1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
|
"""Image regression module."""
from __future__ import annotations
from typing import TYPE_CHECKING
from typing import Optional
from typing import cast
import numpy as np
import pyvista
from pyvista.core.utilities.arrays import point_array
from pyvista.core.utilities.helpers import wrap
from pyvista.plotting import _vtk
if TYPE_CHECKING: # pragma: no cover
from pyvista.core._typing_core import NumpyArray
def remove_alpha(img):
"""Remove the alpha channel from a ``vtk.vtkImageData``.
Parameters
----------
img : vtk.vtkImageData
The input image data with an alpha channel.
Returns
-------
pyvista.ImageData
The output image data with the alpha channel removed.
"""
ec = _vtk.vtkImageExtractComponents()
ec.SetComponents(0, 1, 2)
ec.SetInputData(img)
ec.Update()
return pyvista.wrap(ec.GetOutput())
def wrap_image_array(arr):
"""Wrap a numpy array as a pyvista.ImageData.
Parameters
----------
arr : np.ndarray
A numpy array of shape (X, Y, (3 or 4)) and dtype ``np.uint8``. For
example, an array of shape ``(768, 1024, 3)``.
Raises
------
ValueError
If the input array does not have 3 dimensions, the third dimension of
the input array is not 3 or 4, or the input array is not of type
``np.uint8``.
Returns
-------
pyvista.ImageData
A PyVista ImageData object with the wrapped array data.
"""
if arr.ndim != 3:
raise ValueError('Expecting a X by Y by (3 or 4) array')
if arr.shape[2] not in [3, 4]:
raise ValueError('Expecting a X by Y by (3 or 4) array')
if arr.dtype != np.uint8:
raise ValueError('Expecting a np.uint8 array')
img = _vtk.vtkImageData()
img.SetDimensions(arr.shape[1], arr.shape[0], 1)
wrap_img = pyvista.wrap(img)
wrap_img.point_data['PNGImage'] = arr[::-1].reshape(-1, arr.shape[2])
return wrap_img
def run_image_filter(imfilter: _vtk.vtkWindowToImageFilter) -> NumpyArray[float]:
"""Run a ``vtkWindowToImageFilter`` and get output as array.
Parameters
----------
imfilter : _vtk.vtkWindowToImageFilter
The ``vtkWindowToImageFilter`` instance to be processed.
Notes
-----
An empty array will be returned if an image cannot be extracted.
Returns
-------
numpy.ndarray
An array containing the filtered image data. The shape of the array
is given by (height, width, -1) where height and width are the
dimensions of the image.
"""
# Update filter and grab pixels
imfilter.Modified()
imfilter.Update()
image = cast(Optional[pyvista.ImageData], wrap(imfilter.GetOutput()))
if image is None:
return np.empty((0, 0, 0))
img_size = image.dimensions
img_array = point_array(image, 'ImageScalars')
# Reshape and write
tgt_size = (img_size[1], img_size[0], -1)
return img_array.reshape(tgt_size)[::-1]
def image_from_window(render_window, as_vtk=False, ignore_alpha=False, scale=1):
"""Extract the image from the render window as an array.
Parameters
----------
render_window : vtk.vtkRenderWindow
The render window to extract the image from.
as_vtk : bool, default: False
If set to True, the image will be returned as a VTK object.
ignore_alpha : bool, default: False
If set to True, the image will be returned in RGB format,
otherwise, it will be returned in RGBA format.
scale : int, default: 1
The scaling factor of the extracted image. The default value is 1
which means that no scaling is applied.
Returns
-------
ndarray | vtk.vtkImageData
The image as an array or as a VTK object depending on the ``as_vtk`` parameter.
"""
off = not render_window.GetInteractor().GetEnableRender()
if off:
render_window.GetInteractor().EnableRenderOn()
imfilter = _vtk.vtkWindowToImageFilter()
imfilter.SetInput(render_window)
imfilter.SetScale(scale)
imfilter.FixBoundaryOn()
imfilter.ReadFrontBufferOff()
imfilter.ShouldRerenderOff()
if ignore_alpha:
imfilter.SetInputBufferTypeToRGB()
else:
imfilter.SetInputBufferTypeToRGBA()
imfilter.ReadFrontBufferOn()
data = run_image_filter(imfilter)
if off:
# Critical for Trame and other offscreen tools
render_window.GetInteractor().EnableRenderOff()
if as_vtk:
return wrap_image_array(data)
return data
def compare_images(im1, im2, threshold=1, use_vtk=True):
"""Compare two different images of the same size.
Parameters
----------
im1 : str | numpy.ndarray | vtkRenderWindow | vtkImageData
Render window, numpy array representing the output of a render
window, or ``vtkImageData``.
im2 : str | numpy.ndarray | vtkRenderWindow | vtkImageData
Render window, numpy array representing the output of a render
window, or ``vtkImageData``.
threshold : int, default: 1
Threshold tolerance for pixel differences. This should be
greater than 0, otherwise it will always return an error, even
on identical images.
use_vtk : bool, default: True
When disabled, computes the mean pixel error over the entire
image using numpy. The difference between pixel is calculated
for each RGB channel, summed, and then divided by the number
of pixels. This is faster than using
``vtk.vtkImageDifference`` but potentially less accurate.
Returns
-------
float
Total error between the images if using ``use_vtk=True``, and
the mean pixel error when ``use_vtk=False``.
Examples
--------
Compare two active plotters.
>>> import pyvista as pv
>>> pl1 = pv.Plotter()
>>> _ = pl1.add_mesh(pv.Sphere(), smooth_shading=True)
>>> pl2 = pv.Plotter()
>>> _ = pl2.add_mesh(pv.Sphere(), smooth_shading=False)
>>> error = pv.compare_images(pl1, pl2)
Compare images from file.
>>> import pyvista as pv
>>> img1 = pv.read('img1.png') # doctest:+SKIP
>>> img2 = pv.read('img2.png') # doctest:+SKIP
>>> pv.compare_images(img1, img2) # doctest:+SKIP
"""
from pyvista import ImageData
from pyvista import Plotter
from pyvista import read
from pyvista import wrap
def to_img(img): # numpydoc ignore=GL08
if isinstance(img, ImageData): # pragma: no cover
return img
elif isinstance(img, _vtk.vtkImageData):
return wrap(img)
elif isinstance(img, str):
return read(img)
elif isinstance(img, np.ndarray):
return wrap_image_array(img)
elif isinstance(img, Plotter):
if img._first_time: # must be rendered first else segfault
img._on_first_render_request()
img.render()
if img.render_window is None:
raise RuntimeError(
'Unable to extract image from Plotter as it has already been closed.',
)
return image_from_window(img.render_window, True, ignore_alpha=True)
else:
raise TypeError(
f'Unsupported data type {type(img)}. Should be '
'Either a np.ndarray, vtkRenderWindow, or vtkImageData',
)
im1 = remove_alpha(to_img(im1))
im2 = remove_alpha(to_img(im2))
if im1.GetDimensions() != im2.GetDimensions():
raise RuntimeError('Input images are not the same size.')
if use_vtk:
img_diff = _vtk.vtkImageDifference()
img_diff.SetThreshold(threshold)
img_diff.SetInputData(im1)
img_diff.SetImageData(im2)
img_diff.AllowShiftOff() # vastly increases compute time when enabled
# img_diff.AveragingOff() # increases compute time
img_diff.Update()
return img_diff.GetThresholdedError()
# otherwise, simply compute the mean pixel difference
diff = np.abs(im1.point_data[0] - im2.point_data[0])
return np.sum(diff) / im1.point_data[0].shape[0]
|