show_edges=show_edges,
                edge_color=edge_color,
                point_size=point_size,
                line_width=line_width,
                opacity=opacity,
                flip_scalars=flip_scalars,
                lighting=lighting,
                n_colors=n_colors,
                interpolate_before_map=interpolate_before_map,
                cmap=cmap,
                label=label,
                reset_camera=reset_camera,
                scalar_bar_args=scalar_bar_args,
                show_scalar_bar=show_scalar_bar,
                multi_colors=multi_colors,
                name=name,
                render_points_as_spheres=render_points_as_spheres,
                render_lines_as_tubes=render_lines_as_tubes,
                smooth_shading=smooth_shading,
                split_sharp_edges=split_sharp_edges,
                ambient=ambient,
                diffuse=diffuse,
                specular=specular,
                specular_power=specular_power,
                nan_color=nan_color,
                nan_opacity=nan_opacity,
                culling=culling,
                rgb=rgb,
                below_color=below_color,
                above_color=above_color,
                pickable=pickable,
                preference=preference,
                log_scale=log_scale,
                pbr=pbr,
                metallic=metallic,
                roughness=roughness,
                render=render,
                show_vertices=show_vertices,
                edge_opacity=edge_opacity,
                **kwargs,
            )
            return actor
        elif copy_mesh and algo is None:
            # A shallow copy of `mesh` is made here so when we set (or add) scalars
            # active, it doesn't modify the original input mesh.
            # We ignore `copy_mesh` if the input is an algorithm
            mesh = mesh.copy(deep=False)

        # Parse arguments
        (
            scalar_bar_args,
            split_sharp_edges,
            show_scalar_bar,
            feature_angle,
            render_points_as_spheres,
            smooth_shading,
            clim,
            cmap,
            culling,
            name,
            nan_color,
            color,
            texture,
            rgb,
            interpolation,
            remove_existing_actor,
            vertex_color,
            vertex_style,
            vertex_opacity,
        ) = _common_arg_parser(
            mesh,
            self._theme,
            n_colors,
            scalar_bar_args,
            split_sharp_edges,
            show_scalar_bar,
            render_points_as_spheres,
            smooth_shading,
            pbr,
            clim,
            cmap,
            culling,
            name,
            nan_color,
            nan_opacity,
            color,
            texture,
            rgb,
            style,
            **kwargs,
        )

        if show_vertices is None:
            show_vertices = self._theme.show_vertices

        if edge_opacity is None and pyvista.vtk_version_info >= (9, 3):
            edge_opacity = self._theme.edge_opacity

        if silhouette is None:
            silhouette = self._theme.silhouette.enabled
        if silhouette:
            if isinstance(silhouette, dict):
                self.add_silhouette(algo or mesh, **silhouette)
            else:
                self.add_silhouette(algo or mesh)

        # Try to plot something if no preference given
        if scalars is None and color is None and texture is None:
            # Make sure scalars components are not vectors/tuples
            scalars = mesh.active_scalars_name
            # Don't allow plotting of string arrays by default
            if scalars is not None:  # and np.issubdtype(mesh.active_scalars.dtype, np.number):
                scalar_bar_args.setdefault('title', scalars)
            else:
                scalars = None

        # Make sure scalars is a numpy array after this point
        original_scalar_name = None
        scalars_name = pyvista.DEFAULT_SCALARS_NAME
        if isinstance(scalars, str):
            self.mapper.array_name = scalars

            # enable rgb if the scalars name ends with rgb or rgba
            if rgb is None:
                if scalars.endswith(('_rgb', '_rgba')):
                    rgb = True

            original_scalar_name = scalars
            scalars = get_array(mesh, scalars, preference=preference, err=True)
            scalar_bar_args.setdefault('title', original_scalar_name)
            scalars_name = original_scalar_name

            # Set the active scalars name here. If the name already exists in
            # the input mesh, it may not be set as the active scalars within
            # the mapper. This should be refactored by 0.36.0
            field = get_array_association(mesh, original_scalar_name, preference=preference)
            self.mapper.scalar_map_mode = field.name

            # set preference for downstream use with actual
            if field == FieldAssociation.POINT:
                preference = 'point'
            elif field == FieldAssociation.CELL:
                preference = 'cell'

            if algo is not None:
                # Ensures that the right scalars are set as active on
                # each pipeline request
                algo = active_scalars_algorithm(algo, original_scalar_name, preference=preference)
                mesh, algo = algorithm_to_mesh_handler(algo)
            else:
                # Otherwise, make sure the mesh object's scalars are set
                if field == FieldAssociation.POINT:
                    mesh.point_data.active_scalars_name = original_scalar_name
                elif field == FieldAssociation.CELL:
                    mesh.cell_data.active_scalars_name = original_scalar_name

        # Compute surface normals if using smooth shading
        if smooth_shading:
            if algo is not None:
                raise TypeError(
                    'Smooth shading is not currently supported when a vtkAlgorithm is passed.',
                )
            mesh, scalars = prepare_smooth_shading(
                mesh,
                scalars,
                texture,
                split_sharp_edges,
                feature_angle,
                preference,
            )

        if rgb:
            show_scalar_bar = False
            if scalars.ndim != 2 or scalars.shape[1] < 3 or scalars.shape[1] > 4:
                raise ValueError('RGB array must be n_points/n_cells by 3/4 in shape.')

        if algo is None and not self.theme.allow_empty_mesh and not mesh.n_points:
            # Algorithms may initialize with an empty mesh
            raise ValueError(
                'Empty meshes cannot be plotted. Input mesh has zero points. To allow plotting empty meshes, set `pv.global_theme.allow_empty_mesh = True`',
            )

        # set main values
        self.mesh = mesh
        self.mapper.dataset = self.mesh
        if interpolate_before_map is not None:
            self.mapper.interpolate_before_map = interpolate_before_map
        set_algorithm_input(self.mapper, algo or mesh)

        actor = Actor(mapper=self.mapper)
        actor.user_matrix = user_matrix

        if texture is not None:
            if isinstance(texture, np.ndarray):
                texture = numpy_to_texture(texture)
            if not isinstance(texture, (_vtk.vtkTexture, _vtk.vtkOpenGLTexture)):
                raise TypeError(f'Invalid texture type ({type(texture)})')
            if mesh.GetPointData().GetTCoords() is None:
                raise ValueError(
                    'Input mesh does not have texture coordinates to support the texture.',
                )
            actor.texture = texture
            # Set color to white by default when using a texture
            if color is None:
                color = 'white'
            if scalars is None:
                show_scalar_bar = False
            self.mapper.scalar_visibility = False

            # see https://github.com/pyvista/pyvista/issues/950
            mesh.set_active_scalars(None)

        # Handle making opacity array
        custom_opac, opacity = process_opacity(
            mesh,
            opacity,
            preference,
            n_colors,
            scalars,
            use_transparency,
        )

        # Scalars formatting ==================================================
        if scalars is not None:
            self.mapper.set_scalars(
                scalars,
                scalars_name,
                n_colors,
                scalar_bar_args,
                rgb,
                component,
                preference,
                custom_opac,
                annotations,
                log_scale,
                nan_color,
                above_color,
                below_color,
                cmap,
                flip_scalars,
                opacity,
                categories,
                clim,
            )
            self.mapper.scalar_visibility = True
        elif custom_opac:  # no scalars but custom opacity
            self.mapper.set_custom_opacity(
                opacity,
                color,
                n_colors,
                preference,
            )
            self.mapper.scalar_visibility = True
        else:
            self.mapper.scalar_visibility = False

        # Set actor properties ================================================
        prop_kwargs = dict(
            theme=self._theme,
            interpolation=interpolation,
            metallic=metallic,
            roughness=roughness,
            point_size=point_size,
            ambient=ambient,
            diffuse=diffuse,
            specular=specular,
            specular_power=specular_power,
            show_edges=show_edges,
            color=self.renderer.next_color if color is None else color,
            style=style if style != 'points_gaussian' else 'points',
            edge_color=edge_color,
            render_lines_as_tubes=render_lines_as_tubes,
            lighting=lighting,
            line_width=line_width,
            culling=culling,
            edge_opacity=edge_opacity,
        )

        if isinstance(opacity, (float, int)):
            prop_kwargs['opacity'] = opacity
        prop = Property(**prop_kwargs)
        actor.SetProperty(prop)

        if style == 'points_gaussian':
            self.mapper.scale_factor = prop.point_size * self.mapper.dataset.length / 1300
            if not render_points_as_spheres and not self.mapper.emissive:
                if prop.opacity >= 1.0:
                    prop.opacity = 0.9999  # otherwise, weird triangles

        if render_points_as_spheres:
            if style == 'points_gaussian':
                self.mapper.use_circular_splat(prop.opacity)
                prop.opacity = 1.0
            else:
                prop.render_points_as_spheres = render_points_as_spheres

        if backface_params is not None:
            if isinstance(backface_params, Property):
                backface_prop = backface_params
            elif isinstance(backface_params, dict):
                # preserve omitted kwargs from frontface
                backface_kwargs = deepcopy(prop_kwargs)
                backface_kwargs.update(backface_params)
                backface_prop = Property(**backface_kwargs)
            else:
                raise TypeError(
                    'Backface params must be a pyvista.Property or a dict, '
                    f'not {type(backface_params).__name__}.',
                )
            actor.backface_prop = backface_prop

        # legend label
        if label is not None:
            self._add_legend_label(actor, label, scalars, actor.prop.color)

        # by default reset the camera if the plotting window has been rendered
        if reset_camera is None:
            reset_camera = not self._first_time and not self.camera_set

        # add this immediately prior to adding the actor to ensure vertices
        # are rendered
        if show_vertices and style not in ['points', 'points_gaussian']:
            self.add_mesh(
                extract_surface_algorithm(algo or mesh),
                style=vertex_style,
                point_size=point_size,
                color=vertex_color,
                render_points_as_spheres=render_points_as_spheres,
                name=f'{name}-vertices',
                opacity=vertex_opacity,
                lighting=lighting,
                render=False,
                show_vertices=False,
            )

        self.add_actor(
            actor,
            reset_camera=reset_camera,
            name=name,
            pickable=pickable,
            render=render,
            remove_existing_actor=remove_existing_actor,
        )

        # hide scalar bar if using special scalars
        if scalar_bar_args.get('title') == '__custom_rgba':
            show_scalar_bar = False

        # Only show scalar bar if there are scalars
        if show_scalar_bar and scalars is not None:
            self.add_scalar_bar(**scalar_bar_args)

        self.renderer.Modified()

        return actor

    def _add_legend_label(self, actor, label, scalars, color):
        """Add a legend label based on an actor and its scalars."""
        if not isinstance(label, str):
            raise TypeError('Label must be a string')

        if (
            hasattr(self.mesh, '_glyph_geom')
            and self.mesh._glyph_geom is not None
            and self.mesh._glyph_geom[0] is not None
        ):
            # Using only the first geometry
            geom = pyvista.PolyData(self.mesh._glyph_geom[0])
        else:
            geom = pyvista.Triangle()
            if scalars is not None:
                geom = pyvista.Box()

        geom.points -= geom.center

        addr = actor.GetAddressAsString("")
        self.renderer._labels[addr] = [geom, label, color]

    def add_volume(
        self,
        volume,
        scalars=None,
        clim=None,
        resolution=None,
        opacity='linear',
        n_colors=256,
        cmap=None,
        flip_scalars=False,
        reset_camera=None,
        name=None,
        ambient=None,
        categories=False,
        culling=False,
        multi_colors=False,
        blending='composite',
        mapper=None,
        scalar_bar_args=None,
        show_scalar_bar=None,
        annotations=None,
        pickable=True,
        preference="point",
        opacity_unit_distance=None,
        shade=False,
        diffuse=0.7,  # TODO: different default for volumes
        specular=0.2,  # TODO: different default for volumes
        specular_power=10.0,  # TODO: different default for volumes
        render=True,
        user_matrix=None,
        log_scale=False,
        **kwargs,
    ):
        """Add a volume, rendered using a smart mapper by default.

        Requires a 3D data type like :class:`numpy.ndarray`,
        :class:`pyvista.ImageData`, :class:`pyvista.RectilinearGrid`,
        or :class:`pyvista.UnstructuredGrid`.

        Parameters
        ----------
        volume : 3D numpy.ndarray | pyvista.DataSet
            The input volume to visualize. 3D numpy arrays are accepted.

            .. warning::
                If the input is not :class:`numpy.ndarray`,
                :class:`pyvista.ImageData`, or :class:`pyvista.RectilinearGrid`,
                volume rendering will often have poor performance.

        scalars : str | numpy.ndarray, optional
            Scalars used to "color" the mesh.  Accepts a string name of an
            array that is present on the mesh or an array with length equal
            to the number of cells or the number of points in the
            mesh. If ``scalars`` is ``None``, then the active scalars are used.

            Scalars may be 1 dimensional or 2 dimensional. If 1 dimensional,
            the scalars will be mapped to the lookup table. If 2 dimensional
            the scalars will be directly mapped to RGBA values, array should be
            shaped ``(N, 4)`` where ``N`` is the number of points, and of
            datatype ``np.uint8``.

            Scalars may be 1 dimensional or 2 dimensional. If 1 dimensional,
            the scalars will be mapped to the lookup table. If 2 dimensional
            the scalars will be directly mapped to RGBA values, array should be
            shaped ``(N, 4)`` where ``N`` is the number of points, and of
            datatype ``np.uint8``.

        clim : sequence[float] | float, optional
            Color bar range for scalars.  For example: ``[-1, 2]``. Defaults to
            minimum and maximum of scalars array if the scalars dtype is not
            ``np.uint8``. ``rng`` is also an accepted alias for this parameter.

            If the scalars datatype is ``np.uint8``, this parameter defaults to
            ``[0, 256]``.

            If a single value is given, the range ``[-clim, clim]`` is used.

        resolution : list, optional
            Block resolution. For example ``[1, 1, 1]``. Resolution must be
            non-negative. While VTK accepts negative spacing, this results in
            unexpected behavior. See:
            `pyvista #1967 <https://github.com/pyvista/pyvista/issues/1967>`_.

        opacity : str | numpy.ndarray, optional
            Opacity mapping for the scalars array.

            A string can also be specified to map the scalars range to a
            predefined opacity transfer function. Or you can pass a custom made
            transfer function that is an array either ``n_colors`` in length or
            array, or you can pass a string to select a built in transfer
            function. If a string, should be one of the following:

            * ``'linear'`` - Linear
            * ``'linear_r'`` - Linear except reversed
            * ``'geom'`` - Evenly spaced on the log scale
            * ``'geom_r'`` - Evenly spaced on the log scale except reversed
            * ``'sigmoid'`` - Linear map between -10.0 and 10.0
            * ``'sigmoid_1'`` - Linear map between -1.0 and 1.0
            * ``'sigmoid_2'`` - Linear map between -2.0 and 2.0
            * ``'sigmoid_3'`` - Linear map between -3.0 and 3.0
            * ``'sigmoid_4'`` - Linear map between -4.0 and 4.0
            * ``'sigmoid_5'`` - Linear map between -5.0 and 5.0
            * ``'sigmoid_6'`` - Linear map between -6.0 and 6.0
            * ``'sigmoid_7'`` - Linear map between -7.0 and 7.0
            * ``'sigmoid_8'`` - Linear map between -8.0 and 8.0
            * ``'sigmoid_9'`` - Linear map between -9.0 and 9.0
            * ``'sigmoid_10'`` - Linear map between -10.0 and 10.0
            * ``'sigmoid_15'`` - Linear map between -15.0 and 15.0
            * ``'sigmoid_20'`` - Linear map between -20.0 and 20.0
            * ``'foreground'`` - Transparent background and opaque foreground.
                Intended for use with segmentation labels. Assumes the smallest
                scalar value of the array is the background value (e.g. 0).

            If RGBA scalars are provided, this parameter is set to ``'linear'``
            to ensure the opacity transfer function has no effect on the input
            opacity values.

        n_colors : int, optional
            Number of colors to use when displaying scalars. Defaults to 256.
            The scalar bar will also have this many colors.

        cmap : str | list | pyvista.LookupTable, default: :attr:`pyvista.plotting.themes.Theme.cmap`
            If a string, this is the name of the ``matplotlib`` colormap to use
            when mapping the ``scalars``.  See available Matplotlib colormaps.
            Only applicable for when displaying ``scalars``.
            ``colormap`` is also an accepted alias
            for this. If ``colorcet`` or ``cmocean`` are installed, their
            colormaps can be specified by name.

            You can also specify a list of colors to override an existing
            colormap with a custom one.  For example, to create a three color
            colormap you might specify ``['green', 'red', 'blue']``.

            This parameter also accepts a :class:`pyvista.LookupTable`. If this
            is set, all parameters controlling the color map like ``n_colors``
            will be ignored.

        flip_scalars : bool, optional
            Flip direction of cmap. Most colormaps allow ``*_r`` suffix to do
            this as well.

        reset_camera : bool, optional
            Reset the camera after adding this mesh to the scene.

        name : str, optional
            The name for the added actor so that it can be easily
            updated.  If an actor of this name already exists in the
            rendering window, it will be replaced by the new actor.

        ambient : float, optional
            When lighting is enabled, this is the amount of light from
            0 to 1 that reaches the actor when not directed at the
            light source emitted from the viewer.  Default 0.0.

        categories : bool, optional
            If set to ``True``, then the number of unique values in the scalar
            array will be used as the ``n_colors`` argument.

        culling : str, optional
            Does not render faces that are culled. Options are ``'front'`` or
            ``'back'``. This can be helpful for dense surface meshes,
            especially when edges are visible, but can cause flat
            meshes to be partially displayed.  Defaults ``False``.

        multi_colors : bool, optional
            Whether or not to use multiple colors when plotting MultiBlock
            object. Blocks will be colored sequentially as 'Reds', 'Greens',
            'Blues', and 'Grays'.

        blending : str, optional
            Blending mode for visualisation of the input object(s). Can be
            one of 'additive', 'maximum', 'minimum', 'composite', or
            'average'. Defaults to 'composite'.

        mapper : str, optional
            Volume mapper to use given by name. Options include:
            ``'fixed_point'``, ``'gpu'``, ``'open_gl'``, and
            ``'smart'``.  If ``None`` the ``"volume_mapper"`` in the
            ``self._theme`` is used. If using ``'fixed_point'``,
            only ``ImageData`` types can be used.

            .. note::
                If a :class:`pyvista.UnstructuredGrid` is input, the 'ugrid'
                mapper (``vtkUnstructuredGridVolumeRayCastMapper``) will be
                used regardless.

            .. note::
                The ``'smart'`` mapper chooses one of the other listed
                mappers based on rendering parameters and available
                hardware. Most of the time the ``'smart'`` simply checks
                if a GPU is available and if so, uses the ``'gpu'``
                mapper, otherwise using the ``'fixed_point'`` mapper.

            .. warning::
                The ``'fixed_point'`` mapper is CPU-based and will have
                lower performance than the ``'gpu'`` or ``'open_gl'``
                mappers.

        scalar_bar_args : dict, optional
            Dictionary of keyword arguments to pass when adding the
            scalar bar to the scene. For options, see
            :func:`pyvista.Plotter.add_scalar_bar`.

        show_scalar_bar : bool
            If ``False``, a scalar bar will not be added to the
            scene. Defaults to ``True``.

        annotations : dict, optional
            Pass a dictionary of annotations. Keys are the float
            values in the scalars range to annotate on the scalar bar
            and the values are the string annotations.

        pickable : bool, optional
            Set whether this mesh is pickable.

        preference : str, optional
            When ``mesh.n_points == mesh.n_cells`` and setting
            scalars, this parameter sets how the scalars will be
            mapped to the mesh.  Default ``'point'``, causes the
            scalars will be associated with the mesh points.  Can be
            either ``'point'`` or ``'cell'``.

        opacity_unit_distance : float, optional
            Set/Get the unit distance on which the scalar opacity
            transfer function is defined. Meaning that over that
            distance, a given opacity (from the transfer function) is
            accumulated. This is adjusted for the actual sampling
            distance during rendering. By default, this is the length
            of the diagonal of the bounding box of the volume divided
            by the dimensions.

        shade : bool, default: False
            Default off. If shading is turned on, the mapper may
            perform shading calculations - in some cases shading does
            not apply (for example, in a maximum intensity projection)
            and therefore shading will not be performed even if this
            flag is on.

        diffuse : float, default: 0.7
            The diffuse lighting coefficient.

        specular : float, default: 0.2
            The specular lighting coefficient.

        specular_power : float, default: 10.0
            The specular power. Between ``0.0`` and ``128.0``.

        render : bool, default: True
            Force a render when True.

        user_matrix : np.ndarray | vtk.vtkMatrix4x4, default: np.eye(4)
            Matrix passed to the Volume class before rendering. This affects the
            actor/rendering only, not the input volume itself. The user matrix is the
            last transformation applied to the actor before rendering. Defaults to the
            identity matrix.

        log_scale : bool, default: False
            Use log scale when mapping data to colors. Scalars less
            than zero are mapped to the smallest representable
            positive float.

        **kwargs : dict, optional
            Optional keyword arguments.

        Returns
        -------
        pyvista.Actor
            Actor of the volume.

        Examples
        --------
        Show a built-in volume example with the coolwarm colormap.

        >>> from pyvista import examples
        >>> import pyvista as pv
        >>> bolt_nut = examples.download_bolt_nut()
        >>> pl = pv.Plotter()
        >>> _ = pl.add_volume(bolt_nut, cmap="coolwarm")
        >>> pl.show()

        Create a volume from scratch and plot it using single vector of
        scalars.

        >>> import pyvista as pv
        >>> grid = pv.ImageData(dimensions=(9, 9, 9))
        >>> grid['scalars'] = -grid.x
        >>> pl = pv.Plotter()
        >>> _ = pl.add_volume(grid, opacity='linear')
        >>> pl.show()

        Plot a volume from scratch using RGBA scalars

        >>> import pyvista as pv
        >>> import numpy as np
        >>> grid = pv.ImageData(dimensions=(5, 20, 20))
        >>> scalars = grid.points - (grid.origin)
        >>> scalars /= scalars.max()
        >>> opacity = np.linalg.norm(
        ...     grid.points - grid.center, axis=1
        ... ).reshape(-1, 1)
        >>> opacity /= opacity.max()
        >>> scalars = np.hstack((scalars, opacity**3))
        >>> scalars *= 255
        >>> pl = pv.Plotter()
        >>> vol = pl.add_volume(grid, scalars=scalars.astype(np.uint8))
        >>> vol.prop.interpolation_type = 'linear'
        >>> pl.show()

        Plot an UnstructuredGrid.

        >>> from pyvista import examples
        >>> import pyvista as pv
        >>> mesh = examples.download_letter_a()
        >>> mesh['scalars'] = mesh.points[:, 1]
        >>> pl = pv.Plotter()
        >>> _ = pl.add_volume(mesh, opacity_unit_distance=0.1)
        >>> pl.show()

        """
        # Handle default arguments

        if user_matrix is None:
            user_matrix = np.eye(4)
        # Supported aliases
        clim = kwargs.pop('rng', clim)
        cmap = kwargs.pop('colormap', cmap)
        culling = kwargs.pop('backface_culling', culling)

        if "scalar" in kwargs:
            raise TypeError(
                "`scalar` is an invalid keyword argument for `add_mesh`. Perhaps you mean `scalars` with an s?",
            )
        assert_empty_kwargs(**kwargs)

        if show_scalar_bar is None:
            show_scalar_bar = self._theme.show_scalar_bar or scalar_bar_args

        # Avoid mutating input
        scalar_bar_args = {} if scalar_bar_args is None else scalar_bar_args.copy()

        if culling is True:
            culling = 'backface'

        if mapper is None:
            # Default mapper choice. Overridden later if UnstructuredGrid
            mapper = self._theme.volume_mapper

        # only render when the plotter has already been shown
        if render is None:
            render = not self._first_time

        # Convert the VTK data object to a pyvista wrapped object if necessary
        if not is_pyvista_dataset(volume):
            if isinstance(volume, np.ndarray):
                volume = wrap(volume)
                if resolution is None:
                    resolution = [1, 1, 1]
                elif len(resolution) != 3:
                    raise ValueError('Invalid resolution dimensions.')
                volume.spacing = resolution
            else:
                volume = wrap(volume)
                if not is_pyvista_dataset(volume):
                    raise TypeError(
                        f'Object type ({type(volume)}) not supported for plotting in PyVista.',
                    )
        else:
            # HACK: Make a copy so the original object is not altered.
            #       Also, place all data on the nodes as issues arise when
            #       volume rendering on the cells.
            volume = volume.cell_data_to_point_data()

        if name is None:
            name = f'{type(volume).__name__}({volume.memory_address})'

        if isinstance(volume, pyvista.MultiBlock):
            from itertools import cycle

            cycler = cycle(['Reds', 'Greens', 'Blues', 'Greys', 'Oranges', 'Purples'])
            # Now iteratively plot each element of the multiblock dataset
            actors = []
            for idx in range(volume.GetNumberOfBlocks()):
                if volume[idx] is None:
                    continue
                # Get a good name to use
                next_name = f'{name}-{idx}'
                # Get the data object
                block = wrap(volume.GetBlock(idx))
                if resolution is None:
                    try:
                        block_resolution = block.GetSpacing()
                    except AttributeError:
                        block_resolution = resolution
                else:
                    block_resolution = resolution
                color = next(cycler) if multi_colors else cmap

                a = self.add_volume(
                    block,
                    resolution=block_resolution,
                    opacity=opacity,
                    n_colors=n_colors,
                    cmap=color,
                    flip_scalars=flip_scalars,
                    reset_camera=reset_camera,
                    name=next_name,
                    ambient=ambient,
                    categories=categories,
                    culling=culling,
                    clim=clim,
                    mapper=mapper,
                    pickable=pickable,
                    opacity_unit_distance=opacity_unit_distance,
                    shade=shade,
                    diffuse=diffuse,
                    specular=specular,
                    specular_power=specular_power,
                    render=render,
                    show_scalar_bar=show_scalar_bar,
                )

                actors.append(a)
            return actors

        # Make sure structured grids are not less than 3D
        # ImageData and RectilinearGrid should be olay as <3D
        if isinstance(volume, pyvista.StructuredGrid):
            if any(d < 2 for d in volume.dimensions):
                raise ValueError('StructuredGrids must be 3D dimensional.')

        if isinstance(volume, pyvista.PolyData):
            raise TypeError(
                f'Type {type(volume)} not supported for volume rendering as it is not 3D.',
            )
        elif not isinstance(
            volume,
            (pyvista.ImageData, pyvista.RectilinearGrid, pyvista.UnstructuredGrid),
        ):
            volume = volume.cast_to_unstructured_grid()

        # Override mapper choice for UnstructuredGrid
        if isinstance(volume, pyvista.UnstructuredGrid):
            # Unstructured grid must be all tetrahedrals
            if not (volume.celltypes == pyvista.CellType.TETRA).all():
                volume = volume.triangulate()
            mapper = 'ugrid'

        if mapper == 'fixed_point' and not isinstance(volume, pyvista.ImageData):
            raise TypeError(
                f'Type {type(volume)} not supported for volume rendering with the `"fixed_point"` mapper. Use `pyvista.ImageData`.',
            )
        elif isinstance(volume, pyvista.UnstructuredGrid) and mapper != 'ugrid':
            raise TypeError(
                f'Type {type(volume)} not supported for volume rendering with the `{mapper}` mapper. Use the "ugrid" mapper or simply leave as None.',
            )

        if opacity_unit_distance is None and not isinstance(volume, pyvista.UnstructuredGrid):
            opacity_unit_distance = volume.length / (np.mean(volume.dimensions) - 1)

        if scalars is None:
            # Make sure scalars components are not vectors/tuples
            scalars = volume.active_scalars
            # Don't allow plotting of string arrays by default
            if scalars is not None and np.issubdtype(scalars.dtype, np.number):
                scalar_bar_args.setdefault('title', volume.active_scalars_info[1])
            else:
                raise MissingDataError('No scalars to use for volume rendering.')

        title = 'Data'
        if isinstance(scalars, str):
            title = scalars
            scalars = get_array(volume, scalars, preference=preference, err=True)
            scalar_bar_args.setdefault('title', title)
        elif not isinstance(scalars, np.ndarray):
            scalars = np.asarray(scalars)

        if scalars.ndim != 1:
            if scalars.ndim != 2:
                raise ValueError('`add_volume` only supports scalars with 1 or 2 dimensions')
            if scalars.shape[1] != 4 or scalars.dtype != np.uint8:
                raise ValueError(
                    '`add_volume` only supports scalars with 2 dimensions that have 4 components of datatype np.uint8.\n\n'
                    f'Scalars have shape {scalars.shape} and dtype {scalars.dtype.name!r}.',
                )

        if not np.issubdtype(scalars.dtype, np.number):
            raise TypeError('Non-numeric scalars are currently not supported for volume rendering.')
        if scalars.ndim != 1:
            if scalars.ndim != 2:
                raise ValueError('`add_volume` only supports scalars with 1 or 2 dimensions')
            if scalars.shape[1] != 4 or scalars.dtype != np.uint8:
                raise ValueError(
                    f'`add_volume` only supports scalars with 2 dimension that have 4 components of datatype np.uint8, scalars have shape {scalars.shape} and datatype {scalars.dtype}',
                )
            if opacity != 'linear':
                opacity = 'linear'
                warnings.warn('Ignoring custom opacity due to RGBA scalars.')

        # Define mapper, volume, and add the correct properties
        mappers_lookup = {
            'fixed_point': FixedPointVolumeRayCastMapper,
            'gpu': GPUVolumeRayCastMapper,
            'open_gl': OpenGLGPUVolumeRayCastMapper,
            'smart': SmartVolumeMapper,
            'ugrid': UnstructuredGridVolumeRayCastMapper,
        }
        if not isinstance(mapper, str) or mapper not in mappers_lookup.keys():
            raise TypeError(
                f"Mapper ({mapper}) unknown. Available volume mappers include: {', '.join(mappers_lookup.keys())}",
            )
        self.mapper = mappers_lookup[mapper](theme=self._theme)

        # Set scalars range
        min_, max_ = None, None
        if clim is None:
            if scalars.dtype == np.uint8:
                clim = [0, 255]
            else:
                min_, max_ = np.nanmin(scalars), np.nanmax(scalars)
                clim = [min_, max_]
        elif isinstance(clim, (float, int)):
            clim = [-clim, clim]

        if log_scale:
            if clim[0] <= 0:
                clim = [sys.float_info.min, clim[1]]

        # data must be between [0, 255], but not necessarily UINT8
        # Preserve backwards compatibility and have same behavior as VTK.
        if scalars.dtype != np.uint8 and clim != [0, 255]:
            # must copy to avoid modifying inplace and remove any VTK weakref
            scalars = np.array(scalars)
            clim = np.asarray(clim, dtype=scalars.dtype)
            scalars.clip(clim[0], clim[1], out=scalars)
            if log_scale:
                out = mpl.colors.LogNorm(clim[0], clim[1])(scalars)
                scalars = out.data * 255
            else:
                if min_ is None:
                    min_, max_ = np.nanmin(scalars), np.nanmax(scalars)
                np.true_divide((scalars - min_), (max_ - min_) / 255, out=scalars, casting='unsafe')

        volume[title] = scalars
        volume.active_scalars_name = title

        # Scalars interpolation approach
        if scalars.shape[0] == volume.n_points:
            self.mapper.scalar_map_mode = 'point'
        elif scalars.shape[0] == volume.n_cells:
            self.mapper.scalar_map_mode = 'cell'
        else:
            raise_not_matching(scalars, volume)

        self.mapper.scalar_range = clim

        if isinstance(cmap, pyvista.LookupTable):
            self.mapper.lookup_table = cmap
        else:
            if cmap is None:
                cmap = self._theme.cmap

            cmap = get_cmap_safe(cmap)
            if categories:
                if categories is True:
                    n_colors = len(np.unique(scalars))
                elif isinstance(categories, int):
                    n_colors = categories

            if flip_scalars:
                cmap = cmap.reversed()

            # Set colormap and build lookup table
            self.mapper.lookup_table.apply_cmap(cmap, n_colors)
            self.mapper.lookup_table.apply_opacity(opacity)
            self.mapper.lookup_table.scalar_range = clim
            self.mapper.lookup_table.log_scale = log_scale
            if isinstance(annotations, dict):
                self.mapper.lookup_table.annotations = annotations

        self.mapper.dataset = volume
        self.mapper.blend_mode = blending
        self.mapper.update()

        self.volume = Volume()
        self.volume.mapper = self.mapper
        self.volume.user_matrix = user_matrix

        self.volume.prop = VolumeProperty(
            lookup_table=self.mapper.lookup_table,
            ambient=ambient,
            shade=shade,
            specular=specular,
            specular_power=specular_power,
            diffuse=diffuse,
            opacity_unit_distance=opacity_unit_distance,
        )

        if scalars.ndim == 2:
            self.volume.prop.independent_components = False
            show_scalar_bar = False

        actor, prop = self.add_actor(
            self.volume,
            reset_camera=reset_camera,
            name=name,
            culling=culling,
            pickable=pickable,
            render=render,
        )

        # Add scalar bar if scalars are available
        if show_scalar_bar and scalars is not None:
            self.add_scalar_bar(**scalar_bar_args)

        self.renderer.Modified()
        return actor

    def add_silhouette(
        self,
        mesh,
        color=None,
        line_width=None,
        opacity=None,
        feature_angle=None,
        decimate=None,
    ):
        """Add a silhouette of a PyVista or VTK dataset to the scene.

        A silhouette can also be generated directly in
        :func:`add_mesh <pyvista.Plotter.add_mesh>`. See also
        :ref:`silhouette_example`.

        Parameters
        ----------
        mesh : pyvista.DataSet | vtk.vtkAlgorithm
            Mesh or mesh-producing algorithm for generating silhouette
            to plot.

        color : ColorLike, optional
            Color of the silhouette lines.

        line_width : float, optional
            Silhouette line width.

        opacity : float, optional
            Line transparency between ``0`` and ``1``.

        feature_angle : float, optional
            If set, display sharp edges exceeding that angle in degrees.

        decimate : float, optional
            Level of decimation between ``0`` and ``1``. Decimating will
            improve rendering performance. A good rule of thumb is to
            try ``0.9``  first and decrease until the desired rendering
            performance is achieved.

        Returns
        -------
        pyvista.Actor
            Actor of the silhouette.

        Examples
        --------
        >>> import pyvista as pv
        >>> from pyvista import examples
        >>> bunny = examples.download_bunny()
        >>> plotter = pv.Plotter()
        >>> _ = plotter.add_mesh(bunny, color='lightblue')
        >>> _ = plotter.add_silhouette(bunny, color='red', line_width=8.0)
        >>> plotter.view_xy()
        >>> plotter.show()

        """
        mesh, algo = algorithm_to_mesh_handler(mesh)
        if not isinstance(mesh, pyvista.PolyData):
            algo = extract_surface_algorithm(algo or mesh)
            mesh, algo = algorithm_to_mesh_handler(algo)

        silhouette_params = self._theme.silhouette.to_dict()

        if color is None:
            color = silhouette_params["color"]
        if line_width is None:
            line_width = silhouette_params["line_width"]
        if opacity is None:
            opacity = silhouette_params["opacity"]
        if feature_angle is None:
            feature_angle = silhouette_params["feature_angle"]
        if decimate is None:
            decimate = silhouette_params["decimate"]

        # At this point we are dealing with a pipeline, so no `algo or mesh`
        if decimate:
            # Always triangulate as decimation filters needs it
            # and source mesh could have been any type
            algo = triangulate_algorithm(algo or mesh)
            algo = decimation_algorithm(algo, decimate)
            mesh, algo = algorithm_to_mesh_handler(algo)

        alg = _vtk.vtkPolyDataSilhouette()
        set_algorithm_input(alg, algo or mesh)
        alg.SetCamera(self.renderer.camera)
        if feature_angle is not None:
            alg.SetEnableFeatureAngle(True)
            alg.SetFeatureAngle(feature_angle)
        else:
            alg.SetEnableFeatureAngle(False)
        mapper = DataSetMapper(theme=self._theme)
        mapper.SetInputConnection(alg.GetOutputPort())
        actor, prop = self.add_actor(mapper)
        prop.SetColor(Color(color).float_rgb)
        prop.SetOpacity(opacity)
        prop.SetLineWidth(line_width)

        return actor

    def update_scalar_bar_range(self, clim, name=None):
        """Update the value range of the active or named scalar bar.

        Parameters
        ----------
        clim : sequence[float]
            The new range of scalar bar. For example ``[-1, 2]``.

        name : str, optional
            The title of the scalar bar to update.

        """
        if isinstance(clim, (float, int)):
            clim = [-clim, clim]
        if len(clim) != 2:
            raise TypeError('clim argument must be a length 2 iterable of values: (min, max).')
        if name is None:
            if not hasattr(self, 'mapper'):
                raise AttributeError('This plotter does not have an active mapper.')
            self.mapper.scalar_range = clim
            return

        try:
            # use the name to find the desired actor
            for mh in self.scalar_bars._scalar_bar_mappers[name]:
                mh.scalar_range = clim
        except KeyError:
            raise ValueError(f'Name ({name!r}) not valid/not found in this plotter.') from None

    def clear_actors(self):
        """Clear actors from all renderers."""
        self.renderers.clear_actors()

    def clear(self):
        """Clear plot by removing all actors and properties.

        Examples
        --------
        >>> import pyvista as pv
        >>> plotter = pv.Plotter()
        >>> actor = plotter.add_mesh(pv.Sphere())
        >>> plotter.clear()
        >>> plotter.renderer.actors
        {}

        """
        self.renderers.clear()
        self.scalar_bars.clear()
        self.mesh = None
        self.mapper = None

    def link_views(self, views=0):
        """Link the views' cameras.

        Parameters
        ----------
        views : int | tuple | list, default: 0
            If ``views`` is int, link the views to the given view
            index or if ``views`` is a tuple or a list, link the given
            views cameras.

        Examples
        --------
        Not linked view case.

        >>> import pyvista as pv
        >>> from pyvista import demos
        >>> ocube = demos.orientation_cube()
        >>> pl = pv.Plotter(shape=(1, 2))
        >>> pl.subplot(0, 0)
        >>> _ = pl.add_mesh(ocube['cube'], show_edges=True)
        >>> _ = pl.add_mesh(ocube['x_p'], color='blue')
        >>> _ = pl.add_mesh(ocube['x_n'], color='blue')
        >>> _ = pl.add_mesh(ocube['y_p'], color='green')
        >>> _ = pl.add_mesh(ocube['y_n'], color='green')
        >>> _ = pl.add_mesh(ocube['z_p'], color='red')
        >>> _ = pl.add_mesh(ocube['z_n'], color='red')
        >>> pl.camera_position = 'yz'
        >>> pl.subplot(0, 1)
        >>> _ = pl.add_mesh(ocube['cube'], show_edges=True)
        >>> _ = pl.add_mesh(ocube['x_p'], color='blue')
        >>> _ = pl.add_mesh(ocube['x_n'], color='blue')
        >>> _ = pl.add_mesh(ocube['y_p'], color='green')
        >>> _ = pl.add_mesh(ocube['y_n'], color='green')
        >>> _ = pl.add_mesh(ocube['z_p'], color='red')
        >>> _ = pl.add_mesh(ocube['z_n'], color='red')
        >>> pl.show_axes()
        >>> pl.show()

        Linked view case.

        >>> pl = pv.Plotter(shape=(1, 2))
        >>> pl.subplot(0, 0)
        >>> _ = pl.add_mesh(ocube['cube'], show_edges=True)
        >>> _ = pl.add_mesh(ocube['x_p'], color='blue')
        >>> _ = pl.add_mesh(ocube['x_n'], color='blue')
        >>> _ = pl.add_mesh(ocube['y_p'], color='green')
        >>> _ = pl.add_mesh(ocube['y_n'], color='green')
        >>> _ = pl.add_mesh(ocube['z_p'], color='red')
        >>> _ = pl.add_mesh(ocube['z_n'], color='red')
        >>> pl.camera_position = 'yz'
        >>> pl.subplot(0, 1)
        >>> _ = pl.add_mesh(ocube['cube'], show_edges=True)
        >>> _ = pl.add_mesh(ocube['x_p'], color='blue')
        >>> _ = pl.add_mesh(ocube['x_n'], color='blue')
        >>> _ = pl.add_mesh(ocube['y_p'], color='green')
        >>> _ = pl.add_mesh(ocube['y_n'], color='green')
        >>> _ = pl.add_mesh(ocube['z_p'], color='red')
        >>> _ = pl.add_mesh(ocube['z_n'], color='red')
        >>> pl.show_axes()
        >>> pl.link_views()
        >>> pl.show()

        """
        if isinstance(views, (int, np.integer)):
            camera = self.renderers[views].camera
            camera_status = self.renderers[views].camera.is_set
            for renderer in self.renderers:
                renderer.camera = camera
                renderer.camera.is_set = camera_status
            return
        views = np.asarray(views)
        if np.issubdtype(views.dtype, np.integer):
            camera = self.renderers[views[0]].camera
            camera_status = self.renderers[views[0]].camera.is_set
            for view_index in views:
                self.renderers[view_index].camera = camera
                self.renderers[view_index].camera.is_set = camera_status
        else:
            raise TypeError(f'Expected type is int, list or tuple: {type(views)} is given')

    def unlink_views(self, views=None):
        """Unlink the views' cameras.

        Parameters
        ----------
        views : int | tuple | list, optional
            If ``views`` is None unlink all the views, if ``views``
            is int unlink the selected view's camera or if ``views``
            is a tuple or a list, unlink the given views cameras.

        """
        if views is None:
            for renderer in self.renderers:
                renderer.camera = Camera()
                renderer.reset_camera()
                renderer.camera.is_set = False
        elif isinstance(views, int):
            self.renderers[views].camera = Camera()
            self.renderers[views].reset_camera()
            self.renderers[views].camera.is_set = False
        elif isinstance(views, Iterable):
            for view_index in views:
                self.renderers[view_index].camera = Camera()
                self.renderers[view_index].reset_camera()
                self.renderers[view_index].cemera_set = False
        else:
            raise TypeError(f'Expected type is None, int, list or tuple: {type(views)} is given')

    @wraps(ScalarBars.add_scalar_bar)
    def add_scalar_bar(self, *args, **kwargs):  # numpydoc ignore=PR01,RT01
        """Wrap for ``ScalarBars.add_scalar_bar``."""
        # only render when the plotter has already been shown
        render = kwargs.get('render', None)
        if render is None:
            kwargs['render'] = not self._first_time

        # check if maper exists
        mapper = kwargs.get('mapper', None)
        if mapper is None:
            if not hasattr(self, 'mapper') or self.mapper is None:
                raise AttributeError('Mapper does not exist.  Add a mesh with scalars first.')
            kwargs['mapper'] = self.mapper

        # title can be the first and only arg
        title = args[0] if len(args) else kwargs.get("title", "")
        if title is None:
            title = ''
        kwargs['title'] = title

        interactive = kwargs.get('interactive', None)
        if interactive is None:
            interactive = self._theme.interactive
            if self.shape != (1, 1):
                interactive = False
        elif interactive and self.shape != (1, 1):
            raise ValueError('Interactive scalar bars disabled for multi-renderer plots')
        # by default, use the plotter local theme
        kwargs.setdefault('theme', self._theme)
        return self.scalar_bars.add_scalar_bar(**kwargs)

    def update_scalars(self, scalars, mesh=None, render=True):
        """Update scalars of an object in the plotter.

        .. deprecated:: 0.43.0
            This method is deprecated and will be removed in a future version of
            PyVista. It is functionally equivalent to directly modifying the
            scalars of a mesh in-place.

            .. code:: python

                # Modify the points in place
                mesh["my scalars"] = values
                # Explicitly call render if needed
                plotter.render()

        Parameters
        ----------
        scalars : sequence
            Scalars to replace existing scalars.

        mesh : vtk.PolyData | vtk.UnstructuredGrid, optional
            Object that has already been added to the Plotter.  If
            None, uses last added mesh.

        render : bool, default: True
            Force a render when True.
        """
        # Deprecated on 0.43.0, estimated removal on v0.46.0
        warnings.warn(
            "This method is deprecated and will be removed in a future version of "
            "PyVista. Directly modify the scalars of a mesh in-place instead.",
            PyVistaDeprecationWarning,
        )

        if mesh is None:
            mesh = self.mesh

        if isinstance(mesh, (Iterable, pyvista.MultiBlock)):
            # Recursive if need to update scalars on many meshes
            for m in mesh:
                self.update_scalars(scalars, mesh=m, render=False)
            if render:
                self.render()
            return

        if isinstance(scalars, str):
            # Grab scalars array if name given
            scalars = get_array(mesh, scalars)

        if scalars is None:
            if render:
                self.render()
            return

        if scalars.shape[0] == mesh.GetNumberOfPoints():
            data = mesh.GetPointData()
        elif scalars.shape[0] == mesh.GetNumberOfCells():
            data = mesh.GetCellData()
        else:
            raise_not_matching(scalars, mesh)

        vtk_scalars = data.GetScalars()
        if vtk_scalars is None:
            raise ValueError('No active scalars')
        s = convert_array(vtk_scalars)
        s[:] = scalars
        vtk_scalars.Modified()
        data.Modified()
        with contextlib.suppress(Exception):
            # Why are the points updated here? Not all datasets have points
            # and only the scalars array is modified by this function...
            mesh.GetPoints().Modified()

        if render:
            self.render()

    def update_coordinates(self, points, mesh=None, render=True):
        """Update the points of an object in the plotter.

        .. deprecated:: 0.43.0
            This method is deprecated and will be removed in a future version of
            PyVista. It is functionally equivalent to directly modifying the
            points of a mesh in-place.

            .. code:: python

                # Modify the points in place
                mesh.points = points
                # Explicitly call render if needed
                plotter.render()

        Parameters
        ----------
        points : np.ndarray
            Points to replace existing points.

        mesh : vtk.PolyData | vtk.UnstructuredGrid, optional
            Object that has already been added to the Plotter.  If ``None``, uses
            last added mesh.

        render : bool, default: True
            Force a render when True.
        """
        # Deprecated on 0.43.0, estimated removal on v0.46.0
        warnings.warn(
            "This method is deprecated and will be removed in a future version of "
            "PyVista. Directly modify the points of a mesh in-place instead.",
            PyVistaDeprecationWarning,
        )
        if mesh is None:
            mesh = self.mesh

        mesh.points = points

        # only render when the plotter has already been shown
        if render is None:
            render = not self._first_time

        if render:
            self.render()

    def _clear_ren_win(self):
        """Clear the render window."""
        # Not using `render_window` property here to enforce clean up
        if hasattr(self, 'ren_win'):
            self.ren_win.Finalize()
            del self.ren_win

    def close(self):
        """Close the render window."""
        # optionally run just prior to exiting the plotter
        if self._before_close_callback is not None:
            self._before_close_callback(self)
            self._before_close_callback = None

        # must close out widgets first
        super().close()
        # Renderer has an axes widget, so close it
        self.renderers.close()
        self.renderers.remove_all_lights()

        # Grab screenshots of last render
        # self.last_image = self.screenshot(None, return_img=True)
        # self.last_image_depth = self.get_image_depth()

        # reset scalar bars
        self.scalar_bars.clear()
        self.mesh = None
        self.mapper = None

        # grab the display id before clearing the window
        # this is an experimental feature
        if KILL_DISPLAY:  # pragma: no cover
            disp_id = None
            if self.render_window is not None:
                disp_id = self.render_window.GetGenericDisplayId()
        self._clear_ren_win()

        if self.iren is not None:
            self.iren.close()
            if KILL_DISPLAY:  # pragma: no cover
                _kill_display(disp_id)
            self.iren = None

        if hasattr(self, 'text'):
            del self.text

        # end movie
        if hasattr(self, 'mwriter'):
            with suppress(BaseException):
                self.mwriter.close()

        # Remove the global reference to this plotter unless building the
        # gallery to allow it to collect.
        if not pyvista.BUILDING_GALLERY:
            if _ALL_PLOTTERS is not None:
                _ALL_PLOTTERS.pop(self._id_name, None)

        # this helps managing closed plotters
        self._closed = True

    def deep_clean(self):
        """Clean the plotter of the memory."""
        self.disable_picking()
        if hasattr(self, 'renderers'):
            self.renderers.deep_clean()
        self.mesh = None
        self.mapper = None
        self.volume = None
        self.text = None

    def add_text(
        self,
        text,
        position='upper_left',
        font_size=18,
        color=None,
        font=None,
        shadow=False,
        name=None,
        viewport=False,
        orientation=0.0,
        font_file=None,
        *,
        render=True,
    ):
        """Add text to plot object in the top left corner by default.

        Parameters
        ----------
        text : str
            The text to add the rendering.

        position : str | sequence[float], default: "upper_left"
            Position to place the bottom left corner of the text box.
            If tuple is used, the position of the text uses the pixel
            coordinate system (default). In this case,
            it returns a more general `vtkOpenGLTextActor`.
            If string name is used, it returns a `vtkCornerAnnotation`
            object normally used for fixed labels (like title or xlabel).
            Default is to find the top left corner of the rendering window
            and place text box up there. Available position: ``'lower_left'``,
            ``'lower_right'``, ``'upper_left'``, ``'upper_right'``,
            ``'lower_edge'``, ``'upper_edge'``, ``'right_edge'``, and
            ``'left_edge'``.

        font_size : float, default: 18
            Sets the size of the title font.

        color : ColorLike, optional
            Either a string, RGB list, or hex color string.  For example:

            * ``color='white'``
            * ``color='w'``
            * ``color=[1.0, 1.0, 1.0]``
            * ``color='#FFFFFF'``

            Defaults to :attr:`pyvista.global_theme.font.color <pyvista.plotting.themes._Font.color>`.

        font : str, default: 'arial'
            Font name may be ``'courier'``, ``'times'``, or ``'arial'``.
            This is ignored if the `font_file` is set.

        shadow : bool, default: False
            Adds a black shadow to the text.

        name : str, optional
            The name for the added actor so that it can be easily updated.
            If an actor of this name already exists in the rendering window, it
            will be replaced by the new actor.

        viewport : bool, default: False
            If ``True`` and position is a tuple of float, uses the
            normalized viewport coordinate system (values between 0.0
            and 1.0 and support for HiDPI).

        orientation : float, default: 0.0
            Angle orientation of text counterclockwise in degrees.  The text
            is rotated around an anchor point that may be on the edge or
            corner of the text.  The default is horizontal (0.0 degrees).

        font_file : str, default: None
            The absolute file path to a local file containing a freetype
            readable font.

        render : bool, default: True
            Force a render when ``True``.

        Returns
        -------
        vtk.vtkTextActor
            Text actor added to plot.

        Examples
        --------
        Add blue text to the upper right of the plotter.

        >>> import pyvista as pv
        >>> pl = pv.Plotter()
        >>> actor = pl.add_text(
        ...     'Sample Text',
        ...     position='upper_right',
        ...     color='blue',
        ...     shadow=True,
        ...     font_size=26,
        ... )
        >>> pl.show()

        Add text and use a custom freetype readable font file.

        >>> pl = pv.Plotter()
        >>> actor = pl.add_text(
        ...     'Text',
        ...     font_file='/home/user/Mplus2-Regular.ttf',
        ... )  # doctest:+SKIP


        """
        if font_size is None:
            font_size = self._theme.font.size
        if position is None:
            # Set the position of the text to the top left corner
            window_size = self.window_size
            x = (window_size[0] * 0.02) / self.shape[0]
            y = (window_size[1] * 0.85) / self.shape[0]
            position = [x, y]
        text_prop = TextProperty(
            color=color,
            font_family=font,
            orientation=orientation,
            font_file=font_file,
            shadow=shadow,
        )
        if isinstance(position, (int, str, bool)):
            self.text = CornerAnnotation(position, text, linear_font_scale_factor=font_size // 2)
        else:
            self.text = Text(text=text, position=position)
            if viewport:
                self.text.GetActualPositionCoordinate().SetCoordinateSystemToNormalizedViewport()
                self.text.GetActualPosition2Coordinate().SetCoordinateSystemToNormalizedViewport()
            text_prop.font_size = int(font_size * 2)
        self.text.prop = text_prop
        self.add_actor(self.text, reset_camera=False, name=name, pickable=False, render=render)
        return self.text

    def open_movie(self, filename, framerate=24, quality=5, **kwargs):
        """Establish a connection to the ffmpeg writer.

        Requires ``imageio`` to be installed.

        Parameters
        ----------
        filename : str | Path
            Filename of the movie to open.  Filename should end in mp4,
            but other filetypes may be supported.  See :func:`imageio.get_writer()
            <imageio.v2.get_writer>`.

        framerate : int, default: 24
            Frames per second.

        quality : int, default: 5
            Quality 10 is the top possible quality for any codec. The
            range is ``0 - 10``.  Higher quality leads to a larger file.

        **kwargs : dict, optional
            See the documentation for :func:`imageio.get_writer()
            <imageio.v2.get_writer>` for additional kwargs.

        Notes
        -----
        See the documentation for :func:`imageio.get_writer() <imageio.v2.get_writer>`.

        Examples
        --------
        Open a MP4 movie and set the quality to maximum.

        >>> import pyvista as pv
        >>> pl = pv.Plotter()
        >>> pl.open_movie('movie.mp4', quality=10)  # doctest:+SKIP

        """
        try:
            from imageio import get_writer
        except ModuleNotFoundError:  # pragma: no cover
            raise ModuleNotFoundError(
                'Install imageio to use `open_movie` with:\n\n   pip install imageio',
            ) from None

        if (
            isinstance(pyvista.FIGURE_PATH, str) and not Path(filename).is_absolute()
        ):  # pragma: no cover
            filename = Path(pyvista.FIGURE_PATH) / filename
        self.mwriter = get_writer(filename, fps=framerate, quality=quality, **kwargs)

    def open_gif(
        self,
        filename,
        loop=0,
        fps=10,
        palettesize=256,
        subrectangles=False,
        **kwargs,
    ):
        """Open a gif file.

        Requires ``imageio`` to be installed.

        Parameters
        ----------
        filename : str | Path
            Filename of the gif to open.  Filename must end in ``"gif"``.

        loop : int, default: 0
            The number of iterations. Default value of 0 loops indefinitely.

        fps : float, default: 10
            The number of frames per second. If duration is not given, the
            duration for each frame is set to 1/fps.

        palettesize : int, default: 256
            The number of colors to quantize the image to. Is rounded to the
            nearest power of two. Must be between 2 and 256.

        subrectangles : bool, default: False
            If ``True``, will try and optimize the GIF by storing only the rectangular
            parts of each frame that change with respect to the previous.

            .. note::
               Setting this to ``True`` may help reduce jitter in colorbars.

        **kwargs : dict, optional
            See the documentation for :func:`imageio.get_writer() <imageio.v2.get_writer>`
            for additional kwargs.

        Notes
        -----
        Consider using `pygifsicle
        <https://github.com/LucaCappelletti94/pygifsicle>`_ to reduce the final
        size of the gif. See `Optimizing a GIF using pygifsicle
        <https://imageio.readthedocs.io/en/stable/examples.html#optimizing-a-gif-using-pygifsicle>`_.

        Examples
        --------
        Open a gif file, setting the framerate to 8 frames per second and
        reducing the colorspace to 64.

        >>> import pyvista as pv
        >>> pl = pv.Plotter()
        >>> pl.open_gif(
        ...     'movie.gif', fps=8, palettesize=64
        ... )  # doctest:+SKIP

        See :ref:`gif_movie_example` for a full example using this method.

        """
        try:
            from imageio import __version__
            from imageio import get_writer
        except ModuleNotFoundError:  # pragma: no cover
            raise ModuleNotFoundError(
                'Install imageio to use `open_gif` with:\n\n   pip install imageio',
            ) from None

        filename = Path(filename)
        if not filename.suffix == '.gif':
            raise ValueError('Unsupported filetype.  Must end in .gif')
        if isinstance(pyvista.FIGURE_PATH, str) and not filename.is_absolute():  # pragma: no cover
            filename = Path(pyvista.FIGURE_PATH) / filename
        self._gif_filename = filename.resolve()

        kwargs['mode'] = 'I'
        kwargs['loop'] = loop
        kwargs['palettesize'] = palettesize
        kwargs['subrectangles'] = subrectangles
        if scooby.meets_version(__version__, '2.28.1'):
            kwargs['duration'] = 1000 * 1 / fps
        else:  # pragma: no cover
            kwargs['fps'] = fps

        self.mwriter = get_writer(filename, **kwargs)

    def write_frame(self):
        """Write a single frame to the movie file.

        Examples
        --------
        >>> import pyvista as pv
        >>> plotter = pv.Plotter()
        >>> plotter.open_movie(filename)  # doctest:+SKIP
        >>> plotter.add_mesh(pv.Sphere())  # doctest:+SKIP
        >>> plotter.write_frame()  # doctest:+SKIP

        See :ref:`movie_example` for a full example using this method.

        """
        # if off screen, show has not been called and we must render
        # before extracting an image
        if self._first_time:
            self._on_first_render_request()
            self.render()

        if not hasattr(self, 'mwriter'):
            raise RuntimeError('This plotter has not opened a movie or GIF file.')
        self.update()
        self.mwriter.append_data(self.image)

    def get_image_depth(self, fill_value=np.nan, reset_camera_clipping_range=True):
        """Return a depth image representing current render window.

        Parameters
        ----------
        fill_value : float, default: numpy.nan
            Fill value for points in image that do not include objects
            in scene.  To not use a fill value, pass ``None``.

        reset_camera_clipping_range : bool, default: True
            Reset the camera clipping range to include data in view.

        Returns
        -------
        pyvista.pyvista_ndarray
            Image of depth values from camera orthogonal to image
            plane.

        Notes
        -----
        Values in image_depth are negative to adhere to a
        right-handed coordinate system.

        Examples
        --------
        >>> import pyvista as pv
        >>> plotter = pv.Plotter()
        >>> actor = plotter.add_mesh(pv.Sphere())
        >>> plotter.show()
        >>> zval = plotter.get_image_depth()

        """
        # allow no render window
        if self.render_window is None and self.last_image_depth is not None:
            zval = self.last_image_depth.copy()
            if fill_value is not None:
                zval[self._image_depth_null] = fill_value
            return zval

        self._check_rendered()
        self._check_has_ren_win()

        # Ensure points in view are within clipping range of renderer?
        if reset_camera_clipping_range:
            self.renderer.ResetCameraClippingRange()

        # Get the z-buffer image
        ifilter = _vtk.vtkWindowToImageFilter()
        ifilter.SetInput(self.render_window)
        ifilter.SetScale(self.image_scale)
        ifilter.ReadFrontBufferOff()
        ifilter.SetInputBufferTypeToZBuffer()
        zbuff = run_image_filter(ifilter)[:, :, 0]

        # Convert z-buffer values to depth from camera
        with warnings.catch_warnings():
            warnings.filterwarnings('ignore')
            near, far = self.camera.clipping_range
            if self.camera.parallel_projection:
                zval = (zbuff - near) / (far - near)
            else:
                zval = 2 * near * far / ((zbuff - 0.5) * 2 * (far - near) - near - far)

            # Consider image values outside clipping range as nans
            self._image_depth_null = np.logical_or(zval < -far, np.isclose(zval, -far))

        if fill_value is not None:
            zval[self._image_depth_null] = fill_value

        return zval

    def add_lines(self, lines, color='w', width=5, label=None, name=None, connected=False):
        """Add lines to the plotting object.

        Parameters
        ----------
        lines : np.ndarray
            Points representing line segments.  For example, two line
            segments would be represented as ``np.array([[0, 1, 0],
            [1, 0, 0], [1, 1, 0], [2, 0, 0]])``.

        color : ColorLike, default: 'w'
            Either a string, rgb list, or hex color string.  For example:

            * ``color='white'``
            * ``color='w'``
            * ``color=[1.0, 1.0, 1.0]``
            * ``color='#FFFFFF'``

        width : float, default: 5
            Thickness of lines.

        label : str, default: None
            String label to use when adding a legend to the scene with
            :func:`pyvista.Plotter.add_legend`.

        name : str, default: None
            The name for the added actor so that it can be easily updated.
            If an actor of this name already exists in the rendering window, it
            will be replaced by the new actor.

        connected : bool, default: False
            Treat ``lines`` as points representing a series of *connected* lines.
            For example, two connected line segments would be represented as
            ``np.array([[0, 0, 0], [1, 0, 0], [1, 1, 0]])``. If ``False``, an *even*
            number of points must be passed to ``lines``, and the lines need not be
            connected.


        Returns
        -------
        vtk.vtkActor
            Lines actor.

        Examples
        --------
        Plot two lines.

        >>> import numpy as np
        >>> import pyvista as pv
        >>> pl = pv.Plotter()
        >>> points = np.array([[0, 1, 0], [1, 0, 0], [1, 1, 0], [2, 0, 0]])
        >>> actor = pl.add_lines(points, color='purple', width=3)
        >>> pl.camera_position = 'xy'
        >>> pl.show()

        Adding lines with ``connected=True`` will add a series of connected
        line segments.

        >>> pl = pv.Plotter()
        >>> points = np.array([[0, 1, 0], [1, 0, 0], [1, 1, 0], [2, 0, 0]])
        >>> actor = pl.add_lines(
        ...     points, color='purple', width=3, connected=True
        ... )
        >>> pl.camera_position = 'xy'
        >>> pl.show()

        """
        if not isinstance(lines, np.ndarray):
            raise TypeError('Input should be an array of point segments')

        lines = (
            pyvista.lines_from_points(lines)
            if connected
            else pyvista.line_segments_from_points(lines)
        )

        actor = Actor(mapper=DataSetMapper(lines))
        actor.prop.line_width = width
        actor.prop.show_edges = True
        actor.prop.edge_color = color
        actor.prop.color = color
        actor.prop.lighting = False

        # legend label
        if label:
            if not isinstance(label, str):
                raise TypeError('Label must be a string')
            addr = actor.GetAddressAsString("")
            self.renderer._labels[addr] = [lines, label, Color(color)]

        # Add to renderer
        self.add_actor(actor, reset_camera=False, name=name, pickable=False)
        return actor

    @wraps(ScalarBars.remove_scalar_bar)
    def remove_scalar_bar(self, *args, **kwargs):  # numpydoc ignore=PR01,RT01
        """Remove the active scalar bar."""
        self.scalar_bars.remove_scalar_bar(*args, **kwargs)

    def add_point_labels(
        self,
        points,
        labels,
        italic=False,
        bold=True,
        font_size=None,
        text_color=None,
        font_family=None,
        shadow=False,
        show_points=True,
        point_color=None,
        point_size=None,
        name=None,
        shape_color='grey',
        shape='rounded_rect',
        fill_shape=True,
        margin=3,
        shape_opacity=1.0,
        pickable=False,
        render_points_as_spheres=False,
        tolerance=0.001,
        reset_camera=None,
        always_visible=False,
        render=True,
        justification_horizontal=None,
        justification_vertical=None,
        background_color=None,
        background_opacity=None,
    ):
        """Create a point actor with one label from list labels assigned to each point.

        Parameters
        ----------
        points : sequence | pyvista.DataSet | vtk.vtkAlgorithm
            An ``n x 3`` sequence points or :class:`pyvista.DataSet` with
            points or mesh-producing algorithm.

        labels : list | str
            List of labels.  Must be the same length as points. If a
            string name is given with a :class:`pyvista.DataSet` input for
            points, then these are fetched.

        italic : bool, default: False
            Italicises title and bar labels.

        bold : bool, default: True
            Bolds title and bar labels.

        font_size : float, optional
            Sets the size of the title font.

        text_color : ColorLike, optional
            Color of text. Either a string, RGB sequence, or hex color string.

            * ``text_color='white'``
            * ``text_color='w'``
            * ``text_color=[1.0, 1.0, 1.0]``
            * ``text_color='#FFFFFF'``

        font_family : str, optional
            Font family.  Must be either ``'courier'``, ``'times'``,
            or ``'arial``.

        shadow : bool, default: False
            Adds a black shadow to the text.

        show_points : bool, default: True
            Controls if points are visible.

        point_color : ColorLike, optional
            Either a string, rgb list, or hex color string.  One of
            the following.

            * ``point_color='white'``
            * ``point_color='w'``
            * ``point_color=[1.0, 1.0, 1.0]``
            * ``point_color='#FFFFFF'``

        point_size : float, optional
            Size of points if visible.

        name : str, optional
            The name for the added actor so that it can be easily
            updated.  If an actor of this name already exists in the
            rendering window, it will be replaced by the new actor.

        shape_color : ColorLike, default: "grey"
            Color of shape (if visible).  Either a string, rgb
            sequence, or hex color string.

        shape : str, default: "rounded_rect"
            The string name of the shape to use. Options are ``'rect'`` or
            ``'rounded_rect'``. If you want no shape, pass ``None``.

        fill_shape : bool, default: True
            Fill the shape with the ``shape_color``. Outlines if ``False``.

        margin : int, default: 3
            The size of the margin on the label background shape.

        shape_opacity : float, default: 1.0
            The opacity of the shape in the range of ``[0, 1]``.

        pickable : bool, default: False
            Set whether this actor is pickable.

        render_points_as_spheres : bool, default: False
            Render points as spheres rather than dots.

        tolerance : float, default: 0.001
            A tolerance to use to determine whether a point label is
            visible.  A tolerance is usually required because the
            conversion from world space to display space during
            rendering introduces numerical round-off.

        reset_camera : bool, optional
            Reset the camera after adding the points to the scene.

        always_visible : bool, default: False
            Skip adding the visibility filter.

        render : bool, default: True
            Force a render when ``True``.

        justification_horizontal : str, optional
            Text's horizontal justification.
            Should be either "left", "center" or "right".

            .. warning::
                If the justification is not default,
                the shape will be out of alignment with the label.
                If you use other than default,
                Please use the background color.
                See: https://github.com/pyvista/pyvista/pull/5407

        justification_vertical : str, optional
            Text's vertical justification.
            Should be either "bottom", "center" or "top".

            .. warning::
                If the justification is not default,
                the shape will be out of alignment with the label.
                If you use other than default,
                Please use the background color.
                See: https://github.com/pyvista/pyvista/pull/5407

        background_color : pyvista.Color, optional
            Background color of text's property.

        background_opacity : pyvista.Color, optional
            Background opacity of text's property.

        Returns
        -------
        vtk.vtkActor2D
            VTK label actor.  Can be used to change properties of the labels.

        Examples
        --------
        >>> import numpy as np
        >>> import pyvista as pv
        >>> pl = pv.Plotter()
        >>> points = np.array(
        ...     [[0.0, 0.0, 0.0], [1.0, 1.0, 0.0], [2.0, 0.0, 0.0]]
        ... )
        >>> labels = ['Point A', 'Point B', 'Point C']
        >>> actor = pl.add_point_labels(
        ...     points,
        ...     labels,
        ...     italic=True,
        ...     font_size=20,
        ...     point_color='red',
        ...     point_size=20,
        ...     render_points_as_spheres=True,
        ...     always_visible=True,
        ...     shadow=True,
        ... )
        >>> pl.camera_position = 'xy'
        >>> pl.show()

        """
        if font_family is None:
            font_family = self._theme.font.family
        if font_size is None:
            font_size = self._theme.font.size
        point_color = Color(point_color, default_color=self._theme.color)

        if isinstance(points, (list, tuple)):
            points = np.array(points)

        if isinstance(points, np.ndarray):
            points = pyvista.PolyData(points)  # Cast to poly data
        elif not is_pyvista_dataset(points) and not isinstance(points, _vtk.vtkAlgorithm):
            raise TypeError(f'Points type not usable: {type(points)}')
        points, algo = algorithm_to_mesh_handler(points)
        if algo is not None:
            if pyvista.vtk_version_info < (9, 1):  # pragma: no cover
                from pyvista.core.errors import VTKVersionError

                raise VTKVersionError(
                    'To use vtkAlgorithms with `add_point_labels` requires VTK 9.1 or later.',
                )
            # Extract points filter
            pc_algo = _vtk.vtkConvertToPointCloud()
            set_algorithm_input(pc_algo, algo)
            algo = pc_algo

        if name is None:
            name = f'{type(points).__name__}({points.memory_address})'

        hier = _vtk.vtkPointSetToLabelHierarchy()
        if not isinstance(labels, str):
            if algo is not None:
                raise TypeError(
                    'If using a vtkAlgorithm input, the labels must be a named array on the dataset.',
                )
            points = pyvista.PolyData(points.points)
            if len(points.points) != len(labels):
                raise ValueError('There must be one label for each point')
            vtklabels = _vtk.vtkStringArray()
            vtklabels.SetName('labels')
            for item in labels:
                vtklabels.InsertNextValue(str(item))
            points.GetPointData().AddArray(vtklabels)
            hier.SetLabelArrayName('labels')
        else:
            # Make sure PointData
            if labels not in points.point_data:
                raise ValueError(f'Array {labels!r} not found in point data.')
            hier.SetLabelArrayName(labels)

        if always_visible:
            set_algorithm_input(hier, algo or points)
        else:
            # Only show visible points
            vis_points = _vtk.vtkSelectVisiblePoints()
            set_algorithm_input(vis_points, algo or points)
            vis_points.SetRenderer(self.renderer)
            vis_points.SetTolerance(tolerance)

            hier.SetInputConnection(vis_points.GetOutputPort())

        # create label mapper
        label_mapper = _vtk.vtkLabelPlacementMapper()
        label_mapper.SetInputConnection(hier.GetOutputPort())
        if not isinstance(shape, str):
            label_mapper.SetShapeToNone()
        elif shape.lower() in 'rect':
            label_mapper.SetShapeToRect()
        elif shape.lower() in 'rounded_rect':
            label_mapper.SetShapeToRoundedRect()
        else:
            raise ValueError(f'Shape ({shape}) not understood')
        if fill_shape:
            label_mapper.SetStyleToFilled()
        else:
            label_mapper.SetStyleToOutline()
        label_mapper.SetBackgroundColor(Color(shape_color).float_rgb)
        label_mapper.SetBackgroundOpacity(shape_opacity)
        label_mapper.SetMargin(margin)

        text_property = pyvista.TextProperty(
            italic=italic,
            bold=bold,
            font_size=font_size,
            font_family=font_family,
            color=text_color,
            shadow=shadow,
            justification_horizontal=justification_horizontal,
            justification_vertical=justification_vertical,
            background_color=background_color,
            background_opacity=background_opacity,
        )
        hier.SetTextProperty(text_property)

        self.remove_actor(f'{name}-points', reset_camera=False)
        self.remove_actor(f'{name}-labels', reset_camera=False)

        # add points
        if show_points:
            self.add_mesh(
                algo or points,
                color=point_color,
                point_size=point_size,
                name=f'{name}-points',
                pickable=pickable,
                render_points_as_spheres=render_points_as_spheres,
                reset_camera=reset_camera,
                render=render,
            )

        label_actor = _vtk.vtkActor2D()
        label_actor.SetMapper(label_mapper)
        self.add_actor(label_actor, reset_camera=False, name=f'{name}-labels', pickable=False)
        return label_actor

    def add_point_scalar_labels(self, points, labels, fmt=None, preamble='', **kwargs):
        """Label the points from a dataset with the values of their scalars.

        Wrapper for :func:`pyvista.Plotter.add_point_labels`.

        Parameters
        ----------
        points : sequence[float] | np.ndarray | pyvista.DataSet
            An ``n x 3`` numpy.ndarray or pyvista dataset with points.

        labels : list | str
            List of scalars of labels.  Must be the same length as points. If a
            string name is given with a :class:`pyvista.DataSet` input for
            points, then these are fetched.

        fmt : str, optional
            String formatter used to format numerical data.

        preamble : str, default: ""
            Text before the start of each label.

        **kwargs : dict, optional
            Keyword arguments passed to
            :func:`pyvista.Plotter.add_point_labels`.

        Returns
        -------
        vtk.vtkActor2D
            VTK label actor.  Can be used to change properties of the labels.

        """
        if not is_pyvista_dataset(points):
            points, _ = _coerce_pointslike_arg(points, copy=False)
        if not isinstance(labels, (str, list)):
            raise TypeError(
                'labels must be a string name of the scalars array to use or list of scalars',
            )
        if fmt is None:
            fmt = self._theme.font.fmt
        if fmt is None:
            fmt = '%.6e'
        if isinstance(points, np.ndarray):
            scalars = labels
        elif is_pyvista_dataset(points):
            scalars = points.point_data[labels]
        phrase = f'{preamble} {fmt}'
        labels = [phrase % val for val in scalars]
        return self.add_point_labels(points, labels, **kwargs)

    def add_points(self, points, style='points', **kwargs):
        """Add points to a mesh.

        Parameters
        ----------
        points : numpy.ndarray or pyvista.DataSet
            Array of points or the points from a pyvista object.

        style : str, default: 'points'
            Visualization style of the mesh.  One of the following:
            ``style='points'``, ``style='points_gaussian'``.
            ``'points_gaussian'`` can be controlled with the ``emissive`` and
            ``render_points_as_spheres`` options.

        **kwargs : dict, optional
            See :func:`pyvista.Plotter.add_mesh` for optional
            keyword arguments.

        Returns
        -------
        pyvista.Actor
            Actor of the mesh.

        Examples
        --------
        Add a numpy array of points to a mesh.

        >>> import numpy as np
        >>> import pyvista as pv
        >>> rng = np.random.default_rng(seed=0)
        >>> points = rng.random((10, 3))
        >>> pl = pv.Plotter()
        >>> actor = pl.add_points(
        ...     points, render_points_as_spheres=True, point_size=100.0
        ... )
        >>> pl.show()

        Plot using the ``'points_gaussian'`` style

        >>> points = rng.random((10, 3))
        >>> pl = pv.Plotter()
        >>> actor = pl.add_points(points, style='points_gaussian')
        >>> pl.show()

        """
        if style not in ['points', 'points_gaussian']:
            raise ValueError(
                f'Invalid style {style} for add_points. Should be either "points" or '
                '"points_gaussian".',
            )
        return self.add_mesh(points, style=style, **kwargs)

    def add_arrows(self, cent, direction, mag=1, **kwargs):
        """Add arrows to the plotter.

        Parameters
        ----------
        cent : np.ndarray
            Array of centers.

        direction : np.ndarray
            Array of direction vectors.

        mag : float, optional
            Amount to scale the direction vectors.

        **kwargs : dict, optional
            See :func:`pyvista.Plotter.add_mesh` for optional
            keyword arguments.

        Returns
        -------
        pyvista.Actor
            Actor of the arrows.

        Examples
        --------
        Plot a random field of vectors and save a screenshot of it.

        >>> import numpy as np
        >>> import pyvista as pv
        >>> rng = np.random.default_rng(seed=0)
        >>> cent = rng.random((10, 3))
        >>> direction = rng.random((10, 3))
        >>> plotter = pv.Plotter()
        >>> _ = plotter.add_arrows(cent, direction, mag=2)
        >>> plotter.show()

        """
        if cent.shape != direction.shape:  # pragma: no cover
            raise ValueError('center and direction arrays must have the same shape')

        direction = direction.copy()
        if cent.ndim != 2:
            cent = cent.reshape((-1, 3))

        if direction.ndim != 2:
            direction = direction.reshape((-1, 3))

        if mag != 1:
            direction = direction * mag

        pdata = pyvista.vector_poly_data(cent, direction)
        # Create arrow object
        arrow = _vtk.vtkArrowSource()
        arrow.Update()
        glyph3D = _vtk.vtkGlyph3D()
        glyph3D.SetSourceData(arrow.GetOutput())
        glyph3D.SetInputData(pdata)
        glyph3D.SetVectorModeToUseVector()
        glyph3D.Update()

        arrows = wrap(glyph3D.GetOutput())
        return self.add_mesh(arrows, **kwargs)

    @staticmethod
    def _save_image(image, filename, return_img):
        """Save to file and/or return a NumPy image array.

        This is an internal helper.

        """
        if not image.size:
            raise ValueError('Empty image. Have you run plot() first?')
        # write screenshot to file if requested
        if isinstance(filename, (str, Path, io.BytesIO)):
            from PIL import Image

            if isinstance(filename, (str, Path)):
                filename = Path(filename)
                if isinstance(pyvista.FIGURE_PATH, str) and not filename.is_absolute():
                    filename = Path(pyvista.FIGURE_PATH) / filename
                if not filename.suffix:
                    filename = filename.with_suffix('.png')
                elif filename.suffix not in SUPPORTED_FORMATS:
                    raise ValueError(
                        f'Unsupported extension {filename.suffix}\n'
                        f'Must be one of the following: {SUPPORTED_FORMATS}',
                    )
                filename = filename.expanduser().resolve()
                Image.fromarray(image).save(filename)
            else:
                Image.fromarray(image).save(filename, format="PNG")
        # return image array if requested
        return image if return_img else None

    def save_graphic(self, filename, title='PyVista Export', raster=True, painter=True):
        """Save a screenshot of the rendering window as a graphic file.

        This can be helpful for publication documents.

        The supported formats are:

        * ``'.svg'``
        * ``'.eps'``
        * ``'.ps'``
        * ``'.pdf'``
        * ``'.tex'``

        Parameters
        ----------
        filename : str
            Path to fsave the graphic file to.

        title : str, default: "PyVista Export"
            Title to use within the file properties.

        raster : bool, default: True
            Attempt to write 3D properties as a raster image.

        painter : bool, default: True
            Configure the exporter to expect a painter-ordered 2D
            rendering, that is, a rendering at a fixed depth where
            primitives are drawn from the bottom up.

        Examples
        --------
        >>> import pyvista as pv
        >>> from pyvista import examples
        >>> pl = pv.Plotter()
        >>> _ = pl.add_mesh(examples.load_airplane(), smooth_shading=True)
        >>> _ = pl.add_background_image(examples.mapfile)
        >>> pl.save_graphic("img.svg")  # doctest:+SKIP

        """
        from vtkmodules.vtkIOExportGL2PS import vtkGL2PSExporter

        if self.render_window is None:
            raise AttributeError('This plotter is closed and unable to save a screenshot.')
        if self._first_time:
            self._on_first_render_request()
            self.render()
        filename = Path(filename)
        if isinstance(pyvista.FIGURE_PATH, str) and not filename.is_absolute():  # pragma: no cover
            filename = Path(pyvista.FIGURE_PATH) / filename
        filename = filename.expanduser().resolve()
        extension = pyvista.core.utilities.fileio.get_ext(filename)

        writer = vtkGL2PSExporter()
        modes = {
            '.svg': writer.SetFileFormatToSVG,
            '.eps': writer.SetFileFormatToEPS,
            '.ps': writer.SetFileFormatToPS,
            '.pdf': writer.SetFileFormatToPDF,
            '.tex': writer.SetFileFormatToTeX,
        }
        if extension not in modes:
            raise ValueError(
                f"Extension ({extension}) is an invalid choice.\n\n"
                f"Valid options include: {', '.join(modes.keys())}",
            )
        writer.CompressOff()
        if pyvista.vtk_version_info < (9, 2, 2):  # pragma no cover
            writer.SetFilePrefix(str(filename.with_suffix('')))
        else:
            writer.SetFilePrefix(filename.with_suffix(''))
        writer.SetInput(self.render_window)
        modes[extension]()
        writer.SetTitle(title)
        writer.SetWrite3DPropsAsRasterImage(raster)
        if painter:
            writer.UsePainterSettings()
        writer.Update()

    def screenshot(
        self,
        filename=None,
        transparent_background=None,
        return_img=True,
        window_size=None,
        scale=None,
    ):
        """Take screenshot at current camera position.

        Parameters
        ----------
        filename : str | Path | io.BytesIO, optional
            Location to write image to.  If ``None``, no image is written.

        transparent_background : bool, optional
            Whether to make the background transparent.  The default is
            looked up on the plotter's theme.

        return_img : bool, default: True
            If ``True``, a :class:`numpy.ndarray` of the image will be
            returned.

        window_size : sequence[int], optional
            Set the plotter's size to this ``(width, height)`` before
            taking the screenshot.

        scale : int, optional
            Set the factor to scale the window size to make a higher
            resolution image. If ``None`` this will use the ``image_scale``
            property on this plotter which defaults to one.

        Returns
        -------
        pyvista.pyvista_ndarray
            Array containing pixel RGB and alpha.  Sized:

            * [Window height x Window width x 3] if
              ``transparent_background`` is set to ``False``.
            * [Window height x Window width x 4] if
              ``transparent_background`` is set to ``True``.

        Examples
        --------
        >>> import pyvista as pv
        >>> sphere = pv.Sphere()
        >>> plotter = pv.Plotter(off_screen=True)
        >>> actor = plotter.add_mesh(sphere)
        >>> plotter.screenshot('screenshot.png')  # doctest:+SKIP

        """
        with self.window_size_context(window_size):
            # configure image filter
            if transparent_background is None:
                transparent_background = self._theme.transparent_background
            self.image_transparent_background = transparent_background

            # This if statement allows you to save screenshots of closed plotters
            # This is needed for the sphinx-gallery to work
            if self.render_window is None:
                # If plotter has been closed...
                # check if last_image exists
                if self.last_image is not None:
                    # Save last image
                    if scale is not None:
                        warnings.warn(
                            'This plotter is closed and cannot be scaled. Using the last saved image. Try using the `image_scale` property directly.',
                        )
                    return self._save_image(self.last_image, filename, return_img)
                # Plotter hasn't been rendered or was improperly closed
                raise RuntimeError('This plotter is closed and unable to save a screenshot.')

            if self._first_time and not self.off_screen:
                raise RuntimeError(
                    "Nothing to screenshot - call .show first or use the off_screen argument",
                )

            # if off screen, show has not been called and we must render
            # before extracting an image
            if self._first_time:
                self._on_first_render_request()
                self.render()

            with self.image_scale_context(scale):
                self._make_render_window_current()
                return self._save_image(self.image, filename, return_img)

    @wraps(Renderers.set_background)
    def set_background(self, *args, **kwargs):  # numpydoc ignore=PR01,RT01
        """Wrap ``Renderers.set_background``."""
        self.renderers.set_background(*args, **kwargs)

    @wraps(Renderers.set_color_cycler)
    def set_color_cycler(self, *args, **kwargs):  # numpydoc ignore=PR01,RT01
        """Wrap ``Renderers.set_color_cycler``."""
        self.renderers.set_color_cycler(*args, **kwargs)

    def generate_orbital_path(self, factor=3.0, n_points=20, viewup=None, shift=0.0):
        """Generate an orbital path around the data scene.

        Parameters
        ----------
        factor : float, default: 3.0
            A scaling factor when building the orbital extent.

        n_points : int, default: 20
            Number of points on the orbital path.

        viewup : sequence[float], optional
            The normal to the orbital plane.

        shift : float, default: 0.0
            Shift the plane up/down from the center of the scene by
            this amount.

        Returns
        -------
        pyvista.PolyData
            PolyData containing the orbital path.

        Examples
        --------
        Generate an orbital path around a sphere.

        >>> import pyvista as pv
        >>> plotter = pv.Plotter()
        >>> _ = plotter.add_mesh(pv.Sphere())
        >>> viewup = [0, 0, 1]
        >>> orbit = plotter.generate_orbital_path(
        ...     factor=2.0, n_points=50, shift=0.0, viewup=viewup
        ... )

        See :ref:`orbiting_example` for a full example using this method.

        """
        if viewup is None:
            viewup = self._theme.camera.viewup
        center = np.array(self.center)
        bnds = np.array(self.bounds)
        radius = (bnds[1] - bnds[0]) * factor
        y = (bnds[3] - bnds[2]) * factor
        if y > radius:
            radius = y
        center += np.array(viewup) * shift
        return pyvista.Polygon(center=center, radius=radius, normal=viewup, n_sides=n_points)

    def fly_to(self, point):
        """Move the current camera's focal point to a position point.

        The movement is animated over the number of frames specified in
        NumberOfFlyFrames. The LOD desired frame rate is used.

        Parameters
        ----------
        point : sequence[float]
            Point to fly to in the form of ``(x, y, z)``.

        """
        self.iren.fly_to(self.renderer, point)

    def orbit_on_path(
        self,
        path=None,
        focus=None,
        step=0.5,
        viewup=None,
        write_frames=False,
        threaded=False,
        progress_bar=False,
    ):
        """Orbit on the given path focusing on the focus point.

        Parameters
        ----------
        path : pyvista.PolyData
            Path of orbital points. The order in the points is the order of
            travel.

        focus : sequence[float], optional
            The point of focus the camera. For example ``(0.0, 0.0, 0.0)``.

        step : float, default: 0.5
            The timestep between flying to each camera position. Ignored when
            ``plotter.off_screen = True``.

        viewup : sequence[float], optional
            The normal to the orbital plane.

        write_frames : bool, default: False
            Assume a file is open and write a frame on each camera
            view during the orbit.

        threaded : bool, default: False
            Run this as a background thread.  Generally used within a
            GUI (i.e. PyQt).

        progress_bar : bool, default: False
            Show the progress bar when proceeding through the path.
            This can be helpful to show progress when generating
            movies with ``off_screen=True``.

        Examples
        --------
        Plot an orbit around the earth.  Save the gif as a temporary file.

        >>> from pathlib import Path
        >>> from tempfile import mkdtemp
        >>> import pyvista as pv
        >>> from pyvista import examples
        >>> mesh = examples.load_globe()
        >>> texture = examples.load_globe_texture()
        >>> filename = Path(mkdtemp()) / 'orbit.gif'
        >>> plotter = pv.Plotter(window_size=[300, 300])
        >>> _ = plotter.add_mesh(
        ...     mesh, texture=texture, smooth_shading=True
        ... )
        >>> plotter.open_gif(filename)
        >>> viewup = [0, 0, 1]
        >>> orbit = plotter.generate_orbital_path(
        ...     factor=2.0, n_points=24, shift=0.0, viewup=viewup
        ... )
        >>> plotter.orbit_on_path(
        ...     orbit, write_frames=True, viewup=viewup, step=0.02
        ... )

        See :ref:`orbiting_example` for a full example using this method.

        """
        if focus is None:
            focus = self.center
        if viewup is None:
            viewup = self._theme.camera.viewup
        if path is None:
            path = self.generate_orbital_path(viewup=viewup)
        if not is_pyvista_dataset(path):
            path = pyvista.PolyData(path)
        points = path.points

        # Make sure the whole scene is visible
        self.camera.thickness = path.length

        if progress_bar:
            try:
                from tqdm import tqdm
            except ImportError:  # pragma: no cover
                raise ImportError("Please install `tqdm` to use ``progress_bar=True``")

        def orbit():
            """Define the internal thread for running the orbit."""
            points_seq = tqdm(points) if progress_bar else points

            for point in points_seq:
                tstart = time.time()  # include the render time in the step time
                self.set_position(point, render=False)
                self.set_focus(focus, render=False)
                self.set_viewup(viewup, render=False)
                self.renderer.ResetCameraClippingRange()
                if write_frames:
                    self.write_frame()
                else:
                    self.render()
                sleep_time = step - (time.time() - tstart)
                if sleep_time > 0 and not self.off_screen:
                    time.sleep(sleep_time)
            if write_frames:
                self.mwriter.close()

        if threaded:
            thread = Thread(target=orbit)
            thread.start()
        else:
            orbit()

    def export_obj(self, filename):
        """Export scene to OBJ format.

        Parameters
        ----------
        filename : str | Path
            Filename to export the scene to.  Must end in ``'.obj'``.

        Examples
        --------
        Export the scene to "scene.obj"

        >>> import pyvista as pv
        >>> pl = pv.Plotter()
        >>> _ = pl.add_mesh(pv.Sphere())
        >>> pl.export_obj('scene.obj')  # doctest:+SKIP

        """
        from vtkmodules.vtkIOExport import vtkOBJExporter

        if self.render_window is None:
            raise RuntimeError("This plotter must still have a render window open.")
        if (
            isinstance(pyvista.FIGURE_PATH, str) and not Path(filename).is_absolute()
        ):  # pragma: no cover
            filename = Path(pyvista.FIGURE_PATH) / filename
        else:
            filename = Path(filename).expanduser().resolve()

        if not filename.suffix == '.obj':
            raise ValueError('`filename` must end with ".obj"')

        exporter = vtkOBJExporter()
        # remove the extension as VTK always adds it in
        if pyvista.vtk_version_info < (9, 2, 2):  # pragma no cover
            exporter.SetFilePrefix(str(filename.with_suffix('')))
        else:
            exporter.SetFilePrefix(filename.with_suffix(''))
        exporter.SetRenderWindow(self.render_window)
        exporter.Write()

    @property
    def _datasets(self):
        """Return a list of all datasets associated with this plotter."""
        datasets = []
        for renderer in self.renderers:
            for actor in renderer.actors.values():
                mapper = actor.GetMapper()

                # ignore any mappers whose inputs are not datasets
                if hasattr(mapper, 'GetInputAsDataSet'):
                    datasets.append(wrap(mapper.GetInputAsDataSet()))

        return datasets

    def __del__(self):
        """Delete the plotter."""
        # We have to check here if the plotter was only partially initialized
        if self._initialized:
            if not self._closed:
                self.close()
        self.deep_clean()
        if self._initialized:
            del self.renderers

    def add_background_image(self, image_path, scale=1.0, auto_resize=True, as_global=True):
        """Add a background image to a plot.

        Parameters
        ----------
        image_path : str
            Path to an image file.

        scale : float, default: 1.0
            Scale the image larger or smaller relative to the size of
            the window.  For example, a scale size of 2 will make the
            largest dimension of the image twice as large as the
            largest dimension of the render window.

        auto_resize : bool, default: True
            Resize the background when the render window changes size.

        as_global : bool, default: True
            When multiple render windows are present, setting
            ``as_global=False`` will cause the background to only
            appear in one window.

        Examples
        --------
        >>> import pyvista as pv
        >>> from pyvista import examples
        >>> plotter = pv.Plotter()
        >>> actor = plotter.add_mesh(pv.Sphere())
        >>> plotter.add_background_image(examples.mapfile)
        >>> plotter.show()

        """
        if self.renderers.has_active_background_renderer:
            raise RuntimeError(
                'A background image already exists.  '
                'Remove it with ``remove_background_image`` '
                'before adding one',
            )

        # Need to change the number of layers to support an additional
        # background layer
        if not self._has_background_layer:
            self.render_window.SetNumberOfLayers(3)
        renderer = self.renderers.add_background_renderer(image_path, scale, as_global)
        self.render_window.AddRenderer(renderer)

        # set up autoscaling of the image
        if auto_resize:  # pragma: no cover
            self.iren.add_observer('ModifiedEvent', renderer.resize)

    @wraps(Renderers.remove_background_image)
    def remove_background_image(self):  # numpydoc ignore=PR01,RT01
        """Wrap ``Renderers.remove_background_image``."""
        self.renderers.remove_background_image()

        # return the active renderer to the top, otherwise flat background
        # will not be rendered
        self.renderer.layer = 0

    def _on_first_render_request(self):
        """Once an image or render is officially requested, run this routine.

        For example on the show call or any screenshot producing code.
        """
        # reset unless camera for the first render unless camera is set
        if self._first_time:
            for renderer in self.renderers:
                if not renderer.camera.is_set:
                    renderer.camera_position = renderer.get_default_cam_pos()
                    renderer.ResetCamera()
            self._first_time = False

    def reset_camera_clipping_range(self):
        """Reset camera clipping planes."""
        self.renderer.ResetCameraClippingRange()

    def add_light(self, light, only_active=False):
        """Add a Light to the scene.

        Parameters
        ----------
        light : Light or vtkLight
            The light to be added.

        only_active : bool, default: False
            If ``True``, only add the light to the active
            renderer. The default is that every renderer adds the
            light. To add the light to an arbitrary renderer, see
            :func:`pyvista.Renderer.add_light`.

        Examples
        --------
        Create a plotter that we initialize with no lights, and add a
        cube and a single headlight to it.

        >>> import pyvista as pv
        >>> plotter = pv.Plotter(lighting='none')
        >>> _ = plotter.add_mesh(pv.Cube())
        >>> light = pv.Light(color='cyan', light_type='headlight')
        >>> plotter.add_light(light)
        >>> plotter.show()

        """
        renderers = [self.renderer] if only_active else self.renderers
        for renderer in renderers:
            renderer.add_light(light)

    def remove_all_lights(self, only_active=False):
        """Remove all lights from the scene.

        Parameters
        ----------
        only_active : bool, default: False
            If ``True``, only remove lights from the active
            renderer. The default is that lights are stripped from
            every renderer.

        Examples
        --------
        Create a plotter and remove all lights after initialization.
        Note how the mesh rendered is completely flat

        >>> import pyvista as pv
        >>> plotter = pv.Plotter()
        >>> plotter.remove_all_lights()
        >>> plotter.renderer.lights
        []
        >>> _ = plotter.add_mesh(pv.Sphere(), show_edges=True)
        >>> plotter.show()

        Note how this differs from a plot with default lighting

        >>> pv.Sphere().plot(show_edges=True, lighting=True)

        """
        renderers = [self.renderer] if only_active else self.renderers
        for renderer in renderers:
            renderer.remove_all_lights()

    def where_is(self, name):
        """Return the subplot coordinates of a given actor.

        Parameters
        ----------
        name : str
            Actor's name.

        Returns
        -------
        list[tuple[int, int]]
            A list with the subplot coordinates of the actor.

        Examples
        --------
        >>> import pyvista as pv
        >>> plotter = pv.Plotter(shape=(2, 2))
        >>> plotter.subplot(0, 0)
        >>> _ = plotter.add_mesh(pv.Box(), name='box')
        >>> plotter.subplot(0, 1)
        >>> _ = plotter.add_mesh(pv.Sphere(), name='sphere')
        >>> plotter.subplot(1, 0)
        >>> _ = plotter.add_mesh(pv.Box(), name='box')
        >>> plotter.subplot(1, 1)
        >>> _ = plotter.add_mesh(pv.Cone(), name='cone')
        >>> plotter.where_is('box')
        [(0, 0), (1, 0)]

        >>> plotter.show()

        """
        return [
            tuple(self.renderers.index_to_loc(index).tolist())
            for index in range(len(self.renderers))
            if name in self.renderers[index]._actors
        ]


class Plotter(BasePlotter):
    """Plotting object to display vtk meshes or numpy arrays.

    Parameters
    ----------
    off_screen : bool, optional
        Renders off screen when ``True``.  Useful for automated
        screenshots.

    notebook : bool, optional
        When ``True``, the resulting plot is placed inline a jupyter
        notebook.  Assumes a jupyter console is active.  Automatically
        enables ``off_screen``.

    shape : sequence[int], optional
        Number of sub-render windows inside of the main window.
        Specify two across with ``shape=(2, 1)`` and a two by two grid
        with ``shape=(2, 2)``.  By default there is only one render
        window.  Can also accept a string descriptor as shape. E.g.:

        * ``shape="3|1"`` means 3 plots on the left and 1 on the right,
        * ``shape="4/2"`` means 4 plots on top and 2 at the bottom.

    border : bool, optional
        Draw a border around each render window.

    border_color : ColorLike, default: "k"
        Either a string, rgb list, or hex color string.  For example:

            * ``color='white'``
            * ``color='w'``
            * ``color=[1.0, 1.0, 1.0]``
            * ``color='#FFFFFF'``

    window_size : sequence[int], optional
        Window size in pixels.  Defaults to ``[1024, 768]``, unless
        set differently in the relevant theme's ``window_size``
        property.

    line_smoothing : bool, default: False
        If ``True``, enable line smoothing.

    polygon_smoothing : bool, default: False
        If ``True``, enable polygon smoothing.

    lighting : str, default: 'light kit"
        Lighting to set up for the plotter. Accepted options:

        * ``'light kit'``: a vtk Light Kit composed of 5 lights.
        * ``'three lights'``: illumination using 3 lights.
        * ``'none'``: no light sources at instantiation.

        The default is a ``'light kit'`` (to be precise, 5 separate
        lights that act like a Light Kit).

    theme : pyvista.plotting.themes.Theme, optional
        Plot-specific theme.

    image_scale : int, optional
        Scale factor when saving screenshots. Image sizes will be
        the ``window_size`` multiplied by this scale factor.

    Examples
    --------
    >>> import pyvista as pv
    >>> mesh = pv.Cube()
    >>> another_mesh = pv.Sphere()
    >>> pl = pv.Plotter()
    >>> actor = pl.add_mesh(
    ...     mesh, color='red', style='wireframe', line_width=4
    ... )
    >>> actor = pl.add_mesh(another_mesh, color='blue')
    >>> pl.show()

    """

    last_update_time = 0.0

    def __init__(
        self,
        off_screen=None,
        notebook=None,
        shape=(1, 1),
        groups=None,
        row_weights=None,
        col_weights=None,
        border=None,
        border_color='k',
        border_width=2.0,
        window_size=None,
        line_smoothing=False,
        point_smoothing=False,
        polygon_smoothing=False,
        splitting_position=None,
        title=None,
        lighting='light kit',
        theme=None,
        image_scale=None,
    ):
        """Initialize a vtk plotting object."""
        super().__init__(
            shape=shape,
            border=border,
            border_color=border_color,
            border_width=border_width,
            groups=groups,
            row_weights=row_weights,
            col_weights=col_weights,
            splitting_position=splitting_position,
            title=title,
            lighting=lighting,
            theme=theme,
            image_scale=image_scale,
        )
        # reset partial initialization flag
        self._initialized = False

        log.debug('Plotter init start')

        # check if a plotting backend is enabled
        _warn_xserver()

        if off_screen is None:
            off_screen = pyvista.OFF_SCREEN

        if notebook is None:
            if self._theme.notebook is not None:
                notebook = self._theme.notebook
            else:
                notebook = scooby.in_ipykernel()

        self.notebook = notebook
        if self.notebook or pyvista.ON_SCREENSHOT:
            off_screen = True
        self.off_screen = off_screen

        # initialize render window
        self.ren_win = _vtk.vtkRenderWindow()
        self.render_window.SetMultiSamples(0)
        self.render_window.SetBorders(True)
        if line_smoothing:
            self.render_window.LineSmoothingOn()
        if point_smoothing:
            self.render_window.PointSmoothingOn()
        if polygon_smoothing:
            self.render_window.PolygonSmoothingOn()

        for renderer in self.renderers:
            self.render_window.AddRenderer(renderer)

        # Add the shadow renderer to allow us to capture interactions within
        # a given viewport
        # https://vtk.org/pipermail/vtkusers/2018-June/102030.html
        number_or_layers = self.render_window.GetNumberOfLayers()
        current_layer = self.renderer.GetLayer()
        self.render_window.SetNumberOfLayers(number_or_layers + 1)
        self.render_window.AddRenderer(self.renderers.shadow_renderer)
        self.renderers.shadow_renderer.SetLayer(current_layer + 1)
        self.renderers.shadow_renderer.SetInteractive(False)  # never needs to capture

        if self.off_screen:
            self.render_window.SetOffScreenRendering(1)
            # vtkGenericRenderWindowInteractor has no event loop and
            # allows the display client to close on Linux when
            # off_screen.  We still want an interactor for off screen
            # plotting since there are some widgets (like the axes
            # widget) that need an interactor
            interactor = _vtk.vtkGenericRenderWindowInteractor()
        else:
            interactor = None

        # Add ren win and interactor
        self.iren = RenderWindowInteractor(self, light_follow_camera=False, interactor=interactor)
        self.iren.set_render_window(self.render_window)
        self.reset_key_events()
        self.enable_trackball_style()  # internally calls update_style()
        self.iren.add_observer("KeyPressEvent", self.key_press_event)

        # Set camera widget based on theme. This requires that an
        # interactor be present.
        if self.theme._enable_camera_orientation_widget:
            self.add_camera_orientation_widget()

        # Set background
        self.set_background(self._theme.background)

        # Set window size
        self._window_size_unset = False
        if window_size is None:
            self.window_size = self._theme.window_size
            if self.window_size == pyvista.plotting.themes.Theme().window_size:
                self._window_size_unset = True
        else:
            self.window_size = window_size

        if self._theme.depth_peeling.enabled:
            if self.enable_depth_peeling():
                for renderer in self.renderers:
                    renderer.enable_depth_peeling()

        # set anti_aliasing based on theme
        if self.theme.anti_aliasing:
            self.enable_anti_aliasing(self.theme.anti_aliasing)

        if self.theme.camera.parallel_projection:
            self.enable_parallel_projection()

        self.parallel_scale = self.theme.camera.parallel_scale

        # some cleanup only necessary for fully initialized plotters
        self._initialized = True
        log.debug('Plotter init stop')

    def show(
        self,
        title=None,
        window_size=None,
        interactive=True,
        auto_close=None,
        interactive_update=False,
        full_screen=None,
        screenshot=False,
        return_img=False,
        cpos=None,
        jupyter_backend=None,
        return_viewer=False,
        return_cpos=None,
        before_close_callback=None,
        **kwargs,
    ):
        """Display the plotting window.

        Parameters
        ----------
        title : str, optional
            Title of plotting window.  Defaults to
            :attr:`pyvista.global_theme.title <pyvista.plotting.themes.Theme.title>`.

        window_size : list, optional
            Window size in pixels.  Defaults to
            :attr:`pyvista.global_theme.window_size <pyvista.plotting.themes.Theme.window_size>`.

        interactive : bool, optional
            Enabled by default.  Allows user to pan and move figure.
            Defaults to
            :attr:`pyvista.global_theme.interactive <pyvista.plotting.themes.Theme.interactive>`.

        auto_close : bool, optional
            Exits plotting session when user closes the window when
            interactive is ``True``.  Defaults to
            :attr:`pyvista.global_theme.auto_close <pyvista.plotting.themes.Theme.auto_close>`.

        interactive_update : bool, default: False
            Allows user to non-blocking draw, user should call
            :func:`Plotter.update` in each iteration.

        full_screen : bool, optional
            Opens window in full screen.  When enabled, ignores
            ``window_size``.  Defaults to
            :attr:`pyvista.global_theme.full_screen <pyvista.plotting.themes.Theme.full_screen>`.

        screenshot : str | Path | io.BytesIO | bool, default: False
            Take a screenshot of the initial state of the plot.  If a string,
            it specifies the path to which the screenshot is saved. If
            ``True``, the screenshot is returned as an array. For interactive
            screenshots it's recommended to first call ``show()`` with
            ``auto_close=False`` to set the scene, then save the screenshot in
            a separate call to ``show()`` or :func:`Plotter.screenshot`.
            See also the ``before_close_callback`` parameter for an
            alternative.

        return_img : bool, default: False
            Returns a numpy array representing the last image along
            with the camera position.

        cpos : sequence[sequence[float]], optional
            The camera position.  You can also set this with
            :attr:`Plotter.camera_position`.

        jupyter_backend : str, optional
            Jupyter notebook plotting backend to use.  One of the
            following:

            * ``'none'`` : Do not display in the notebook.
            * ``'static'`` : Display a static figure.
            * ``'trame'`` : Display a dynamic figure with Trame.
            * ``'html'`` : Use an ebeddable HTML scene.

            This can also be set globally with
            :func:`pyvista.set_jupyter_backend`.

            A dictionary ``jupyter_kwargs`` can also be passed to further
            configure how the backend displays.

        return_viewer : bool, default: False
            Return the jupyterlab viewer, scene, or display object when
            plotting with Jupyter notebook. When ``False`` and within a Jupyter
            environment, the scene will be immediately shown within the
            notebook. Set this to ``True`` to return the scene instead.

        return_cpos : bool, optional
            Return the last camera position from the render window
            when enabled.  Default based on theme setting.  See
            :attr:`pyvista.plotting.themes.Theme.return_cpos`.

        before_close_callback : Callable, optional
            Callback that is called before the plotter is closed.
            The function takes a single parameter, which is the plotter object
            before it closes. An example of use is to capture a screenshot after
            interaction::

                def fun(plotter):
                    plotter.screenshot('file.png')

        **kwargs : dict, optional
            Developer keyword arguments.

        Returns
        -------
        cpos : list
            List of camera position, focal point, and view up.
            Returned only when ``return_cpos=True`` or set in the
            default global or plot theme.

        image : np.ndarray
            Numpy array of the last image when either ``return_img=True``
            or ``screenshot=True`` is set. Optionally contains alpha
            values. Sized:

            * [Window height x Window width x 3] if the theme sets
              ``transparent_background=False``.
            * [Window height x Window width x 4] if the theme sets
              ``transparent_background=True``.

        widget : ipywidgets.Widget
            IPython widget when ``return_viewer=True``.

        Notes
        -----
        Please use the ``q``-key to close the plotter as some
        operating systems (namely Windows) will experience issues
        saving a screenshot if the exit button in the GUI is pressed.

        Examples
        --------
        Simply show the plot of a mesh.

        >>> import pyvista as pv
        >>> pl = pv.Plotter()
        >>> _ = pl.add_mesh(pv.Cube())
        >>> pl.show()

        Take a screenshot interactively.  Screenshot will be of the
        first image shown, so use the first call with
        ``auto_close=False`` to set the scene before taking the
        screenshot.

        >>> pl = pv.Plotter()
        >>> _ = pl.add_mesh(pv.Cube())
        >>> pl.show(auto_close=False)  # doctest:+SKIP
        >>> pl.show(screenshot='my_image.png')  # doctest:+SKIP

        Obtain the camera position when using ``show``.

        >>> pl = pv.Plotter()
        >>> _ = pl.add_mesh(pv.Sphere())
        >>> pl.show(return_cpos=True)  # doctest:+SKIP
        [(2.223005211686484, -0.3126909484828709, 2.4686209867735065),
        (0.0, 0.0, 0.0),
        (-0.6839951597283509, -0.47207319712073137, 0.5561452310578585)]

        """
        jupyter_kwargs = kwargs.pop('jupyter_kwargs', {})
        assert_empty_kwargs(**kwargs)

        if before_close_callback is None:
            before_close_callback = pyvista.global_theme._before_close_callback
        self._before_close_callback = before_close_callback

        if interactive_update and auto_close is None:
            auto_close = False
        elif interactive_update and auto_close:
            warnings.warn(
                textwrap.dedent(
                    """
                    The plotter will close immediately automatically since ``auto_close=True``.
                    Either, do not specify ``auto_close``, or set it to ``False`` if you want to
                    interact with the plotter interactively.
                    """,
                ).strip(),
            )
        elif auto_close is None:
            auto_close = self._theme.auto_close

        if self.render_window is None:
            raise RuntimeError("This plotter has been closed and cannot be shown.")

        if full_screen is None:
            full_screen = self._theme.full_screen

        if full_screen:
            self.render_window.SetFullScreen(True)
            self.render_window.BordersOn()  # super buggy when disabled
        else:
            if window_size is None:
                window_size = self.window_size
            else:
                self._window_size_unset = False
            self.render_window.SetSize(window_size[0], window_size[1])

        # reset unless camera for the first render unless camera is set
        self.camera_position = cpos
        self._on_first_render_request()

        # handle plotter notebook
        if jupyter_backend and not self.notebook:
            warnings.warn(
                'Not within a jupyter notebook environment.\nIgnoring ``jupyter_backend``.',
            )

        jupyter_disp = None
        if self.notebook:
            from pyvista.jupyter.notebook import handle_plotter

            if jupyter_backend is None:
                jupyter_backend = self._theme.jupyter_backend

            if jupyter_backend.lower() != 'none':
                jupyter_disp = handle_plotter(self, backend=jupyter_backend, **jupyter_kwargs)

        self.render()

        # initial double render needed for certain passes when offscreen
        if self.off_screen and 'vtkDepthOfFieldPass' in self.renderer._render_passes._passes:
            self.render()

        # This has to be after the first render for some reason
        if title is None:
            title = self.title
        if title:
            self.render_window.SetWindowName(title)
            self.title = title

        # Keep track of image for sphinx-gallery
        if pyvista.BUILDING_GALLERY:
            # always save screenshots for sphinx_gallery
            self.last_image = self.screenshot(screenshot, return_img=True)
            self.last_image_depth = self.get_image_depth()
            with suppress(ImportError):
                self.last_vtksz = self.export_vtksz(filename=None)

        # See: https://github.com/pyvista/pyvista/issues/186#issuecomment-550993270
        if interactive and not self.off_screen:
            try:  # interrupts will be caught here
                log.debug('Starting iren')
                self.iren.update_style()
                if not interactive_update:
                    # Resolves #1260
                    if os.name == 'nt':  # pragma: no cover
                        self.iren.process_events()
                    self.iren.start()

                if pyvista.vtk_version_info < (9, 2, 3):  # pragma: no cover
                    self.iren.initialize()

            except KeyboardInterrupt:
                log.debug('KeyboardInterrupt')
                self.close()
                raise KeyboardInterrupt
        # In the event that the user hits the exit-button on the GUI  (on
        # Windows OS) then it must be finalized and deleted as accessing it
        # will kill the kernel.
        # Here we check for that and clean it up before moving on to any of
        # the closing routines that might try to still access that
        # render window.
        # Ignore if using a Jupyter display
        _is_current = self.render_window.IsCurrent()
        if jupyter_disp is None and not _is_current:
            self._clear_ren_win()  # The ren_win is deleted
            # proper screenshots cannot be saved if this happens
            if not auto_close:
                warnings.warn(
                    "`auto_close` ignored: by clicking the exit button, "
                    "you have destroyed the render window and we have to "
                    "close it out.",
                )
            self.close()
            if screenshot:
                warnings.warn(
                    "A screenshot is unable to be taken as the render window is not current or rendering is suppressed.",
                )
        if _is_current:
            if pyvista.ON_SCREENSHOT:
                filename = uuid.uuid4().hex
                self.last_image = self.screenshot(filename, return_img=True)
            else:
                self.last_image = self.screenshot(screenshot, return_img=True)
            self.last_image_depth = self.get_image_depth()
        # NOTE: after this point, nothing from the render window can be accessed
        #       as if a user pressed the close button, then it destroys the
        #       the render view and a stream of errors will kill the Python
        #       kernel if code here tries to access that renderer.
        #       See issues #135 and #186 for insight before editing the
        #       remainder of this function.

        # Close the render window if requested
        if jupyter_disp is None and auto_close:
            # Plotters are never auto-closed in Jupyter
            self.close()

        if jupyter_disp is not None and not return_viewer:
            # Default behaviour is to display the Jupyter viewer
            try:
                from IPython import display
            except ImportError:  # pragma: no cover
                raise ImportError('Install IPython to display an image in a notebook')
            display.display(jupyter_disp)

        # Three possible return values: (cpos, image, widget)
        return_values = tuple(
            val
            for val in (
                self.camera_position if return_cpos else None,
                self.last_image if return_img or screenshot is True else None,
                jupyter_disp if return_viewer else None,
            )
            if val is not None
        )
        if len(return_values) == 1:
            return return_values[0]
        return return_values or None

    def add_title(self, title, font_size=18, color=None, font=None, shadow=False):
        """Add text to the top center of the plot.

        This is merely a convenience method that calls ``add_text``
        with ``position='upper_edge'``.

        Parameters
        ----------
        title : str
            The text to add the rendering.

        font_size : float, default: 18
            Sets the size of the title font.

        color : ColorLike, optional
            Either a string, rgb list, or hex color string.  Defaults
            to white or the value of the global theme if set.  For
            example:

            * ``color='white'``
            * ``color='w'``
            * ``color=[1.0, 1.0, 1.0]``
            * ``color='#FFFFFF'``

        font : str, optional
            Font name may be ``'courier'``, ``'times'``, or ``'arial'``.

        shadow : bool, default: False
            Adds a black shadow to the text.

        Returns
        -------
        vtk.vtkTextActor
            Text actor added to plot.

        Examples
        --------
        >>> import pyvista as pv
        >>> pl = pv.Plotter()
        >>> pl.background_color = 'grey'
        >>> actor = pl.add_title(
        ...     'Plot Title', font='courier', color='k', font_size=40
        ... )
        >>> pl.show()

        """
        # add additional spacing from the top of the figure by default
        title = '\n' + title
        return self.add_text(
            title,
            position='upper_edge',
            font_size=font_size,
            color=color,
            font=font,
            shadow=shadow,
            name='title',
            viewport=False,
        )

    def add_cursor(
        self,
        bounds=(-1.0, 1.0, -1.0, 1.0, -1.0, 1.0),
        focal_point=(0.0, 0.0, 0.0),
        color=None,
    ):
        """Add a cursor of a PyVista or VTK dataset to the scene.

        Parameters
        ----------
        bounds : sequence[float], default: (-1.0, 1.0, -1.0, 1.0, -1.0, 1.0)
            Specify the bounds in the format of:

            - ``(xmin, xmax, ymin, ymax, zmin, zmax)``

        focal_point : sequence[float], default: (0.0, 0.0, 0.0)
            The focal point of the cursor.

        color : ColorLike, optional
            Either a string, RGB sequence, or hex color string.  For one
            of the following.

            * ``color='white'``
            * ``color='w'``
            * ``color=[1.0, 1.0, 1.0]``
            * ``color='#FFFFFF'``

        Returns
        -------
        vtk.vtkActor
            VTK actor of the 2D cursor.

        Examples
        --------
        >>> import pyvista as pv
        >>> sphere = pv.Sphere()
        >>> plotter = pv.Plotter()
        >>> _ = plotter.add_mesh(sphere)
        >>> _ = plotter.add_cursor()
        >>> plotter.show()

        """
        alg = _vtk.vtkCursor3D()
        alg.SetModelBounds(bounds)
        alg.SetFocalPoint(focal_point)
        alg.AllOn()
        mapper = DataSetMapper(theme=self._theme)
        mapper.SetInputConnection(alg.GetOutputPort())
        actor, prop = self.add_actor(mapper)
        prop.SetColor(Color(color).float_rgb)

        return actor

    @property
    def meshes(self):  # numpydoc ignore=RT01
        """Return plotter meshes.

        Returns
        -------
        list[pyvista.DataSet | pyvista.MultiBlock]
            List of mesh objects such as pyvista.PolyData, pyvista.UnstructuredGrid, etc.
        """
        return [actor.mapper.dataset for actor in self.actors.values() if hasattr(actor, 'mapper')]


# Tracks created plotters.  This is the end of the module as we need to
# define ``BasePlotter`` before including it in the type definition.
#
# When pyvista.BUILDING_GALLERY = False, the objects will be ProxyType, and
# when True, BasePlotter.
_ALL_PLOTTERS: dict[str, BasePlotter] = {}


def _kill_display(disp_id):  # pragma: no cover
    """Forcibly close the display on Linux.

    See: https://gitlab.kitware.com/vtk/vtk/-/issues/17917#note_783584

    And more details into why...
    https://stackoverflow.com/questions/64811503

    Notes
    -----
    This is to be used experimentally and is known to cause issues
    on `pyvistaqt`

    """
    if platform.system() != 'Linux':
        raise OSError('This method only works on Linux')

    if disp_id:
        cdisp_id = int(disp_id[1:].split('_')[0], 16)

        # this is unsafe as events might be queued, but sometimes the
        # window fails to close if we don't just close it
        Thread(target=X11.XCloseDisplay, args=(cdisp_id,)).start()