1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
|
from __future__ import annotations
import re
import numpy as np
import platform
import pytest
import vtk
import pyvista as pv
from pyvista import examples
from pyvista.core.utilities.geometric_objects import translate
# test for i386/i486/i586/i686
machine_skip = (platform.machine()[0]+platform.machine()[2:] == 'i86')
@pytest.fixture()
def axes_geometry_source():
return pv.AxesGeometrySource()
def test_capsule_source():
if pv.vtk_version_info < (9, 3):
algo = pv.CapsuleSource()
assert np.array_equal(algo.center, (0.0, 0.0, 0.0))
assert np.array_equal(algo.direction, (1.0, 0.0, 0.0))
assert algo.radius == 0.5
assert algo.cylinder_length == 1.0
assert algo.theta_resolution == 30
assert algo.phi_resolution == 30
direction = np.random.default_rng().random(3)
algo.direction = direction
assert np.array_equal(algo.direction, direction)
def test_cone_source():
algo = pv.ConeSource()
assert np.array_equal(algo.center, (0.0, 0.0, 0.0))
assert np.array_equal(algo.direction, (1.0, 0.0, 0.0))
assert algo.height == 1.0
assert algo.radius == 0.5
assert algo.capping
assert algo.resolution == 6
with pytest.raises(ValueError): # noqa: PT011
algo = pv.ConeSource(angle=0.0, radius=0.0)
algo = pv.ConeSource(angle=0.0)
assert algo.angle == 0.0
algo = pv.ConeSource(radius=0.0)
assert algo.radius == 0.0
def test_cylinder_source():
algo = pv.CylinderSource()
assert algo.radius == 0.5
assert algo.height == 1.0
assert algo.capping
assert algo.resolution == 100
center = np.random.default_rng().random(3)
direction = np.random.default_rng().random(3)
algo.center = center
algo.direction = direction
assert np.array_equal(algo.center, center)
assert np.array_equal(algo.direction, direction)
@pytest.mark.needs_vtk_version(9, 3, 0)
def test_cylinder_capsule_cap():
algo = pv.CylinderSource()
algo.capsule_cap = True
assert algo.capsule_cap
def test_multiple_lines_source():
algo = pv.MultipleLinesSource()
points = np.array([[-0.5, 0.0, 0.0], [0.5, 0.0, 0.0]])
assert np.array_equal(algo.points, points)
points = np.array([[0.0, 0.0, 0.0], [1.0, 1.0, 1.0], [0.0, 0.0, 1.0]])
algo = pv.MultipleLinesSource(points=points)
assert np.array_equal(algo.points, points)
with pytest.raises(ValueError, match='Array of points must have three values per point'):
algo.points = points[:, :1]
with pytest.raises(ValueError, match='>=2 points need to define multiple lines.'):
algo.points = points[0, :]
@pytest.fixture()
def bunny():
return examples.download_bunny_coarse()
@pytest.mark.parametrize("is_negative", [True, False])
@pytest.mark.parametrize("delta", [([0, 0, 0]), ([1e-8, 0, 0]), ([0, 0, 1e-8])])
@pytest.mark.xfail(machine_skip, reason=f"test HTTP requests are refused on {platform.machine()}")
def test_translate_direction_collinear(is_negative, delta, bunny):
mesh_in = bunny
direction = np.array([0.0, 1.0, 0.0]) + delta
if is_negative:
direction *= -1
mesh_out = mesh_in.copy()
translate(mesh_out, direction=direction)
points_in = mesh_in.points
points_out = mesh_out.points
if is_negative:
assert np.allclose(points_in[:, 0], -points_out[:, 1])
assert np.allclose(points_in[:, 1], points_out[:, 0])
assert np.allclose(points_in[:, 2], points_out[:, 2])
else:
assert np.allclose(points_in[:, 0], points_out[:, 1])
assert np.allclose(points_in[:, 1], -points_out[:, 0])
assert np.allclose(points_in[:, 2], points_out[:, 2])
def test_translate_precision():
"""
Test that specifying a 64bit float as an arg, will not
introduce precision error for 32bit meshes.
"""
val = np.float64(29380 / 18)
# test indirectly using Plane, which will yield a float32 mesh
mesh = pv.Plane(center=[0, val / 2, 0], j_size=val, i_resolution=1, j_resolution=1)
assert mesh.points.dtype == np.float32
expected = np.array(
[[-0.5, 0.0, 0.0], [0.5, 0.0, 0.0], [-0.5, 1632.2222, 0.0], [0.5, 1632.2222, 0.0]],
dtype=np.float32,
)
# DO NOT USE np.all_close. This should match exactly
assert np.array_equal(mesh.points, expected)
def test_text3d_source_empty_string():
# Test empty string is processed to have a single point
src = pv.Text3DSource(process_empty_string=True)
assert src.process_empty_string
out = src.output
assert out.n_points == 1
# Test setting an empty string is processed to have a single point
src.process_empty_string = False
assert not src.process_empty_string
out = src.output
assert out.n_points == 0
if pv.vtk_version_info == (9, 0, 3):
mx, mn = 1, -1
else:
mx, mn = vtk.VTK_DOUBLE_MAX, vtk.VTK_DOUBLE_MIN
assert out.bounds == (mx, mn, mx, mn, mx, mn)
def test_text3d_source():
src = pv.Text3DSource(string='Text')
assert src.string == 'Text'
out = src.output
assert len(out.split_bodies()) == 4
@pytest.mark.parametrize('string', [" ", 'TEXT'])
@pytest.mark.parametrize('center', [(0, 0, 0), (1, -2, 3)])
@pytest.mark.parametrize('height', [None, 0, 1, 2])
@pytest.mark.parametrize('width', [None, 0, 1, 2])
@pytest.mark.parametrize('depth', [None, 0, 1, 2])
@pytest.mark.parametrize('normal', [(0, 0, 1)])
def test_text3d_source_parameters(string, center, height, width, depth, normal):
src = pv.Text3DSource(
string=string,
center=center,
height=height,
width=width,
depth=depth,
normal=normal,
)
out = src.output
bnds = out.bounds
actual_width, actual_height, actual_depth = (
bnds[1] - bnds[0],
bnds[3] - bnds[2],
bnds[5] - bnds[4],
)
# Compute expected values
empty_string = string.isspace()
if empty_string:
expected_width, expected_height, expected_depth = 0.0, 0.0, 0.0
else:
expected_width, expected_height, expected_depth = width, height, depth
# Determine expected values for cases where width, height, or depth is None
if depth is None:
expected_depth = actual_height * 0.5
# For width and height, create an unscaled version for reference
src_not_scaled = pv.Text3DSource(string=string, center=center)
out_not_scaled = src_not_scaled.output
bnds = out_not_scaled.bounds
unscaled_width, unscaled_height = bnds[1] - bnds[0], bnds[3] - bnds[2]
if width is None and height is not None:
expected_width = unscaled_width * actual_height / unscaled_height
elif width is not None and height is None:
expected_height = unscaled_height * actual_width / unscaled_width
elif width is None and height is None:
expected_width = unscaled_width
expected_height = unscaled_height
assert np.allclose(actual_width, expected_width)
assert np.allclose(actual_height, expected_height)
assert np.allclose(actual_depth, expected_depth)
assert np.array_equal(out.center, center)
if not empty_string and width and height and depth == 0:
# Test normal direction for planar 2D meshes
actual_normal = np.mean(out.cell_normals, axis=0)
assert np.allclose(actual_normal, normal)
# Since `direction` param is under-determined and may swap the
# width and height, test normal again without testing the bounds
# We also use a symmetric text string since the oriented mesh's
# bounding box center and/or the mean of its points will otherwise
# vary and is challenging to test
new_normal = np.array((1, -2, 3))
src = pv.Text3DSource(string='I', center=center, normal=new_normal, depth=0)
out = src.output
actual_normal = np.mean(out.cell_normals, axis=0)
expected_normal = new_normal / np.linalg.norm(new_normal)
assert np.allclose(actual_normal, expected_normal, atol=1e-4)
points_center = np.mean(out.points, axis=0)
assert np.allclose(points_center, center, atol=1e-4)
@pytest.fixture()
def text3d_source_with_text():
return pv.Text3DSource("TEXT")
def test_text3d_source_update(text3d_source_with_text):
assert text3d_source_with_text._modified
assert text3d_source_with_text._output.n_points == 0
text3d_source_with_text.update()
assert not text3d_source_with_text._modified
assert text3d_source_with_text._output.n_points > 1
# Test calling update has no effect on output when modified flag is not set
points_before = text3d_source_with_text._output.GetPoints()
text3d_source_with_text.update()
points_after = text3d_source_with_text._output.GetPoints()
assert not text3d_source_with_text._modified
assert points_before is points_after
def text3d_source_test_params():
return (
('string', 'TEXT'),
('center', (1, 2, 3)),
('normal', (4, 5, 6)),
('height', 2),
('width', 3),
('depth', 4),
)
def test_text3d_source_output(text3d_source_with_text):
# Store initial object references
out1 = text3d_source_with_text._output
out1_points = out1.GetPoints()
assert out1.n_points == 0
# Test getting output triggers an update
assert text3d_source_with_text._modified
out2 = text3d_source_with_text.output
assert not text3d_source_with_text._modified
# Test that output object reference is unchanged
assert out2 is out1
# Test that output points object reference is changed
out2_points = out2.GetPoints()
assert out2_points is not out1_points
# Test correct output
assert len(out2.split_bodies()) == len(text3d_source_with_text.string)
@pytest.mark.parametrize(
'kwarg_tuple',
text3d_source_test_params(),
)
def test_text3d_source_modified_init(kwarg_tuple):
# Test init modifies source but does not update output
name, value = kwarg_tuple
kwarg_dict = {name: value}
src = pv.Text3DSource(**kwarg_dict)
assert src._modified
assert src._output.n_points == 0
@pytest.mark.parametrize(
'kwarg_tuple',
text3d_source_test_params(),
)
def test_text3d_source_modified(text3d_source_with_text, kwarg_tuple):
# Set test param
name, value = kwarg_tuple
setattr(text3d_source_with_text, name, value)
assert text3d_source_with_text._modified
# Call update to clear modified flag
assert text3d_source_with_text._modified
text3d_source_with_text.update()
assert not text3d_source_with_text._modified
# Test that setting the same value does not set the modified flag
points_before = text3d_source_with_text._output.GetPoints() # Manually set flag for test
setattr(text3d_source_with_text, name, value)
points_after = text3d_source_with_text._output.GetPoints()
assert not text3d_source_with_text._modified
assert points_before is points_after
# Test setting a new value sets modified flag but does not change output
new_value = value + value if name == 'string' else np.array(value) * 2
points_before = text3d_source_with_text._output.GetPoints()
setattr(text3d_source_with_text, name, new_value)
points_after = text3d_source_with_text._output.GetPoints()
assert text3d_source_with_text._modified
assert points_before is points_after
def test_disc_source():
algo = pv.DiscSource()
assert np.array_equal(algo.center, (0.0, 0.0, 0.0))
assert algo.inner == 0.25
assert algo.outer == 0.5
assert algo.r_res == 1
assert algo.c_res == 6
if pv.vtk_version_info >= (9, 2):
center = (1.0, 2.0, 3.0)
algo = pv.DiscSource(center=center)
assert algo.center == center
def test_cube_source():
algo = pv.CubeSource()
assert np.array_equal(algo.center, (0.0, 0.0, 0.0))
assert algo.x_length == 1.0
assert algo.y_length == 1.0
assert algo.z_length == 1.0
bounds = (0.0, 1.0, 2.0, 3.0, 4.0, 5.0)
algo = pv.CubeSource(bounds=bounds)
assert np.array_equal(algo.bounds, bounds)
with pytest.raises(TypeError):
algo = pv.CubeSource(bounds=0.0)
def test_sphere_source():
algo = pv.SphereSource()
assert algo.radius == 0.5
assert np.array_equal(algo.center, (0.0, 0.0, 0.0))
assert algo.theta_resolution == 30
assert algo.phi_resolution == 30
assert algo.start_theta == 0.0
assert algo.end_theta == 360.0
assert algo.start_phi == 0.0
assert algo.end_phi == 180.0
center = (1.0, 2.0, 3.0)
if pv.vtk_version_info >= (9, 2):
algo = pv.SphereSource(center=center)
assert algo.center == center
def test_line_source():
algo = pv.LineSource()
assert np.array_equal(algo.pointa, (-0.5, 0.0, 0.0))
assert np.array_equal(algo.pointb, (0.5, 0.0, 0.0))
assert algo.resolution == 1
def test_polygon_source():
algo = pv.PolygonSource()
assert np.array_equal(algo.center, (0.0, 0.0, 0.0))
assert algo.radius == 1.0
assert np.array_equal(algo.normal, (0.0, 0.0, 1.0))
assert algo.n_sides == 6
assert algo.fill
def test_platonic_solid_source():
algo = pv.PlatonicSolidSource()
assert algo.kind == 'tetrahedron'
def test_plane_source():
algo = pv.PlaneSource()
assert algo.i_resolution == 10
assert algo.j_resolution == 10
def test_superquadric_source():
algo = pv.SuperquadricSource()
assert algo.center == (0.0, 0.0, 0.0)
assert algo.scale == (1.0, 1.0, 1.0)
assert algo.size == 0.5
assert algo.theta_roundness == 1.0
assert algo.phi_roundness == 1.0
assert algo.theta_resolution == 16
assert algo.phi_resolution == 16
assert not algo.toroidal
assert algo.thickness == 1 / 3
def test_arrow_source():
algo = pv.ArrowSource()
assert algo.tip_length == 0.25
assert algo.tip_radius == 0.1
assert algo.tip_resolution == 20
assert algo.shaft_radius == 0.05
assert algo.shaft_resolution == 20
def test_box_source():
algo = pv.BoxSource()
assert np.array_equal(algo.bounds, [-1.0, 1.0, -1.0, 1.0, -1.0, 1.0])
assert algo.level == 0
assert algo.quads
def test_axes_geometry_source_symmetric_set_get(axes_geometry_source):
assert axes_geometry_source.symmetric is False
axes_geometry_source.symmetric = True
assert axes_geometry_source.symmetric is True
def test_axes_geometry_source_symmetric_init():
axes_geometry_source = pv.AxesGeometrySource(symmetric=True)
assert axes_geometry_source.output.bounds == (-1.0, 1.0, -1.0, 1.0, -1.0, 1.0)
def test_axes_geometry_source_symmetric_bounds_set_get(axes_geometry_source):
assert axes_geometry_source.symmetric_bounds is False
axes_geometry_source.symmetric_bounds = True
assert axes_geometry_source.symmetric_bounds is True
def test_axes_geometry_source_symmetric_bounds_init():
axes_geometry_source = pv.AxesGeometrySource(symmetric_bounds=True)
assert axes_geometry_source.output.bounds == (-1.0, 1.0, -1.0, 1.0, -1.0, 1.0)
def test_axes_geometry_source_shaft_length_set_get(axes_geometry_source):
assert axes_geometry_source.shaft_length == (0.8, 0.8, 0.8)
new_length = (0.1, 0.2, 0.3)
axes_geometry_source.shaft_length = new_length
assert axes_geometry_source.shaft_length == new_length
def test_axes_geometry_source_shaft_length_init():
axes_geometry_source = pv.AxesGeometrySource(shaft_length=0.9)
assert axes_geometry_source.shaft_length == (0.9, 0.9, 0.9)
@pytest.mark.parametrize('part', ['x_shaft', 'y_shaft', 'z_shaft', 'x_tip', 'y_tip', 'z_tip'])
def test_axes_geometry_source_bounds(axes_geometry_source, part):
x_shaft_len, y_shaft_len, z_shaft_len = 0.5, 0.6, 0.7
shaft_radius = 0.05
axes_geometry_source.shaft_length = x_shaft_len, y_shaft_len, z_shaft_len
axes_geometry_source.shaft_radius = shaft_radius
x_tip_len, y_tip_len, z_tip_len = 0.2, 0.3, 0.4
tip_radius = 0.2
axes_geometry_source.tip_length = x_tip_len, y_tip_len, z_tip_len
axes_geometry_source.tip_radius = tip_radius
x_shaft, y_shaft, z_shaft, x_tip, y_tip, z_tip = axes_geometry_source.output
if part == 'x_shaft':
actual_bounds = x_shaft.bounds
expected_bounds = (
0,
x_shaft_len,
-shaft_radius,
shaft_radius,
-shaft_radius,
shaft_radius,
)
assert np.allclose(actual_bounds, expected_bounds)
elif part == 'y_shaft':
actual_bounds = y_shaft.bounds
expected_bounds = (
-shaft_radius,
shaft_radius,
0,
y_shaft_len,
-shaft_radius,
shaft_radius,
)
assert np.allclose(actual_bounds, expected_bounds)
elif part == 'z_shaft':
actual_bounds = z_shaft.bounds
expected_bounds = (
-shaft_radius,
shaft_radius,
-shaft_radius,
shaft_radius,
0,
z_shaft_len,
)
assert np.allclose(actual_bounds, expected_bounds)
elif part == 'x_tip':
actual_bounds = x_tip.bounds
expected_bounds = (
x_shaft_len,
x_shaft_len + x_tip_len,
-tip_radius,
tip_radius,
-tip_radius,
tip_radius,
)
assert np.allclose(actual_bounds, expected_bounds)
elif part == 'y_tip':
actual_bounds = y_tip.bounds
expected_bounds = (
-tip_radius,
tip_radius,
y_shaft_len,
y_shaft_len + y_tip_len,
-tip_radius,
tip_radius,
)
assert np.allclose(actual_bounds, expected_bounds)
elif part == 'z_tip':
actual_bounds = z_tip.bounds
expected_bounds = (
-tip_radius,
tip_radius,
-tip_radius,
tip_radius,
z_shaft_len,
z_shaft_len + z_tip_len,
)
assert np.allclose(actual_bounds, expected_bounds)
else:
raise NotImplementedError
def test_axes_geometry_source_tip_length_set_get(axes_geometry_source):
assert axes_geometry_source.tip_length == (0.2, 0.2, 0.2)
axes_geometry_source.tip_length = (0.1, 0.2, 0.3)
assert axes_geometry_source.tip_length == (0.1, 0.2, 0.3)
def test_axes_geometry_source_tip_length_init():
axes_geometry_source = pv.AxesGeometrySource(tip_length=0.9)
assert axes_geometry_source.tip_length == (0.9, 0.9, 0.9)
def test_axes_geometry_source_tip_radius_set_get(axes_geometry_source):
assert axes_geometry_source.tip_radius == 0.1
axes_geometry_source.tip_radius = 0.8
assert axes_geometry_source.tip_radius == 0.8
def test_axes_geometry_source_tip_radius_init():
axes_geometry_source = pv.AxesGeometrySource(tip_radius=9)
assert axes_geometry_source.tip_radius == 9
@pytest.mark.parametrize(
'shaft_type',
pv.AxesGeometrySource.GEOMETRY_TYPES,
)
def test_axes_geometry_source_shaft_type_set_get(shaft_type, axes_geometry_source):
axes_geometry_source.shaft_type = shaft_type
assert axes_geometry_source.shaft_type == shaft_type
def test_axes_geometry_source_custom_part(axes_geometry_source):
axes_geometry_source.shaft_type = pv.ParametricKlein()
assert axes_geometry_source.shaft_type == 'custom'
axes_geometry_source.tip_type = pv.ParametricKlein()
assert axes_geometry_source.tip_type == 'custom'
match = 'Custom axes part must be 3D. Got bounds: (-0.5, 0.5, -0.5, 0.5, 0.0, 0.0).'
with pytest.raises(ValueError, match=re.escape(match)):
axes_geometry_source.shaft_type = pv.Plane()
match = "Geometry 'foo' is not valid. Geometry must be one of: \n\t('cylinder', 'sphere', 'hemisphere', 'cone', 'pyramid', 'cube', 'octahedron')"
with pytest.raises(ValueError, match=re.escape(match)):
axes_geometry_source.shaft_type = 'foo'
match = "Geometry must be a string or pyvista.DataSet. Got <class 'int'>."
with pytest.raises(TypeError, match=match):
axes_geometry_source.shaft_type = 42
@pytest.mark.parametrize(
'shaft_type',
pv.AxesGeometrySource.GEOMETRY_TYPES,
)
def test_axes_geometry_source_shaft_type_init(shaft_type):
axes_geometry_source = pv.AxesGeometrySource(shaft_type=shaft_type)
assert axes_geometry_source.shaft_type == shaft_type
@pytest.mark.parametrize(
'tip_type',
pv.AxesGeometrySource.GEOMETRY_TYPES,
)
def test_axes_geometry_source_tip_type_set_get(tip_type, axes_geometry_source):
axes_geometry_source.tip_type = tip_type
assert axes_geometry_source.tip_type == tip_type
@pytest.mark.parametrize(
'tip_type',
pv.AxesGeometrySource.GEOMETRY_TYPES,
)
def test_axes_geometry_source_tip_type_init(tip_type):
axes_geometry_source = pv.AxesGeometrySource(tip_type=tip_type)
assert axes_geometry_source.tip_type == tip_type
def test_axes_geometry_source_shaft_radius_set_get(axes_geometry_source):
assert axes_geometry_source.shaft_radius == 0.025
axes_geometry_source.shaft_radius = 0.1
assert axes_geometry_source.shaft_radius == 0.1
def test_axes_geometry_source_shaft_radius_init():
axes_geometry_source = pv.AxesGeometrySource(shaft_radius=3)
assert axes_geometry_source.shaft_radius == 3
def test_axes_geometry_source_update_output(axes_geometry_source):
out1 = axes_geometry_source.output
assert isinstance(out1, pv.MultiBlock)
assert out1.keys() == ['x_shaft', 'y_shaft', 'z_shaft', 'x_tip', 'y_tip', 'z_tip']
# Test output object references are unchanged when updating
out2 = axes_geometry_source.output
assert out1 is out2
assert out1[0] is out2[0]
assert out1[1] is out2[1]
assert out1[2] is out2[2]
assert out1[3] is out2[3]
assert out1[4] is out2[4]
assert out1[5] is out2[5]
assert out1['x_shaft'] is out2['x_shaft']
assert out1['y_shaft'] is out2['y_shaft']
assert out1['z_shaft'] is out2['z_shaft']
assert out1['x_tip'] is out2['x_tip']
assert out1['y_tip'] is out2['y_tip']
assert out1['z_tip'] is out2['z_tip']
def test_axes_geometry_source_repr(axes_geometry_source):
repr_ = repr(axes_geometry_source)
actual_lines = repr_.splitlines()[1:]
expected_lines = [
" Shaft type: 'cylinder'",
' Shaft radius: 0.025',
' Shaft length: (0.8, 0.8, 0.8)',
" Tip type: 'cone'",
' Tip radius: 0.1',
' Tip length: (0.2, 0.2, 0.2)',
' Symmetric: False',
' Symmetric bounds: False',
]
assert len(actual_lines) == len(expected_lines)
assert actual_lines == expected_lines
axes_geometry_source.shaft_type = pv.ParametricTorus()
repr_ = repr(axes_geometry_source)
assert "Shaft type: 'custom'" in repr_
|