1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
|
.. _point_sets_api:
Point Sets
==========
PyVista point sets are datasets with explicit geometry where the point
and cell topology are specified and not inferred. PyVista point sets
are modeled after the same data model as VTK's point sets while being
designed to make creation, array access, and plotting more
straightforward than their VTK counterparts.
The :class:`pyvista.UnstructuredGrid` class is used for arbitrary
combinations of all possible cell types:
.. jupyter-execute::
:hide-code:
# jupyterlab boiler plate setup
import pyvista
pyvista.set_plot_theme('document')
pyvista.set_jupyter_backend('static')
pyvista.global_theme.window_size = [600, 400]
pyvista.global_theme.axes.show = False
pyvista.global_theme.anti_aliasing = 'fxaa'
pyvista.global_theme.show_scalar_bar = False
.. jupyter-execute::
:hide-code:
from pyvista import demos
demos.plot_datasets('UnstructuredGrid')
The :class:`pyvista.PolyData` is used for datasets consisting of surface
geometry (for example vertices, lines, and polygons):
.. jupyter-execute::
:hide-code:
from pyvista import demos
demos.plot_datasets('PolyData')
The :class:`pyvista.StructuredGrid` is used for topologically regular arrays of
data:
.. jupyter-execute::
:hide-code:
from pyvista import demos
demos.plot_datasets('StructuredGrid')
The :class:`pyvista.PointSet` (as of ``vtk==9.1.0``) is a concrete class for
storing a set of points.
.. jupyter-execute::
:hide-code:
import numpy as np
import pyvista
rng = np.random.default_rng(0)
points = rng.random((10, 3))
pset = pyvista.PointSet(points)
pset.plot(color='red')
**Class Descriptions**
The following table describes PyVista's point set classes. These
classes inherit all methods from their corresponding VTK :vtk:`vtkPointSet`,
:vtk:`vtkPolyData`, :vtk:`vtkUnstructuredGrid`, :vtk:`vtkStructuredGrid`, and
:vtk:`vtkExplicitStructuredGrid` superclasses.
.. autosummary::
:toctree: _autosummary
pyvista.PointSet
pyvista.PolyData
pyvista.UnstructuredGrid
pyvista.StructuredGrid
pyvista.ExplicitStructuredGrid
.. _vtkPointSet: https://www.vtk.org/doc/nightly/html/classvtkPointSet.html
.. _vtkPolyData: https://www.vtk.org/doc/nightly/html/classvtkPolyData.html
.. _vtkUnstructuredGrid: https://www.vtk.org/doc/nightly/html/classvtkUnstructuredGrid.html
.. _vtkStructuredGrid: https://www.vtk.org/doc/nightly/html/classvtkStructuredGrid.html
.. _vtkExplicitStructuredGrid: https://vtk.org/doc/nightly/html/classvtkExplicitStructuredGrid.html
PolyData Creation
-----------------
Empty Object
~~~~~~~~~~~~
A :class:`pyvista.PolyData` object can be initialized with:
.. jupyter-execute::
import pyvista
mesh = pyvista.PolyData()
This creates an mesh, which you can then add
* Points with :attr:`points <pyvista.DataSet.points>`
* Vertices with :attr:`verts <pyvista.PolyData.verts>`
* Lines with :attr:`lines <pyvista.PolyData.lines>`
* Faces with :attr:`faces <pyvista.PolyData.faces>`
Note that unlike :class:`pyvista.UnstructuredGrid`, you do not specify
cell types. All faces are assumed to be polygons, hence the name
"Poly" data.
Click on the attributes above to see examples of how to add geometric
features to an empty. See :ref:`create_poly_example` for an example on
creating a :class:`pyvista.PolyData` object from NumPy arrays.
Initialize from a File
~~~~~~~~~~~~~~~~~~~~~~
Both binary and ASCII .ply, .stl, and .vtk files can be read using
PyVista. For example, the PyVista package contains example meshes and
these can be loaded with:
.. jupyter-execute::
import pyvista
from pyvista import examples
# Load mesh
mesh = pyvista.PolyData(examples.planefile)
mesh
This mesh can then be written to a .vtk file using:
.. code-block:: python
mesh.save('plane.vtk')
These meshes are identical.
.. code-block:: python
import numpy as np
mesh_from_vtk = pyvista.PolyData('plane.vtk')
print(np.allclose(mesh_from_vtk.points, mesh.points))
Mesh Manipulation and Plotting
------------------------------
Meshes can be directly manipulated using NumPy or with the built-in
translation and rotation routines. This example loads two meshes and
moves, scales, copies them, and finally plots them.
To plot more than one mesh a :class:`pyvista.Plotter` instance must be
created to manage the plotting. The following code creates a plotter
and plots the meshes with various colors.
.. jupyter-execute::
import pyvista
from pyvista import examples
# load and shrink airplane
airplane = pyvista.PolyData(examples.planefile)
airplane.points /= 10 # shrink by 10x
# rotate and translate ant so it is on the plane
ant = pyvista.PolyData(examples.antfile)
ant.rotate_x(90, inplace=True)
ant.translate([90, 60, 15], inplace=True)
# Make a copy and add another ant
ant_copy = ant.copy()
ant_copy.translate([30, 0, -10], inplace=True)
# Create plotter object
plotter = pyvista.Plotter()
plotter.add_mesh(ant, color='r')
plotter.add_mesh(ant_copy, color='b')
# Add airplane mesh and make the color equal to the Y position. Add a
# scalar bar associated with this mesh
plane_scalars = airplane.points[:, 1]
plotter.add_mesh(airplane, scalars=plane_scalars,
scalar_bar_args={'title': 'Airplane Y\nLocation'})
# Add annotation text
plotter.add_text('Ants and Plane Example')
plotter.show()
Unstructured Grid Creation
--------------------------
See :ref:`create_unstructured_surface_example` for an example on how to create an
unstructured grid from NumPy arrays.
Create
~~~~~~
An unstructured grid can be initialized with:
.. jupyter-execute::
import pyvista as pv
grid = pv.UnstructuredGrid()
This creates an empty grid, and is it not useful until points and
cells are added to it. Points and cells can be added later with
:attr:`points <pyvista.DataSet.points>`, :attr:`cells
<pyvista.UnstructuredGrid.cells>`, and :attr:`celltypes
<pyvista.UnstructuredGrid.celltypes>` .
Alternatively, you can add points and cells directly when
initializing.
.. jupyter-execute::
>>> import numpy as np
>>> import pyvista
>>> from pyvista import CellType
>>> cells = np.array(
... [8, 0, 1, 2, 3, 4, 5, 6, 7, 8, 8, 9, 10, 11, 12, 13, 14, 15]
... )
>>> cell_type = np.array(
... [CellType.HEXAHEDRON, CellType.HEXAHEDRON], np.int8
... )
>>> cell1 = np.array(
... [
... [0, 0, 0],
... [1, 0, 0],
... [1, 1, 0],
... [0, 1, 0],
... [0, 0, 1],
... [1, 0, 1],
... [1, 1, 1],
... [0, 1, 1],
... ],
... dtype=np.float32,
... )
>>> cell2 = np.array(
... [
... [0, 0, 2],
... [1, 0, 2],
... [1, 1, 2],
... [0, 1, 2],
... [0, 0, 3],
... [1, 0, 3],
... [1, 1, 3],
... [0, 1, 3],
... ],
... dtype=np.float32,
... )
>>> points = np.vstack((cell1, cell2))
>>> grid = pyvista.UnstructuredGrid(cells, cell_type, points)
>>> grid
We can plot this with colors with:
.. jupyter-execute::
>>> grid.plot(scalars=[0, 1], cmap='plasma')
Loading from File
~~~~~~~~~~~~~~~~~
Unstructured grids can be loaded from a vtk file.
.. jupyter-execute::
import pyvista as pv
from pyvista import examples
grid = pv.UnstructuredGrid(examples.hexbeamfile)
grid
Structured Grid Creation
------------------------
Empty Object
~~~~~~~~~~~~
A structured grid can be initialized with:
.. jupyter-execute::
import pyvista as pv
grid = pv.StructuredGrid()
Creating from NumPy Arrays
~~~~~~~~~~~~~~~~~~~~~~~~~~
A structured grid can be created directly from numpy arrays. This is useful
when creating a grid from scratch or copying it from another format.
Also see :ref:`create_structured_surface_example` for an example on creating a structured
grid from NumPy arrays.
.. jupyter-execute::
import pyvista as pv
import numpy as np
x = np.arange(-10, 10, 1, dtype=np.float32)
y = np.arange(-10, 10, 2, dtype=np.float32)
z = np.arange(-10, 10, 5, dtype=np.float32)
x, y, z = np.meshgrid(x, y, z, indexing='ij')
# create the unstructured grid directly from the numpy arrays and plot
grid = pv.StructuredGrid(x, y, z)
grid.plot(show_edges=True)
Loading from File
~~~~~~~~~~~~~~~~~
Structured grids can be loaded from a ``vtk`` file.
.. code-block:: python
grid = pv.StructuredGrid(filename)
Plotting Grids
--------------
This example shows how you can load an unstructured grid from a ``vtk`` file and
create a plot and GIF movie by updating the plotting object.
.. pyvista-plot::
:context:
# Load module and example file
import pyvista as pv
from pyvista import examples
import numpy as np
# Load example beam grid
grid = pv.UnstructuredGrid(examples.hexbeamfile)
# Create fictitious displacements as a function of Z location
d = np.zeros_like(grid.points)
d[:, 1] = grid.points[:, 2]**3/250
# Displace original grid
grid.points += d
A simple plot can be created by using:
.. pyvista-plot::
:context:
# Camera position.
# it's hard-coded in this example
cpos = [(11.9151, 6.1139, 3.61249),
(0.0, 0.375, 2.0),
(-0.4254, 0.9024, -0.0678)]
grid.plot(scalars=d[:, 1], scalar_bar_args={'title': 'Y Displacement'}, cpos=cpos)
A more complex plot can be created using:
.. pyvista-plot::
:context:
# plot this displaced beam
plotter = pv.Plotter()
plotter.add_mesh(grid, scalars=d[:, 1],
scalar_bar_args={'title': 'Y Displacement'},
rng=[-d.max(), d.max()])
plotter.add_axes()
plotter.camera_position = cpos
plotter.show()
You can animate the motion of the beam by updating the positions and
scalars of the grid copied to the plotting object. Here is a full example:
.. pyvista-plot::
:context:
# Load module and example file
import pyvista as pv
from pyvista import examples
import numpy as np
# Load example beam grid
grid = pv.UnstructuredGrid(examples.hexbeamfile)
# Create fictitious displacements as a function of Z location
d = np.zeros_like(grid.points)
d[:, 1] = grid.points[:, 2]**3/250
grid['Y Displacement'] = d[:, 1]
# use hardcoded camera position
cpos = [(11.915, 6.114, 3.612),
(0.0, 0.375, 2.0),
(-0.425, 0.902, -0.0679)]
plotter = pv.Plotter(window_size=(800, 600))
plotter.add_mesh(grid, scalars='Y Displacement',
show_edges=True, rng=[-d.max(), d.max()],
interpolate_before_map=True)
plotter.add_axes()
plotter.camera_position = cpos
# open movie file. A mp4 file can be written instead. Requires ``moviepy``
plotter.open_gif('beam.gif') # or beam.mp4
# Modify position of the beam cyclically
pts = grid.points.copy() # unmodified points
for phase in np.linspace(0, 2*np.pi, 20):
grid.points = pts + d * np.cos(phase)
grid['Y Displacement'] = d[:, 1] * np.cos(phase)
plotter.write_frame()
# close the plotter when complete
plotter.close()
You can also render the beam as a wire-frame object:
.. pyvista-plot::
:context:
# Animate plot as a wire-frame
plotter = pv.Plotter(window_size=(800, 600))
plotter.add_mesh(grid, scalars='Y Displacement',
show_edges=True,
rng=[-d.max(), d.max()], interpolate_before_map=True,
style='wireframe')
plotter.add_axes()
plotter.camera_position = cpos
plotter.open_gif('beam_wireframe.gif')
for phase in np.linspace(0, 2*np.pi, 20):
grid.points = pts + d * np.cos(phase)
grid['Y Displacement'] = d[:, 1] * np.cos(phase)
plotter.write_frame()
# close the plotter when complete
plotter.close()
Adding Labels to a Plot
-----------------------
Labels can be added to a plot using :func:`add_point_labels()
<pyvista.Plotter.add_point_labels>` within the :class:`Plotter <pyvista.Plotter>`.
The following example loads the included example beam, generates a
plotting class, and sub-selects points along the y-z plane and labels
their coordinates. :func:`add_point_labels()
<pyvista.Plotter.add_point_labels>` requires that the number of
labels matches the number of points, and that labels is a list
containing one entry per point. The code automatically converts each
item in the list to a string.
..
here we use pyvista plot since labels do not show in interactive backends
.. pyvista-plot::
:context:
# Load module and example file
import pyvista as pv
from pyvista import examples
# Load example beam file
grid = pv.UnstructuredGrid(examples.hexbeamfile)
# Create plotting class and add the unstructured grid
plotter = pv.Plotter()
plotter.add_mesh(grid, show_edges=True, color='lightblue')
# Add labels to points on the yz plane (where x == 0)
points = grid.points
mask = points[:, 0] == 0
plotter.add_point_labels(points[mask], points[mask].tolist())
plotter.camera_position = [
(-1.4643015810492384, 1.5603923627830638, 3.16318236536270),
(0.05268120500967251, 0.639442034364944, 1.204095304165153),
(0.2364061044392675, 0.9369426029156169, -0.25739213784721)]
plotter.show()
This example is similar and shows how labels can be combined with a
scalar bar to show the exact value of certain points.
.. pyvista-plot::
:context:
# Label the Z position
values = grid.points[:, 2]
# Create plotting class and add the unstructured grid
plotter = pv.Plotter()
# color mesh according to z value
plotter.add_mesh(grid, scalars=values,
scalar_bar_args={'title': 'Z Position'},
show_edges=True)
# Add labels to points on the yz plane (where x == 0)
mask = grid.points[:, 0] == 0
plotter.add_point_labels(points[mask], values[mask].tolist(), font_size=24)
# add some text to the plot
plotter.add_text('Example showing plot labels')
plotter.view_vector((-6, -3, -4), (0.,-1., 0.))
plotter.show()
|