1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402
|
"""Generate tables that can be included in the documentation."""
from __future__ import annotations
from abc import abstractmethod
from collections.abc import Callable
from collections.abc import Iterable
from collections.abc import Iterator
from collections.abc import Sequence
from colorsys import rgb_to_hls
from dataclasses import dataclass
from enum import auto
import inspect
import io
from itertools import starmap
import os
from pathlib import Path
import re
import sys
import textwrap
from typing import TYPE_CHECKING
from typing import Any
from typing import ClassVar
from typing import Literal
from typing import final
from typing import get_args
import warnings
# import cmcrameri
# import cmocean
import colorcet
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
from scipy.stats import linregress
import pyvista as pv
from pyvista import _validation
from pyvista.core.celltype import _CELL_TYPE_INFO
from pyvista.core.errors import VTKVersionError
from pyvista.core.filters.data_object import _get_cell_quality_measures
from pyvista.core.utilities.cell_quality import _CELL_QUALITY_LOOKUP
from pyvista.core.utilities.cell_quality import _CellTypesLiteral
from pyvista.core.utilities.misc import _classproperty
from pyvista.examples import cells
from pyvista.examples._dataset_loader import DatasetObject
from pyvista.examples._dataset_loader import _DatasetLoader
from pyvista.examples._dataset_loader import _Downloadable
from pyvista.examples._dataset_loader import _MultiFilePropsProtocol
from pyvista.examples._dataset_loader import _SingleFilePropsProtocol
from pyvista.plotting.colors import _CSS_COLORS
from pyvista.plotting.colors import _PARAVIEW_COLORS
from pyvista.plotting.colors import _TABLEAU_COLORS
from pyvista.plotting.colors import _VTK_COLORS
from pyvista.plotting.colors import _format_color_dict
if sys.version_info >= (3, 11):
from enum import StrEnum
else:
from enum import Enum
class StrEnum(str, Enum):
def __str__(self) -> str:
return self.value
if TYPE_CHECKING:
from types import FunctionType
from types import ModuleType
from pyvista.plotting.colors import Color
# Paths to directories in which resulting rst files and images are stored.
CELL_QUALITY_DIR = 'api/core/cell_quality'
CHARTS_TABLE_DIR = 'api/plotting/charts'
CHARTS_IMAGE_DIR = 'images/charts'
COLORS_TABLE_DIR = 'api/utilities/color_table'
COLORMAP_TABLE_DIR = 'api/utilities/colormap_table'
COLORMAP_IMAGE_DIR = 'images/colormaps'
# Directory where auto-generated gallery rst files are saved
DATASET_GALLERY_DIR = 'api/examples/dataset-gallery'
# Directory where gallery thumbnails are saved
# We use the actual images generated during the build as the gallery thumbnails
# These images are auto-generated by the `.. pyvista_plot::` directive
DATASET_GALLERY_IMAGE_DIR = '../_build/plot_directive/api/examples/_autosummary'
# Generated docstring images are assumed to have '.png' extension
# Define special cases for specific datasets here. Use `None` if no image is generated.
DATASET_GALLERY_IMAGE_EXT_DICT = {
'can': None,
'cavity': None,
'osmnx_graph': None,
'gpr_data_array': None,
'sphere_vectors': None,
'single_sphere_animation': '.gif',
'dual_sphere_animation': '.gif',
}
def _aligned_dedent(txt):
"""Variant of `textwrap.dedent`.
Helper method to dedent the provided text up to the special alignment character ``'|'``.
"""
return textwrap.dedent(txt).replace('|', '')
class DocTable:
"""Helper class to create tables for the documentation.
The ``generate`` method creates the table rst file (and possibly any other
files, such as images, used by the table). This method internally calls
the ``fetch_data``, ``get_header`` and ``get_row`` methods, which should be
provided by any subclass.
Each table is generated from a list of 'row_data' provided by the ``fetch_data``
method. The ``get_header`` and ``get_row`` methods generate the required rst
for the table's header and table's rows respectively.
"""
# Path to the rst file to which the table will be written
# Param should not be None for subclasses
path: str = None # type: ignore[assignment]
@classmethod
def generate(cls):
"""Generate this table."""
print(f'generating tables... {cls.__name__}', flush=True)
assert cls.path is not None, f'Subclass {cls} should specify a path.'
if isinstance(cls.path, property):
cls.path = cls.path.fget(cls)
data = cls.fetch_data()
assert data is not None, f'No data was fetched by {cls}.'
with io.StringIO() as fnew:
fnew.write(cls.get_header(data))
for i, row_data in enumerate(data):
row = cls.get_row(i, row_data)
if row is not None:
fnew.write(row)
# if file exists, verify that we have no new content
fnew.seek(0)
new_txt = fnew.read()
# determine if existing file needs to be rewritten
if Path(cls.path).exists():
with Path(cls.path).open(encoding='utf-8') as fold:
orig_txt = fold.read()
if orig_txt == new_txt:
new_txt = ''
# write if there is any text to write. This avoids resetting the documentation cache
if new_txt:
with open(cls.path, 'w', encoding='utf-8') as fout:
fout.write(new_txt)
pv.close_all()
@classmethod
def fetch_data(cls):
"""Get a list of row_data used to generate the table."""
msg = 'Subclasses should specify a fetch_data method.'
raise NotImplementedError(msg)
@classmethod
def get_header(cls, data):
"""Get the table's header rst."""
msg = 'Subclasses should specify a table header.'
raise NotImplementedError(msg)
@classmethod
def get_row(cls, i, row_data):
"""Get the rst for the given row.
Can return ``None`` if no row should be generated for the provided ``row_data``.
"""
msg = 'Subclasses should specify a get_row method.'
raise NotImplementedError(msg)
class CellQualityMeasuresTable(DocTable):
"""Class to generate table for cell quality measures."""
path = f'{CELL_QUALITY_DIR}/cell_quality_measures_table.rst'
header = _aligned_dedent(
"""
|.. list-table:: Cell Quality Measures
| :widths: 22 13 13 13 13 13 13
| :header-rows: 1
|
| * - Measure
| - {}
| - {}
| - {}
| - {}
| - {}
| - {}
""",
)
row_template = _aligned_dedent(
"""
| * - {}
| - {}
| - {}
| - {}
| - {}
| - {}
| - {}
""",
)
cell_types: ClassVar[_CellTypesLiteral] = get_args(_CellTypesLiteral)
@classmethod
def fetch_data(cls):
# Get all cell example functions,
# i.e. items from examples.cells that start with a capital letter
cell_funcs = [
name
for name, obj in inspect.getmembers(cells, inspect.isfunction)
if name[0].isupper()
]
# Init dict with all measures as keys
measures = {measure: set() for measure in _get_cell_quality_measures().keys()}
# Compute the cell quality of each cell type and add to dict if valid
for func in cell_funcs:
mesh = getattr(cells, func)()
cell_type = pv.CellType(mesh.celltypes[0])
mesh = mesh.cell_quality('all_valid')
for valid_measure in mesh.array_names:
measures[valid_measure].add(cell_type)
return [(measures, measure) for measure in measures.keys()]
@classmethod
def get_header(cls, _):
return cls.header.format(
*[f':attr:`~pyvista.CellType.{cell_type.name}`' for cell_type in cls.cell_types]
)
@classmethod
def get_row(cls, _, row_data):
measures, measure = row_data
success = ':material-regular:`check;2em;sd-text-success`'
error = ':material-regular:`close;2em;sd-text-error`'
def _get_table_entry(cell_type):
return success if cell_type in measures[measure] else error
table_entries = [_get_table_entry(cell_type) for cell_type in cls.cell_types]
return cls.row_template.format(f'``{measure}``', *table_entries)
class CellQualityInfoTable(DocTable):
"""Class to generate table for cell quality info."""
cell_type: pv.CellType
@property
@final
def path(self):
return f'{CELL_QUALITY_DIR}/cell_quality_info_table_{self.cell_type.name}.rst'
header = _aligned_dedent(
"""
|.. dropdown:: {} Cell Info
|
| Info about {} cell quality measures.
| See {} for an example unit cell.
|
| .. list-table::
| :widths: 20 20 20 20 20
| :header-rows: 1
|
| * - Measure
| - Acceptable
| Range
| - Normal
| Range
| - Full
| Range
| - Unit Cell
| Value
""",
)
row_template = _aligned_dedent(
"""
| * - {}
| - {}
| - {}
| - {}
| - {}
""",
)
@classmethod
def fetch_data(cls):
return _CELL_QUALITY_LOOKUP[cls.cell_type].values()
@classmethod
def get_header(cls, _):
name = cls.cell_type.name
example = _CELL_TYPE_INFO[name].example
return cls.header.format(
name.capitalize(),
f':attr:`~pyvista.CellType.{name}`',
f':func:`~pyvista.examples.cells.{example}`',
)
@classmethod
def get_row(cls, _, row_data):
def format_list(obj):
if obj is None:
return 'None'
return '[' + ', '.join(format_number(num) for num in obj) + ']'
def format_number(num):
if num is None:
return 'None'
if num == float('inf'):
return 'inf'
if num == -float('inf'):
return '-inf'
# Show max 3 significant digits
formatted = f'{num:.3g}'
# Ensure at least one decimal place
if 'e' in formatted or '.' in formatted:
return formatted
return f'{formatted}.0'
measure = f'``{row_data.quality_measure}``'
acceptable = format_list(row_data.acceptable_range)
normal = format_list(row_data.normal_range)
full = format_list(row_data.full_range)
value = format_number(row_data.unit_cell_value)
return cls.row_template.format(measure, acceptable, normal, full, value)
class CellQualityInfoTableTRIANGLE(CellQualityInfoTable):
cell_type = pv.CellType.TRIANGLE
class CellQualityInfoTableQUAD(CellQualityInfoTable):
cell_type = pv.CellType.QUAD
class CellQualityInfoTableTETRA(CellQualityInfoTable):
cell_type = pv.CellType.TETRA
class CellQualityInfoTableHEXAHEDRON(CellQualityInfoTable):
cell_type = pv.CellType.HEXAHEDRON
class CellQualityInfoTableWEDGE(CellQualityInfoTable):
cell_type = pv.CellType.WEDGE
class CellQualityInfoTablePYRAMID(CellQualityInfoTable):
cell_type = pv.CellType.PYRAMID
class LineStyleTable(DocTable):
"""Class to generate line style table."""
path = f'{CHARTS_TABLE_DIR}/pen_line_styles.rst'
header = _aligned_dedent(
"""
|.. list-table:: Line styles
| :widths: 20 40 40
| :header-rows: 1
|
| * - Style
| - Description
| - Example
""",
)
row_template = _aligned_dedent(
"""
| * - ``"{}"``
| - {}
| - .. image:: /{}
""",
)
@classmethod
def fetch_data(cls):
# Fetch table data from ``LINE_STYLES`` dictionary.
return [{'style': ls, **data} for (ls, data) in pv.charts.Pen.LINE_STYLES.items()]
@classmethod
def get_header(cls, _):
return cls.header
@classmethod
def get_row(cls, i, row_data):
if row_data['descr'] is None:
return None # Skip line style if description is set to ``None``.
else:
# Create an image from the given line style and generate the row rst.
img_path = f'{CHARTS_IMAGE_DIR}/ls_{i}.png'
cls.generate_img(row_data['style'], img_path)
return cls.row_template.format(row_data['style'], row_data['descr'], img_path)
@staticmethod
def generate_img(line_style, img_path):
"""Generate and save an image of the given line_style."""
p = pv.Plotter(off_screen=True, window_size=[100, 50])
p.background_color = 'w'
chart = pv.Chart2D()
chart.line([0, 1], [0, 0], color='b', width=3.0, style=line_style)
chart.hide_axes()
p.add_chart(chart)
# Generate and crop the image
_, img = p.show(screenshot=True, return_cpos=True)
img = img[18:25, 22:85, :]
# exit early if the image already exists and is the same
if os.path.isfile(img_path) and pv.compare_images(img, img_path) < 1:
return
# save it
p._save_image(img, img_path, False)
class MarkerStyleTable(DocTable):
"""Class to generate marker style table."""
path = f'{CHARTS_TABLE_DIR}/scatter_marker_styles.rst'
header = _aligned_dedent(
"""
|.. list-table:: Marker styles
| :widths: 20 40 40
| :header-rows: 1
|
| * - Style
| - Description
| - Example
""",
)
row_template = _aligned_dedent(
"""
| * - ``"{}"``
| - {}
| - .. image:: /{}
""",
)
@classmethod
def fetch_data(cls):
# Fetch table data from ``MARKER_STYLES`` dictionary.
return [
{'style': ms, **data} for (ms, data) in pv.charts.ScatterPlot2D.MARKER_STYLES.items()
]
@classmethod
def get_header(cls, _):
return cls.header
@classmethod
def get_row(cls, i, row_data):
if row_data['descr'] is None:
return None # Skip marker style if description is set to ``None``.
else:
# Create an image from the given marker style and generate the row rst.
img_path = f'{CHARTS_IMAGE_DIR}/ms_{i}.png'
cls.generate_img(row_data['style'], img_path)
return cls.row_template.format(row_data['style'], row_data['descr'], img_path)
@staticmethod
def generate_img(marker_style, img_path):
"""Generate and save an image of the given marker_style."""
p = pv.Plotter(off_screen=True, window_size=[100, 100])
p.background_color = 'w'
chart = pv.Chart2D()
chart.scatter([0], [0], color='b', size=9, style=marker_style)
chart.hide_axes()
p.add_chart(chart)
# generate and crop the image
_, img = p.show(screenshot=True, return_cpos=True)
img = img[40:53, 47:60, :]
# exit early if the image already exists and is the same
if Path(img_path).is_file() and pv.compare_images(img, img_path) < 1:
return
# save it
p._save_image(img, img_path, False)
class ColorSchemeTable(DocTable):
"""Class to generate color scheme table."""
path = f'{CHARTS_TABLE_DIR}/plot_color_schemes.rst'
header = _aligned_dedent(
"""
|.. list-table:: Color schemes
| :widths: 15 50 5 30
| :header-rows: 1
|
| * - Color scheme
| - Description
| - # colors
| - Example
""",
)
row_template = _aligned_dedent(
"""
| * - ``"{}"``
| - {}
| - {}
| - .. image:: /{}
""",
)
@classmethod
def fetch_data(cls):
# Fetch table data from ``COLOR_SCHEMES`` dictionary.
return [{'scheme': cs, **data} for (cs, data) in pv.colors.COLOR_SCHEMES.items()]
@classmethod
def get_header(cls, _):
return cls.header
@classmethod
def get_row(cls, i, row_data):
if row_data['descr'] is None:
return None # Skip color scheme if description is set to ``None``.
else:
# Create an image from the given color scheme and generate the row rst.
img_path = f'{CHARTS_IMAGE_DIR}/cs_{i}.png'
n_colors = cls.generate_img(row_data['scheme'], img_path)
return cls.row_template.format(
row_data['scheme'],
row_data['descr'],
n_colors,
img_path,
)
@staticmethod
def generate_img(color_scheme, img_path):
"""Generate and save an image of the given color_scheme."""
p = pv.Plotter(off_screen=True, window_size=[240, 120])
p.background_color = 'w'
chart = pv.Chart2D()
# Use a temporary plot to determine the total number of colors in this scheme
tmp_plot = chart.bar([0], [[1]] * 2, color=color_scheme, orientation='H')
n_colors = len(tmp_plot.colors)
plot = chart.bar([0], [[1]] * n_colors, color=color_scheme, orientation='H')
chart.remove_plot(tmp_plot)
plot.pen.color = 'w'
chart.x_range = [0, n_colors]
chart.hide_axes()
p.add_chart(chart)
# Generate and crop the image
_, img = p.show(screenshot=True, return_cpos=True)
img = img[34:78, 22:225, :]
# exit early if the image already exists and is the same
if Path(img_path).is_file() and pv.compare_images(img, img_path) < 1:
return n_colors
# save it
p._save_image(img, img_path, False)
return n_colors
class ColorTable(DocTable):
"""Class to generate colors table."""
path = f'{COLORS_TABLE_DIR}/color_table.rst'
title = ''
header = _aligned_dedent(
"""
|.. list-table:: {}
| :widths: 8 48 18 26
| :header-rows: 1
| :stub-columns: 1
|
| * - Source
| - Name
| - Hex value
| - Example
""",
)
row_template = _aligned_dedent(
"""
| * - {}
| - {}
| - ``{}``
| - .. raw:: html
|
| <span style='width:100%; height:100%; display:block; background-color: {};'> </span>
""", # noqa: E501
)
@classmethod
def fetch_data(cls):
# Fetch table data from ``hexcolors`` dictionary.
return ColorTable._table_data_from_color_sequence(ALL_COLORS)
@staticmethod
def _table_data_from_color_sequence(colors: Sequence[Color]):
assert len(colors) > 0, 'No colors were provided.'
colors_dict: dict[str | None, dict[str, Any]] = {
c.name: {'name': c.name, 'hex': c.hex_rgb, 'synonyms': []} for c in colors
}
assert all(name is not None for name in colors_dict.keys()), 'Colors must be named.'
# Add synonyms defined in ``color_synonyms`` dictionary.
for s, name in pv.colors.color_synonyms.items():
if name in colors_dict:
colors_dict[name]['synonyms'].append(s)
return colors_dict.values()
@classmethod
def get_header(cls, _):
return cls.header.format(cls.title)
@classmethod
def get_row(cls, _, row_data):
name_template = "``'{}'``"
names = [row_data['name']] + row_data['synonyms']
name = ' or '.join(name_template.format(n) for n in names)
source_badge = _get_color_source_badge(row_data['name'])
return cls.row_template.format(source_badge, name, row_data['hex'], row_data['hex'])
def _get_color_source_badge(name: str) -> str:
if name in _format_color_dict(_CSS_COLORS):
return ':bdg-primary:`CSS`'
elif name in _format_color_dict(_TABLEAU_COLORS):
return ':bdg-success:`TAB`'
elif name in _format_color_dict(_PARAVIEW_COLORS):
return ':bdg-danger:`PV`'
elif name in _format_color_dict(_VTK_COLORS):
return ':bdg-secondary:`VTK`'
else:
msg = f'Invalid color name "{name}".'
raise KeyError(msg)
def _sort_colors_by_hls(colors: Sequence[Color]):
return sorted(colors, key=lambda c: c._float_hls)
ALL_COLORS: tuple[Color] = tuple(pv.Color(c) for c in pv.hexcolors.keys())
# Saturation constants
GRAYS_SATURATION_THRESHOLD = 0.15
# Lightness constants
LOWER_LIGHTNESS_THRESHOLD = 0.15
UPPER_LIGHTNESS_THRESHOLD = 0.9
BROWN_SATURATION_LIGHTNESS_THRESHOLD = 1.2
# Hue constants in range [0, 1]
_360 = 360.0
RED_UPPER_BOUND = 8 / _360
ORANGE_UPPER_BOUND = 39 / _360
YELLOW_UPPER_BOUND = 61 / _360
GREEN_UPPER_BOUND = 157 / _360
CYAN_UPPER_BOUND = 187 / _360
BLUE_UPPER_BOUND = 248 / _360
VIOLET_UPPER_BOUND = 290 / _360
MAGENTA_UPPER_BOUND = 351 / _360
class ColorClassification(StrEnum):
WHITE = auto()
BLACK = auto()
GRAY = auto()
RED = auto()
YELLOW = auto()
ORANGE = auto()
BROWN = auto()
GREEN = auto()
CYAN = auto()
BLUE = auto()
VIOLET = auto()
MAGENTA = auto()
def classify_color(color: Color) -> ColorClassification: # noqa: PLR0911
"""Classify color based on its Hue, Lightness, and Saturation (HLS)."""
hue, lightness, saturation = color._float_hls
# Classify by lightness
if lightness > UPPER_LIGHTNESS_THRESHOLD:
return ColorClassification.WHITE
elif lightness < LOWER_LIGHTNESS_THRESHOLD:
return ColorClassification.BLACK
# Classify by saturation
elif saturation < GRAYS_SATURATION_THRESHOLD:
return ColorClassification.GRAY
# Classify by hue
elif hue >= MAGENTA_UPPER_BOUND or hue < RED_UPPER_BOUND:
return ColorClassification.RED
elif RED_UPPER_BOUND <= hue < ORANGE_UPPER_BOUND:
# Split oranges into oranges and browns
# Browns have a relatively low lightness and/or saturation
if (lightness + saturation) < BROWN_SATURATION_LIGHTNESS_THRESHOLD:
return ColorClassification.BROWN
else:
return ColorClassification.ORANGE
elif ORANGE_UPPER_BOUND <= hue < YELLOW_UPPER_BOUND:
return ColorClassification.YELLOW
elif YELLOW_UPPER_BOUND <= hue < GREEN_UPPER_BOUND:
return ColorClassification.GREEN
elif GREEN_UPPER_BOUND <= hue < CYAN_UPPER_BOUND:
return ColorClassification.CYAN
elif CYAN_UPPER_BOUND <= hue < BLUE_UPPER_BOUND:
return ColorClassification.BLUE
elif BLUE_UPPER_BOUND <= hue < VIOLET_UPPER_BOUND:
return ColorClassification.VIOLET
elif VIOLET_UPPER_BOUND <= hue < MAGENTA_UPPER_BOUND:
return ColorClassification.MAGENTA
else:
msg = (
f'Color with Hue {hue}, Lightness {lightness}, and Saturation {saturation}, '
f'was not categorized.\nDouble-check classifier logic.'
)
raise RuntimeError(msg)
class ColorClassificationTable(ColorTable):
"""Class to generate sorted colors table."""
classification: ColorClassification
@property
@final
def path(self):
return f'{COLORS_TABLE_DIR}/color_table_{self.classification.name}.rst'
@classmethod
def fetch_data(cls):
colors = [color for color in ALL_COLORS if classify_color(color) == cls.classification]
colors = _sort_colors_by_hls(colors)
return cls._table_data_from_color_sequence(colors)
class ColorTableWHITE(ColorClassificationTable):
"""Class to generate WHITE colors table."""
classification = ColorClassification.WHITE
class ColorTableBLACK(ColorClassificationTable):
"""Class to generate BLACK colors table."""
classification = ColorClassification.BLACK
class ColorTableGRAY(ColorClassificationTable):
"""Class to generate GRAY colors table."""
classification = ColorClassification.GRAY
class ColorTableRED(ColorClassificationTable):
"""Class to generate RED colors table."""
classification = ColorClassification.RED
class ColorTableORANGE(ColorClassificationTable):
"""Class to generate ORANGE colors table."""
classification = ColorClassification.ORANGE
class ColorTableBROWN(ColorClassificationTable):
"""Class to generate BROWN colors table."""
classification = ColorClassification.BROWN
class ColorTableYELLOW(ColorClassificationTable):
"""Class to generate YELLOW colors table."""
classification = ColorClassification.YELLOW
class ColorTableGREEN(ColorClassificationTable):
"""Class to generate GREEN colors table."""
classification = ColorClassification.GREEN
class ColorTableCYAN(ColorClassificationTable):
"""Class to generate CYAN colors table."""
classification = ColorClassification.CYAN
class ColorTableBLUE(ColorClassificationTable):
"""Class to generate BLUE colors table."""
classification = ColorClassification.BLUE
class ColorTableVIOLET(ColorClassificationTable):
"""Class to generate VIOLET colors table."""
classification = ColorClassification.VIOLET
class ColorTableMAGENTA(ColorClassificationTable):
"""Class to generate MAGENTA colors table."""
classification = ColorClassification.MAGENTA
class ColormapKind(StrEnum):
LINEAR = auto()
MULTI_SEQUENTIAL = auto()
DIVERGING = auto()
CYCLIC = auto()
CATEGORICAL = auto()
MISC = auto()
CET_LINEAR = auto()
CET_DIVERGING = auto()
CET_CYCLIC = auto()
CET_RAINBOW = auto()
CET_ISOLUMINANT = auto()
@dataclass
class _ColormapInfo:
package: str
kind: ColormapKind | None
name: str
@dataclass
class _ColormapSortOptions:
initial_cmap: str
n_samples: int = 11
sort_by: Literal['hue', 'cam02ucs'] = 'cam02ucs'
pre_sort: bool = False
# Define colormap info based on manual review of documentation from each package.
_COLORMAP_INFO: list[_ColormapInfo] = [
# LINEAR
# Order here does NOT matter since these will be auto-sorted
_ColormapInfo('colorcet', ColormapKind.LINEAR, 'gouldian'),
_ColormapInfo('colorcet', ColormapKind.LINEAR, 'bgy'),
_ColormapInfo('colorcet', ColormapKind.LINEAR, 'bgyw'),
_ColormapInfo('colorcet', ColormapKind.LINEAR, 'kbgyw'),
_ColormapInfo('cmocean', ColormapKind.LINEAR, 'haline'),
_ColormapInfo('matplotlib', ColormapKind.LINEAR, 'viridis'),
_ColormapInfo('matplotlib', ColormapKind.LINEAR, 'cividis'),
_ColormapInfo('cmcrameri', ColormapKind.LINEAR, 'batlow'),
_ColormapInfo('cmcrameri', ColormapKind.LINEAR, 'batlowW'),
_ColormapInfo('cmcrameri', ColormapKind.LINEAR, 'batlowK'),
_ColormapInfo('matplotlib', ColormapKind.LINEAR, 'cubehelix'),
_ColormapInfo('colorcet', ColormapKind.LINEAR, 'bmw'),
_ColormapInfo('colorcet', ColormapKind.LINEAR, 'bmy'),
_ColormapInfo('cmocean', ColormapKind.LINEAR, 'thermal'),
_ColormapInfo('cmcrameri', ColormapKind.LINEAR, 'devon'),
_ColormapInfo('cmcrameri', ColormapKind.LINEAR, 'oslo'),
_ColormapInfo('colorcet', ColormapKind.LINEAR, 'kbc'),
_ColormapInfo('colorcet', ColormapKind.LINEAR, 'kb'),
_ColormapInfo('colorcet', ColormapKind.LINEAR, 'kgy'),
_ColormapInfo('colorcet', ColormapKind.LINEAR, 'kg'),
_ColormapInfo('colorcet', ColormapKind.LINEAR, 'kr'),
_ColormapInfo('cmcrameri', ColormapKind.LINEAR, 'lajolla'),
_ColormapInfo('colorcet', ColormapKind.LINEAR, 'fire'),
_ColormapInfo('matplotlib', ColormapKind.LINEAR, 'hot'),
_ColormapInfo('matplotlib', ColormapKind.LINEAR, 'afmhot'),
_ColormapInfo('cmocean', ColormapKind.LINEAR, 'solar'),
_ColormapInfo('matplotlib', ColormapKind.LINEAR, 'gist_heat'),
_ColormapInfo('matplotlib', ColormapKind.LINEAR, 'magma'),
_ColormapInfo('matplotlib', ColormapKind.LINEAR, 'inferno'),
_ColormapInfo('matplotlib', ColormapKind.LINEAR, 'plasma'),
_ColormapInfo('matplotlib', ColormapKind.LINEAR, 'copper'),
_ColormapInfo('matplotlib', ColormapKind.LINEAR, 'pink'),
_ColormapInfo('cmocean', ColormapKind.LINEAR, 'ice'),
_ColormapInfo('cmocean', ColormapKind.LINEAR, 'dense'),
_ColormapInfo('cmocean', ColormapKind.LINEAR, 'matter'),
_ColormapInfo('cmocean', ColormapKind.LINEAR, 'amp'),
_ColormapInfo('cmocean', ColormapKind.LINEAR, 'turbid'),
_ColormapInfo('cmocean', ColormapKind.LINEAR, 'speed'),
_ColormapInfo('cmocean', ColormapKind.LINEAR, 'algae'),
_ColormapInfo('cmocean', ColormapKind.LINEAR, 'deep'),
_ColormapInfo('cmocean', ColormapKind.LINEAR, 'tempo'),
_ColormapInfo('cmocean', ColormapKind.LINEAR, 'rain'),
_ColormapInfo('colorcet', ColormapKind.LINEAR, 'blues'),
_ColormapInfo('matplotlib', ColormapKind.LINEAR, 'Blues'),
_ColormapInfo('matplotlib', ColormapKind.LINEAR, 'BuGn'),
_ColormapInfo('matplotlib', ColormapKind.LINEAR, 'BuPu'),
_ColormapInfo('matplotlib', ColormapKind.LINEAR, 'GnBu'),
_ColormapInfo('matplotlib', ColormapKind.LINEAR, 'Greens'),
_ColormapInfo('matplotlib', ColormapKind.LINEAR, 'OrRd'),
_ColormapInfo('matplotlib', ColormapKind.LINEAR, 'Oranges'),
_ColormapInfo('matplotlib', ColormapKind.LINEAR, 'PuBu'),
_ColormapInfo('matplotlib', ColormapKind.LINEAR, 'PuBuGn'),
_ColormapInfo('matplotlib', ColormapKind.LINEAR, 'PuRd'),
_ColormapInfo('matplotlib', ColormapKind.LINEAR, 'Purples'),
_ColormapInfo('matplotlib', ColormapKind.LINEAR, 'RdPu'),
_ColormapInfo('matplotlib', ColormapKind.LINEAR, 'Reds'),
_ColormapInfo('matplotlib', ColormapKind.LINEAR, 'YlGn'),
_ColormapInfo('matplotlib', ColormapKind.LINEAR, 'YlGnBu'),
_ColormapInfo('matplotlib', ColormapKind.LINEAR, 'YlOrBr'),
_ColormapInfo('matplotlib', ColormapKind.LINEAR, 'YlOrRd'),
_ColormapInfo('matplotlib', ColormapKind.LINEAR, 'Wistia'),
_ColormapInfo('matplotlib', ColormapKind.LINEAR, 'autumn'),
_ColormapInfo('matplotlib', ColormapKind.LINEAR, 'spring'),
_ColormapInfo('matplotlib', ColormapKind.LINEAR, 'summer'),
_ColormapInfo('matplotlib', ColormapKind.LINEAR, 'winter'),
_ColormapInfo('matplotlib', ColormapKind.LINEAR, 'cool'),
_ColormapInfo('matplotlib', ColormapKind.LINEAR, 'bone'),
_ColormapInfo('colorcet', ColormapKind.LINEAR, 'gray'),
_ColormapInfo('cmocean', ColormapKind.LINEAR, 'gray'),
_ColormapInfo('matplotlib', ColormapKind.LINEAR, 'gray'),
_ColormapInfo('colorcet', ColormapKind.LINEAR, 'dimgray'),
_ColormapInfo('matplotlib', ColormapKind.LINEAR, 'gist_gray'),
_ColormapInfo('matplotlib', ColormapKind.LINEAR, 'gist_yarg'),
_ColormapInfo('matplotlib', ColormapKind.LINEAR, 'binary'),
_ColormapInfo('matplotlib', ColormapKind.LINEAR, 'Grays'),
_ColormapInfo('cmocean', ColormapKind.LINEAR, 'oxy'),
_ColormapInfo('cmcrameri', ColormapKind.LINEAR, 'lapaz'),
_ColormapInfo('cmcrameri', ColormapKind.LINEAR, 'bamako'),
_ColormapInfo('cmcrameri', ColormapKind.LINEAR, 'davos'),
_ColormapInfo('cmcrameri', ColormapKind.LINEAR, 'bilbao'),
_ColormapInfo('cmcrameri', ColormapKind.LINEAR, 'nuuk'),
_ColormapInfo('cmcrameri', ColormapKind.LINEAR, 'hawaii'),
_ColormapInfo('cmcrameri', ColormapKind.LINEAR, 'tokyo'),
_ColormapInfo('cmcrameri', ColormapKind.LINEAR, 'buda'),
_ColormapInfo('cmcrameri', ColormapKind.LINEAR, 'acton'),
_ColormapInfo('cmcrameri', ColormapKind.LINEAR, 'turku'),
_ColormapInfo('cmcrameri', ColormapKind.LINEAR, 'imola'),
_ColormapInfo('cmcrameri', ColormapKind.LINEAR, 'glasgow'),
_ColormapInfo('cmcrameri', ColormapKind.LINEAR, 'lipari'),
_ColormapInfo('cmcrameri', ColormapKind.LINEAR, 'navia'),
_ColormapInfo('cmcrameri', ColormapKind.LINEAR, 'grayC'),
# MULTI SEQUENTIAL
# The order of the cmaps here will be reflected in the docs.
_ColormapInfo('cmocean', ColormapKind.MULTI_SEQUENTIAL, 'topo'),
_ColormapInfo('cmcrameri', ColormapKind.MULTI_SEQUENTIAL, 'bukavu'),
_ColormapInfo('cmcrameri', ColormapKind.MULTI_SEQUENTIAL, 'oleron'),
_ColormapInfo('cmcrameri', ColormapKind.MULTI_SEQUENTIAL, 'fes'),
# DIVERGING
# Order here does NOT matter since these will be auto-sorted
_ColormapInfo('colorcet', ColormapKind.DIVERGING, 'bkr'),
_ColormapInfo('cmcrameri', ColormapKind.DIVERGING, 'berlin'),
_ColormapInfo('matplotlib', ColormapKind.DIVERGING, 'berlin'),
_ColormapInfo('colorcet', ColormapKind.DIVERGING, 'bky'),
_ColormapInfo('cmcrameri', ColormapKind.DIVERGING, 'tofino'),
_ColormapInfo('cmcrameri', ColormapKind.DIVERGING, 'lisbon'),
_ColormapInfo('cmcrameri', ColormapKind.DIVERGING, 'vanimo'),
_ColormapInfo('matplotlib', ColormapKind.DIVERGING, 'vanimo'),
_ColormapInfo('cmcrameri', ColormapKind.DIVERGING, 'managua'),
_ColormapInfo('matplotlib', ColormapKind.DIVERGING, 'managua'),
_ColormapInfo('colorcet', ColormapKind.DIVERGING, 'bjy'),
_ColormapInfo('colorcet', ColormapKind.DIVERGING, 'bwy'),
_ColormapInfo('colorcet', ColormapKind.DIVERGING, 'cwr'),
_ColormapInfo('colorcet', ColormapKind.DIVERGING, 'gwv'),
_ColormapInfo('cmocean', ColormapKind.DIVERGING, 'delta'),
_ColormapInfo('cmocean', ColormapKind.DIVERGING, 'curl'),
_ColormapInfo('cmocean', ColormapKind.DIVERGING, 'diff'),
_ColormapInfo('cmocean', ColormapKind.DIVERGING, 'tarn'),
_ColormapInfo('matplotlib', ColormapKind.DIVERGING, 'BrBG'),
_ColormapInfo('matplotlib', ColormapKind.DIVERGING, 'PuOr'),
_ColormapInfo('matplotlib', ColormapKind.DIVERGING, 'PRGn'),
_ColormapInfo('matplotlib', ColormapKind.DIVERGING, 'PiYG'),
_ColormapInfo('cmcrameri', ColormapKind.DIVERGING, 'bam'),
_ColormapInfo('matplotlib', ColormapKind.DIVERGING, 'RdGy'),
_ColormapInfo('matplotlib', ColormapKind.DIVERGING, 'RdBu'),
_ColormapInfo('matplotlib', ColormapKind.DIVERGING, 'RdYlBu'),
_ColormapInfo('matplotlib', ColormapKind.DIVERGING, 'RdYlGn'),
_ColormapInfo('matplotlib', ColormapKind.DIVERGING, 'Spectral'),
_ColormapInfo('cmcrameri', ColormapKind.DIVERGING, 'roma'),
_ColormapInfo('colorcet', ColormapKind.DIVERGING, 'coolwarm'),
_ColormapInfo('matplotlib', ColormapKind.DIVERGING, 'coolwarm'),
_ColormapInfo('matplotlib', ColormapKind.DIVERGING, 'bwr'),
_ColormapInfo('matplotlib', ColormapKind.DIVERGING, 'seismic'),
_ColormapInfo('cmocean', ColormapKind.DIVERGING, 'balance'),
_ColormapInfo('cmcrameri', ColormapKind.DIVERGING, 'vik'),
_ColormapInfo('cmcrameri', ColormapKind.DIVERGING, 'broc'),
_ColormapInfo('cmcrameri', ColormapKind.DIVERGING, 'cork'),
# CYCLIC
# The order of the cmaps here will be reflected in the docs.
_ColormapInfo('cmocean', ColormapKind.CYCLIC, 'phase'),
_ColormapInfo('colorcet', ColormapKind.CYCLIC, 'cyclic_isoluminant'),
_ColormapInfo('colorcet', ColormapKind.CYCLIC, 'colorwheel'),
_ColormapInfo('matplotlib', ColormapKind.CYCLIC, 'hsv'),
_ColormapInfo('matplotlib', ColormapKind.CYCLIC, 'twilight'),
_ColormapInfo('matplotlib', ColormapKind.CYCLIC, 'twilight_shifted'),
_ColormapInfo('cmcrameri', ColormapKind.CYCLIC, 'vikO'),
_ColormapInfo('cmcrameri', ColormapKind.CYCLIC, 'romaO'),
_ColormapInfo('cmcrameri', ColormapKind.CYCLIC, 'bamO'),
_ColormapInfo('cmcrameri', ColormapKind.CYCLIC, 'brocO'),
_ColormapInfo('cmcrameri', ColormapKind.CYCLIC, 'corkO'),
# CATEGORICAL
# The order of the 'colorcet' and 'matplotlib' cmaps here
# will be reflected in the docs. The 'cmcrameri' cmaps are auto-sorted.
_ColormapInfo('colorcet', ColormapKind.CATEGORICAL, 'glasbey'),
_ColormapInfo('colorcet', ColormapKind.CATEGORICAL, 'glasbey_bw'),
_ColormapInfo('colorcet', ColormapKind.CATEGORICAL, 'glasbey_cool'),
_ColormapInfo('colorcet', ColormapKind.CATEGORICAL, 'glasbey_warm'),
_ColormapInfo('colorcet', ColormapKind.CATEGORICAL, 'glasbey_dark'),
_ColormapInfo('colorcet', ColormapKind.CATEGORICAL, 'glasbey_light'),
_ColormapInfo('colorcet', ColormapKind.CATEGORICAL, 'glasbey_category10'),
_ColormapInfo('colorcet', ColormapKind.CATEGORICAL, 'glasbey_hv'),
_ColormapInfo('cmcrameri', ColormapKind.CATEGORICAL, 'batlowS'),
_ColormapInfo('cmcrameri', ColormapKind.CATEGORICAL, 'batlowWS'),
_ColormapInfo('cmcrameri', ColormapKind.CATEGORICAL, 'batlowKS'),
_ColormapInfo('cmcrameri', ColormapKind.CATEGORICAL, 'turkuS'),
_ColormapInfo('cmcrameri', ColormapKind.CATEGORICAL, 'devonS'),
_ColormapInfo('cmcrameri', ColormapKind.CATEGORICAL, 'lajollaS'),
_ColormapInfo('cmcrameri', ColormapKind.CATEGORICAL, 'bamakoS'),
_ColormapInfo('cmcrameri', ColormapKind.CATEGORICAL, 'davosS'),
_ColormapInfo('cmcrameri', ColormapKind.CATEGORICAL, 'bilbaoS'),
_ColormapInfo('cmcrameri', ColormapKind.CATEGORICAL, 'nuukS'),
_ColormapInfo('cmcrameri', ColormapKind.CATEGORICAL, 'osloS'),
_ColormapInfo('cmcrameri', ColormapKind.CATEGORICAL, 'hawaiiS'),
_ColormapInfo('cmcrameri', ColormapKind.CATEGORICAL, 'lapazS'),
_ColormapInfo('cmcrameri', ColormapKind.CATEGORICAL, 'tokyoS'),
_ColormapInfo('cmcrameri', ColormapKind.CATEGORICAL, 'budaS'),
_ColormapInfo('cmcrameri', ColormapKind.CATEGORICAL, 'actonS'),
_ColormapInfo('cmcrameri', ColormapKind.CATEGORICAL, 'imolaS'),
_ColormapInfo('cmcrameri', ColormapKind.CATEGORICAL, 'glasgowS'),
_ColormapInfo('cmcrameri', ColormapKind.CATEGORICAL, 'lipariS'),
_ColormapInfo('cmcrameri', ColormapKind.CATEGORICAL, 'naviaS'),
_ColormapInfo('cmcrameri', ColormapKind.CATEGORICAL, 'grayCS'),
_ColormapInfo('matplotlib', ColormapKind.CATEGORICAL, 'Accent'),
_ColormapInfo('matplotlib', ColormapKind.CATEGORICAL, 'Dark2'),
_ColormapInfo('matplotlib', ColormapKind.CATEGORICAL, 'Paired'),
_ColormapInfo('matplotlib', ColormapKind.CATEGORICAL, 'Pastel1'),
_ColormapInfo('matplotlib', ColormapKind.CATEGORICAL, 'Pastel2'),
_ColormapInfo('matplotlib', ColormapKind.CATEGORICAL, 'Set1'),
_ColormapInfo('matplotlib', ColormapKind.CATEGORICAL, 'Set2'),
_ColormapInfo('matplotlib', ColormapKind.CATEGORICAL, 'Set3'),
_ColormapInfo('matplotlib', ColormapKind.CATEGORICAL, 'tab10'),
_ColormapInfo('matplotlib', ColormapKind.CATEGORICAL, 'tab20'),
_ColormapInfo('matplotlib', ColormapKind.CATEGORICAL, 'tab20b'),
_ColormapInfo('matplotlib', ColormapKind.CATEGORICAL, 'tab20c'),
# MISC
# The order of the cmaps here will be reflected in the docs.
_ColormapInfo('colorcet', ColormapKind.MISC, 'isolum'),
_ColormapInfo('colorcet', ColormapKind.MISC, 'rainbow4'),
_ColormapInfo('colorcet', ColormapKind.MISC, 'rainbow'),
_ColormapInfo('matplotlib', ColormapKind.MISC, 'rainbow'),
_ColormapInfo('matplotlib', ColormapKind.MISC, 'gist_rainbow'),
_ColormapInfo('matplotlib', ColormapKind.MISC, 'jet'),
_ColormapInfo('matplotlib', ColormapKind.MISC, 'turbo'),
_ColormapInfo('matplotlib', ColormapKind.MISC, 'nipy_spectral'),
_ColormapInfo('matplotlib', ColormapKind.MISC, 'gist_ncar'),
_ColormapInfo('matplotlib', ColormapKind.MISC, 'CMRmap'),
_ColormapInfo('matplotlib', ColormapKind.MISC, 'brg'),
_ColormapInfo('matplotlib', ColormapKind.MISC, 'gist_stern'),
_ColormapInfo('matplotlib', ColormapKind.MISC, 'gnuplot'),
_ColormapInfo('matplotlib', ColormapKind.MISC, 'gnuplot2'),
_ColormapInfo('matplotlib', ColormapKind.MISC, 'ocean'),
_ColormapInfo('matplotlib', ColormapKind.MISC, 'gist_earth'),
_ColormapInfo('matplotlib', ColormapKind.MISC, 'terrain'),
_ColormapInfo('matplotlib', ColormapKind.MISC, 'prism'),
_ColormapInfo('matplotlib', ColormapKind.MISC, 'flag'),
]
def _create_cet_colormap_info():
# Get all 'CET' named cmaps
cmaps = sorted(
[cmap for cmap in colorcet.cm.keys() if cmap.startswith('CET') and not cmap.endswith('_r')]
)
# The cmaps are string-sorted and therefore `C10` precedes `C2`
# The following code fixes the sorting
# Separate prefix, letters, number, and suffix
pattern = re.compile(r'(CET_)([A-Z]+)(\d+)([A-Za-z]*)')
parsed = [
(m.group(1), m.group(2), int(m.group(3)), m.group(4))
for cmap in cmaps
for m in [pattern.match(cmap)]
]
# Sort by letter code and numeric value
parsed.sort(key=lambda x: (x[1], x[2]))
# Reconstruct the original strings in sorted order and classify the colormap
colormap_infos = []
colormap_types = {
'C': ColormapKind.CET_CYCLIC,
'D': ColormapKind.CET_DIVERGING,
'L': ColormapKind.CET_LINEAR,
'R': ColormapKind.CET_RAINBOW,
'I': ColormapKind.CET_ISOLUMINANT,
}
for prefix, letters, number, suffix in parsed:
name = f'{prefix}{letters}{number}{suffix}'
type_letter = letters[-1]
kind = colormap_types[type_letter]
# Store as colormap info
info = _ColormapInfo(package='colorcet', name=name, kind=kind)
colormap_infos.append(info)
# Sanity check - make sure we didn't mangle anything
for info in colormap_infos:
assert info.name in cmaps
return colormap_infos
_CET_COLORMAP_INFO = _create_cet_colormap_info()
class ColormapTable(DocTable):
"""Class to generate a colormap table."""
info_source = _COLORMAP_INFO
kind: ColormapKind | str
sort_options: ClassVar[_ColormapSortOptions | dict[str, _ColormapSortOptions] | None] = None
title = ''
header = _aligned_dedent(
r"""
|.. list-table:: {}
| :widths: 21 25 18 18 18
| :header-rows: 1
| :stub-columns: 1
|
| * - Tags
| - Name
| - Swatch
| - Lightness :math:`L^*`
| - Cumulative ΔE
""",
)
row_template = _aligned_dedent(
"""
| * - {}
| - {}
| - .. image:: /{}
| - .. image:: /{}
| - .. image:: /{}
""",
)
@property
@final
def path(self):
kind = self.kind
name = kind.name if isinstance(kind, ColormapKind) else kind
return f'{COLORMAP_TABLE_DIR}/colormap_table_{name}.rst'
@classmethod
def fetch_data(cls):
data = [info for info in cls.info_source if info.kind == cls.kind]
data_out = data
if (options := cls.sort_options) is not None:
if isinstance(options, dict):
# Sort (or don't) each package separately with separate options
data_out = []
for package, pkg_options in options.items():
pkg_data = [info for info in data if info.package == package]
if pkg_options is not None:
pkg_data = ColormapTable.sort_data(
pkg_data,
initial_cmap=pkg_options.initial_cmap,
n_samples=pkg_options.n_samples,
sort_by=pkg_options.sort_by,
pre_sort=pkg_options.pre_sort,
)
data_out.extend(pkg_data)
else:
data_out = ColormapTable.sort_data(
data,
initial_cmap=options.initial_cmap,
n_samples=options.n_samples,
sort_by=options.sort_by,
pre_sort=options.pre_sort,
)
return data_out
@classmethod
def get_header(cls, _):
return cls.header.format(cls.title)
@classmethod
def get_row(cls, _, colormap_info):
source_badge_mapping = {
'cmcrameri': ':bdg-danger:`cmc`',
'cmocean': ':bdg-primary:`cmo`',
'colorcet': ':bdg-success:`cc`',
'matplotlib': ':bdg-secondary:`mpl`',
}
type_mapping = {
mpl.colors.LinearSegmentedColormap: ':bdg-muted:`LSC`',
mpl.colors.ListedColormap: ':bdg-muted:`LC`',
}
perceptually_uniform_mapping = {
True: ':material-regular:`visibility;2em;sd-text-info`',
False: ':material-regular:`visibility_off;2em;sd-text-warning`',
}
if colormap_info.package == 'matplotlib':
cmap_source = mpl.colormaps
elif colormap_info.package == 'colorcet':
cmap_source = colorcet.cm
elif colormap_info.package == 'cmocean':
cmap_source = cmocean.cm.cmap_d
elif colormap_info.package == 'cmcrameri':
cmap_source = cmcrameri.cm.cmaps
else:
raise RuntimeError
cmap = cmap_source[colormap_info.name]
# Generate images
img_path_swatch = (
f'{COLORMAP_IMAGE_DIR}/colormap_{colormap_info.package}_{colormap_info.name}.png'
)
cls.generate_img_swatch(cmap, img_path_swatch)
img_path_lightness = img_path_swatch.replace('.png', '_lightness.png')
r2_deltaL = cls.generate_img_lightness(cmap, img_path_lightness)
img_path_deltaE = img_path_swatch.replace('.png', '_deltaE.png')
r2_deltaE = cls.generate_img_delta_e(cmap, img_path_deltaE)
# Perceptually uniform if constant delta in lightness and color
r2_threshold = 0.99
perceptually_uniform = r2_deltaL > r2_threshold and r2_deltaE > r2_threshold
# Generate tags
source_rst = source_badge_mapping[colormap_info.package]
type_rst = type_mapping[type(cmap)]
perceptually_uniform_rst = perceptually_uniform_mapping[perceptually_uniform]
tags = f'{source_rst} {type_rst} {perceptually_uniform_rst}'
name_rst = f'``{colormap_info.name}``'
return cls.row_template.format(
tags, name_rst, img_path_swatch, img_path_lightness, img_path_deltaE
)
@staticmethod
def generate_img_swatch(cmap, img_path):
"""Generate and save an image of the given colormap."""
width = 256
height = 100
N = 256
# Create a smooth gradient across the colormap resolution
gradient = np.linspace(0, 1, N)
gradient = np.vstack((gradient,) * height)
fig, ax = plt.subplots(figsize=(width / 100, height / 100), dpi=100)
ax.imshow(gradient, aspect='auto', cmap=cmap)
ax.set_axis_off()
plt.subplots_adjust(left=0, right=1, top=1, bottom=0)
fig.savefig(img_path, bbox_inches='tight', pad_inches=0)
plt.close(fig)
@staticmethod
def generate_img_lightness(cmap, img_path):
def rgb_to_cam02ucs(rgb):
import colour
xyz = colour.sRGB_to_XYZ(rgb)
return colour.XYZ_to_CAM02UCS(xyz)
x = np.linspace(0.0, 1.0, cmap.N)
rgb = cmap(x)[np.newaxis, :, :3]
lab = rgb_to_cam02ucs(rgb)
y = lab[0, :, 0]
ColormapTable.save_scatter_plot(x, y, cmap, img_path, y_lim=(0.0, 100.0))
# Compute linearity of the lightness.
# r^2 is good for ramps, but not for iso-luminant colormaps
# First check for constant lightness
max_deviation = np.max(np.abs(y - np.mean(y))) # max deviation from mean
if max_deviation < 3.0: # Lightness change of 3.0 is not very perceivable
return 1.0 # Return r^2 of 1.0, i.e. is perceptually uniform
cumulative_abs_delta_lightness = np.concatenate([[0], np.cumsum(np.abs(np.diff(y)))])
return ColormapTable.linear_regression(x, cumulative_abs_delta_lightness)
@staticmethod
def generate_img_delta_e(cmap, img_path):
def delta_e_cie2000(rgb):
# Compute ΔE between adjacent colors
import colour
xyz = colour.sRGB_to_XYZ(rgb)
lab = colour.XYZ_to_Lab(xyz)
return colour.difference.delta_E_CIE2000(lab[:-1], lab[1:])
x = np.linspace(0.0, 1.0, cmap.N)
rgb = cmap(x)[:, :3]
delta_e = delta_e_cie2000(rgb)
y = np.concatenate([[0], np.cumsum(delta_e)])
ColormapTable.save_scatter_plot(x, y, cmap, img_path)
return ColormapTable.linear_regression(x, y)
@staticmethod
def save_scatter_plot(x, y, cmap, img_path, y_lim=None): # noqa: PLR0917
width = 256
height = 64
fig, ax = plt.subplots(figsize=(width / 100, height / 100), dpi=100)
ax.scatter(x, y, c=x, cmap=cmap, s=500, linewidths=0.0, clip_on=False)
ax.set_axis_off()
if y_lim:
ax.set_ylim(*y_lim)
# Add a dummy set of axes to add asymmetric padding to the figure
left, bottom, width, height = 0.08, -0.18, 0.87, 1.37
ax = fig.add_axes([left, bottom, width, height])
ax.set_axis_off()
fig.savefig(img_path, bbox_inches='tight', pad_inches=0.0)
plt.close(fig)
@staticmethod
def linear_regression(x, y):
"""Compute r^2 value from linear regression between x and y."""
_, _, r_value, _, _ = linregress(x, y)
return r_value**2
@staticmethod
def sort_data(
data: list[_COLORMAP_INFO],
*,
initial_cmap: str,
n_samples: int,
sort_by: Literal['hue', 'cam02ucs'],
pre_sort: bool = False,
):
"""Sort colormaps by color similarity.
Parameters
----------
data
List of colormap info to be sorted.
initial_cmap
Name of colormap to initialize the sorting with. This will be the first
colormap.
n_samples
Number of samples to use for each colormap for the sorting. Using more samples
is more computationally expensive but may better represent the colormap.
sort_by
Method used to sort the colormaps. Sort by ``'hue'`` (using HLS color space)
or ``cam02ucs`` to sort colormaps by perceptual difference.
pre_sort
Whether to sort the colors within each colormap before sampling. This is useful
for categorical colormaps to ensure consistent progression for comparison.
Returns
-------
Sorted list of colormap info.
"""
import colour
_validation.check_contains(['hue', 'cam02ucs'], sort_by, name='sort_by')
def sort_colormap_colors(colors, sort_by: Literal['hue', 'cam02ucs']):
"""Sort a list of RGB colors within a colormap."""
if sort_by == 'cam02ucs':
xyz = colour.sRGB_to_XYZ(colors)
cam02 = colour.XYZ_to_CAM02UCS(xyz)
n = len(cam02)
visited = np.zeros(n, dtype=bool)
order = [0]
visited[0] = True
for _ in range(n - 1):
last = order[-1]
candidates = np.where(~visited)[0]
dists = np.linalg.norm(cam02[candidates] - cam02[last], axis=1)
next_idx = candidates[np.argmin(dists)]
visited[next_idx] = True
order.append(next_idx)
return colors[order]
else: # sort_by == 'hue':
hls = np.array(list(starmap(rgb_to_hls, colors)))
hue_sorted_indices = np.argsort(hls[:, 0])
return colors[hue_sorted_indices]
def sample_cmap(cmap_name: str, n_samples: int = 5):
cmap = pv.get_cmap_safe(cmap_name)
rgb_full = cmap(np.linspace(0, 1, cmap.N))[:, :3]
if pre_sort:
rgb_full = sort_colormap_colors(rgb_full, sort_by)
idx = np.linspace(0, len(rgb_full) - 1, n_samples, dtype=int)
rgb_sampled = rgb_full[idx]
if sort_by == 'cam02ucs':
xyz = colour.sRGB_to_XYZ(rgb_sampled)
return colour.XYZ_to_CAM02UCS(xyz)
else: # sort_by == 'hue':
hls = np.array(list(starmap(rgb_to_hls, rgb_sampled)))
return hls[:, 0]
def compute_delta_between_swatches(swatch1, swatch2, weights):
if sort_by == 'cam02ucs':
# Use perceptual Delta E in CAM02-UCS space
delta_e = colour.difference.delta_E_CAM02UCS(swatch1, swatch2)
return np.sum(weights * delta_e)
else: # sort_by == 'hue':
# Use circular difference for hue in [0, 1]
diff = np.abs(swatch1 - swatch2)
diff = np.minimum(diff, 1 - diff) # hue wraparound
return np.sum(weights * diff.ravel())
def compute_delta_matrix_for_all_groups(grouped_colors, weights):
n = len(grouped_colors)
delta_matrix = np.zeros((n, n))
for i in range(n):
for j in range(i + 1, n):
delta = compute_delta_between_swatches(
grouped_colors[i], grouped_colors[j], weights
)
delta_matrix[i, j] = delta
delta_matrix[j, i] = delta
return delta_matrix
def sort_color_groups_by_similarity(grouped_colors, start_index, weights):
n_colormaps = len(grouped_colors)
delta_matrix = compute_delta_matrix_for_all_groups(grouped_colors, weights)
visited = np.zeros(n_colormaps, dtype=bool)
order = [start_index]
visited[start_index] = True
# Track the last 3 selected colormaps
memory_indices = [start_index]
for _ in range(n_colormaps - 1):
candidates = np.where(~visited)[0]
# Compute average distance from all memory indices
total_distance = np.zeros(len(candidates))
for mem_idx in memory_indices:
total_distance += delta_matrix[mem_idx, candidates]
total_distance /= len(memory_indices)
next_idx = candidates[np.argmin(total_distance)]
order.append(next_idx)
visited[next_idx] = True
# Update memory: keep only the last 3
memory_indices.append(next_idx)
if len(memory_indices) > 3:
memory_indices.pop(0)
return [grouped_colors[i] for i in order], order
# Sample swatches for each colormap
grouped_colors = [sample_cmap(info.name, n_samples) for info in data]
# Validate and locate the initial colormap
cmaps = [info.name for info in data]
_validation.check_contains(cmaps, must_contain=initial_cmap, name='initial_cmap')
start_index = cmaps.index(initial_cmap)
# Sort colormaps based on selected method
weights = np.ones((n_samples,))
sorted_groups, order = sort_color_groups_by_similarity(
grouped_colors, start_index, weights
)
return [data[i] for i in order]
class ColormapTableLINEAR(ColormapTable):
"""Class to generate linear colormap table."""
kind = ColormapKind.LINEAR
sort_options = _ColormapSortOptions(initial_cmap=pv.global_theme.cmap)
class ColormapTableDIVERGING(ColormapTable):
"""Class to generate diverging colormap table."""
kind = ColormapKind.DIVERGING
sort_options = _ColormapSortOptions(initial_cmap='coolwarm', sort_by='hue')
class ColormapTableMULTISEQUENTIAL(ColormapTable):
"""Class to generate multi-sequential colormap table."""
kind = ColormapKind.MULTI_SEQUENTIAL
class ColormapTableCYCLIC(ColormapTable):
"""Class to generate cyclic colormap table."""
kind = ColormapKind.CYCLIC
class ColormapTableCATEGORICAL(ColormapTable):
"""Class to generate categorical colormap table."""
kind = ColormapKind.CATEGORICAL
sort_options: ClassVar[_ColormapSortOptions | dict[str:_ColormapSortOptions]] = {
'colorcet': None,
'cmcrameri': _ColormapSortOptions(initial_cmap='grayCS', pre_sort=True),
'matplotlib': None,
}
class ColormapTableMISC(ColormapTable):
"""Class to generate misc colormap table."""
kind = ColormapKind.MISC
class CETColormapTable(ColormapTable):
"""Class to generate all colorcet CET colormap table."""
info_source = _CET_COLORMAP_INFO
class CETColormapTableLINEAR(CETColormapTable):
"""Class to generate linear colormap table."""
kind = ColormapKind.CET_LINEAR
class CETColormapTableDIVERGING(CETColormapTable):
"""Class to generate diverging colormap table."""
kind = ColormapKind.CET_DIVERGING
class CETColormapTableCYCLIC(CETColormapTable):
"""Class to generate cyclic colormap table."""
kind = ColormapKind.CET_CYCLIC
class CETColormapTableRAINBOW(CETColormapTable):
"""Class to generate rainbow colormap table."""
kind = ColormapKind.CET_RAINBOW
class CETColormapTableISOLUMINANT(CETColormapTable):
"""Class to generate isoluminant colormap table."""
kind = ColormapKind.CET_ISOLUMINANT
def _get_doc(func: Callable[[], Any]) -> str | None:
"""Return the first line of the callable's docstring."""
doc = func.__doc__
return doc.splitlines()[0] if doc else None
def _get_fullname(typ: type[Any]) -> str:
"""Return the fully qualified name of the given type object."""
return f'{typ.__module__}.{typ.__qualname__}'
def _ljust_lines(lines: list[str], min_width=None) -> list[str]:
"""Left-justify a list of lines."""
min_width = min_width or _max_width(lines)
return [line.ljust(min_width) for line in lines]
def _max_width(lines: list[str]) -> int:
"""Compute the max line-width from a list of lines."""
return max(map(len, lines))
def _repeat_string(string: str, num_repeat: int) -> str:
"""Repeat `string` `num_repeat` times."""
return ''.join([string] * num_repeat)
def _pad_lines(
lines: str | list[str],
*,
pad_left: str = '',
pad_right: str = '',
ljust=False,
return_shape=False,
):
"""Add padding to the left or right of each line with a specified string.
Optionally, padding may be applied to left-justify the text such that the lines
all have the same width.
Optionally, the lines may be padded using a specified string on the left or right.
Parameters
----------
lines : str | list[str]
Lines to be padded. If a string, it is first split with splitlines.
pad_left : str, default: ''
String to pad the left of each line with.
pad_right : str, default: ''
String to pad the right of each line with.
ljust : bool, default: False
If ``True``, left-justify the lines such that they have equal width
before applying any padding.
return_shape : bool, default: False
If ``True``, also return the width and height of the padded lines.
"""
if is_str := isinstance(lines, str):
lines = lines.splitlines()
# Justify
lines = _ljust_lines(lines) if ljust else lines
# Pad
lines = [pad_left + line + pad_right for line in lines]
if return_shape:
width, height = _max_width(lines), len(lines)
lines = '\n'.join(lines) if is_str else lines
return lines, width, height
return '\n'.join(lines) if is_str else lines
def _indent_multi_line_string(
string: str,
*,
indent_size=3,
indent_level: int = 1,
omit_first_line=True,
) -> str:
r"""Indent each line of a multi-line string by a specified indentation level.
Optionally specify the indent size (e.g. 3 spaces for rst).
Optionally omit indentation from the first line if it is already indented.
This function is used to support de-denting formatted multi-line strings.
E.g. for the following rst text with item {} indented by 3 levels:
| .. some_directive::
|
| {}
a multi-line string input such as 'line1\nline2\nline3' will be formatted as:
| .. some_directive::
|
| line1\n line2\n line3
|
which will result in the correct indentation applied to all lines of the string.
"""
lines = string.splitlines()
if len(lines) > 0:
indentation = _repeat_string(' ', num_repeat=indent_size * indent_level)
first_line = lines.pop(0) if omit_first_line else None
lines = _pad_lines(lines, pad_left=indentation) if len(lines) > 0 else lines
lines.insert(0, first_line) if first_line else None
return '\n'.join(lines)
return string
def _as_iterable(item) -> Iterable[Any]:
return [item] if not isinstance(item, (Iterable, str)) else item
class DatasetCard:
"""Class for creating a rst-formatted card for a dataset.
Create a card with header, footer, and four grid items.
The four grid items are displayed as:
- 2x2 grid for large screens
- 4x1 grid for small screens
Each card has roughly the following structure:
+-Card----------------------+
| Header: Dataset name |
| |
| +-Grid------------------+ |
| | Dataset doc | |
| +-----------------------+ |
| | Image | |
| +-----------------------+ |
| | Dataset metadata | |
| +-----------------------+ |
| | File metadata | |
| +-----------------------+ |
| See also |
| Footer: Data source links |
+---------------------------+
See https://sphinx-design.readthedocs.io/en/latest/index.html for
details on the directives used and their formatting.
"""
card_template = _aligned_dedent(
"""
|.. card::
|
| {}
|
| ^^^
|
| .. grid:: 1 2 2 2
| :margin: 1
|
| .. grid-item::
| :columns: 12 8 8 8
|
| {}
|
| .. grid-item::
| :columns: 12 4 4 4
|
| {}
|
| .. grid-item::
|
| .. card::
| :shadow: none
| :class-header: sd-text-center sd-font-weight-bold sd-px-0 sd-border-right-0 sd-border-left-0 sd-border-top-0
| :class-body: sd-border-0
|
| :octicon:`info` Dataset Info
| ^^^
| {}
|
| .. grid-item::
|
| .. card::
| :shadow: none
| :class-header: sd-text-center sd-font-weight-bold sd-px-0 sd-border-right-0 sd-border-left-0 sd-border-top-0
| :class-body: sd-border-0
|
| :octicon:`file` File Info
| ^^^
| {}
|
| {}
|
| {}
|
|
""", # noqa: E501
)
HEADER_FOOTER_INDENT_LEVEL = 1
GRID_ITEM_INDENT_LEVEL = 3
GRID_ITEM_FIELDS_INDENT_LEVEL = 4
REF_ANCHOR_INDENT_LEVEL = 2
# Template for dataset name and badges
header_template = _aligned_dedent(
"""
|.. grid:: 1
| :margin: 0
|
| .. grid-item::
| :class: sd-text-center sd-font-weight-bold sd-fs-5
|
| {}
|
| .. grid-item::
| :class: sd-text-center
|
| {}
|
""",
)[1:-1]
# Template title with a reference anchor
dataset_title_with_ref_template = _aligned_dedent(
"""
|.. _{}:
|
|{}
""",
)[1:-1]
# Template for dataset func and doc
dataset_info_template = _aligned_dedent(
"""
|{}
|
|{}
""",
)[1:-1]
# Template for dataset image
# The image is encapsulated in its own card
image_template = _aligned_dedent(
"""
|.. card::
| :class-body: sd-px-0 sd-py-0 sd-rounded-3
|
| .. image:: /{}
""",
)[1:-1]
seealso_template = _aligned_dedent(
"""
|See also {}
""",
)[1:-1]
footer_template = _aligned_dedent(
"""
|+++
|.. dropdown:: Data Source
| :icon: mark-github
|
| {}
""",
)[1:-1]
# Format fields in a grid where the first item is a left-justified
# name and the second is a right-justified value.
# The grid boxes are justified to push them toward opposite sides.
#
# Smaller entries should fit on one line:
# | Name Value |
#
# Longer entries should fit on two lines:
# | LongerName |
# | LongerValue |
#
# Fields with many values should align to the right
# and can stack together on one line if they fit.
# | LongerName |
# | LongerValue |
# | ExtraLongValue |
# | Value3 Value4 |
field_grid_template = _aligned_dedent(
"""
|.. grid:: auto
| :class-container: sd-col
| :class-row: sd-align-major-justify sd-px-0
| :margin: 1
| :padding: 0
| :gutter: 1
|
| .. grid-item::
| :columns: auto
| :class: sd-text-nowrap
|
| **{}**
|
| .. grid-item::
| :columns: auto
| :class: sd-text-right sd-text-nowrap
| :child-align: justify
|
| {}
|
""",
)[1:-1]
# If the field has more than one value, all additional values are
# placed in a second grid and aligned towards the 'right' side
# of the grid.
field_grid_extra_values_grid_template = _aligned_dedent(
"""
|.. grid:: auto
| :class-container: sd-align-major-end sd-px-0
| :class-row: sd-align-major-end sd-px-0
| :margin: 1
| :padding: 0
| :gutter: 1
|
""",
)[1:-1]
field_grid_extra_values_item_template = _aligned_dedent(
"""
| .. grid-item::
| :columns: auto
| :class: sd-text-right sd-text-nowrap
|
| {}
|
""",
)[1:-1]
_NOT_AVAILABLE_IMG_PATH = os.path.join(DATASET_GALLERY_DIR, 'not_available.png')
def __init__(
self,
dataset_name: str,
loader: _DatasetLoader,
):
self.dataset_name = dataset_name
self.loader = loader
self._badges: list[_BaseDatasetBadge | None] = []
self.card = None
self.ref = None
def add_badge(self, badge: _BaseDatasetBadge):
self._badges.append(badge)
def generate(self):
# Get rst dataset name-related info
index_name, header_name, func_ref, func_doc, func_name = self._generate_dataset_name(
self.dataset_name,
)
# Get thumbnail image path
module_name = self.loader._module.__name__.replace('.', '-')
ext = DATASET_GALLERY_IMAGE_EXT_DICT.get(self.dataset_name, '.png')
if ext is None:
img_path = self._create_default_image()
else:
# Use the first image generated by the .. pyvista_plot:: directive
filename = f'{module_name}-{func_name}-1_00_00{ext}'
img_path = Path(DATASET_GALLERY_IMAGE_DIR, filename).as_posix()
# Get rst file and instance metadata
(
file_size,
num_files,
file_ext,
reader_type,
dataset_type,
datasource_links,
n_cells,
n_points,
length,
dimensions,
spacing,
n_arrays,
) = DatasetCard._generate_dataset_properties(self.loader)
# Get cross-references from docs
cross_references = DatasetCard._generate_cross_references(
self.dataset_name, index_name, header_name
)
# Generate rst for badges
carousel_badges = self._generate_carousel_badges(self._badges)
celltype_badges = self._generate_celltype_badges(self._badges)
# Assemble rst parts into main blocks used by the card
header_block, header_ref_block = self._create_header_block(
index_name,
header_name,
carousel_badges,
)
info_block = self._create_info_block(func_ref, func_doc)
img_block = self._create_image_block(img_path)
dataset_props_block = self._create_dataset_props_block(
dataset_type=dataset_type,
celltype_badges=celltype_badges,
n_cells=n_cells,
n_points=n_points,
length=length,
dimensions=dimensions,
spacing=spacing,
n_arrays=n_arrays,
)
file_info_block = self._create_file_props_block(
loader=self.loader,
file_size=file_size,
num_files=num_files,
file_ext=file_ext,
reader_type=reader_type,
)
seealso_block = self._create_seealso_block(cross_references)
footer_block = self._create_footer_block(datasource_links)
# Create two versions of the card
# First version has no ref label
card_no_ref = self.card_template.format(
header_block,
info_block,
img_block,
dataset_props_block,
file_info_block,
seealso_block,
footer_block,
)
# Second version has a ref label in header
card_with_ref = self.card_template.format(
header_ref_block,
info_block,
img_block,
dataset_props_block,
file_info_block,
seealso_block,
footer_block,
)
return card_no_ref, card_with_ref
@staticmethod
def _generate_dataset_properties(loader):
try:
# Get data from loader
if isinstance(loader, _Downloadable):
loader.download()
# properties collected by the loader
file_size = DatasetPropsGenerator.generate_file_size(loader)
num_files = DatasetPropsGenerator.generate_num_files(loader)
file_ext = DatasetPropsGenerator.generate_file_ext(loader)
reader_type = DatasetPropsGenerator.generate_reader_type(loader)
dataset_type = DatasetPropsGenerator.generate_dataset_type(loader)
datasource_links = DatasetPropsGenerator.generate_datasource_links(loader)
# properties collected directly from the dataset
n_cells = DatasetPropsGenerator.generate_n_cells(loader)
n_points = DatasetPropsGenerator.generate_n_points(loader)
length = DatasetPropsGenerator.generate_length(loader)
dimensions = DatasetPropsGenerator.generate_dimensions(loader)
spacing = DatasetPropsGenerator.generate_spacing(loader)
n_arrays = DatasetPropsGenerator.generate_n_arrays(loader)
except VTKVersionError:
# Exception is caused by 'download_can'
# Set default values
NOT_AVAILABLE = '``Not available``'
file_size = NOT_AVAILABLE
num_files = NOT_AVAILABLE
file_ext = NOT_AVAILABLE
reader_type = NOT_AVAILABLE
dataset_type = NOT_AVAILABLE
datasource_links = NOT_AVAILABLE
n_cells = None
n_points = None
length = None
dimensions = None
spacing = None
n_arrays = None
return (
file_size,
num_files,
file_ext,
reader_type,
dataset_type,
datasource_links,
n_cells,
n_points,
length,
dimensions,
spacing,
n_arrays,
)
@staticmethod
def _get_dataset_function(dataset_name: str) -> tuple[FunctionType, str]:
# Get the corresponding function of the loader
func = None
# Get `download` function from downloads.py or planets.py
func_name = 'download_' + dataset_name
if hasattr(pv.examples.downloads, func_name):
func = getattr(pv.examples.downloads, func_name)
elif hasattr(pv.examples.planets, func_name):
func = getattr(pv.examples.planets, func_name)
else:
# Get `load` function from examples.py
func_name = 'load_' + dataset_name
if hasattr(pv.examples.examples, func_name):
func = getattr(pv.examples.examples, func_name)
if func is None:
msg = f'Dataset function {func_name} does not exist.'
raise RuntimeError(msg)
return func, func_name
@staticmethod
def _generate_dataset_name(dataset_name: str):
# Format dataset name for indexing and section heading
index_name = dataset_name + '_dataset'
header = ' '.join([word.capitalize() for word in index_name.split('_')])
# Get the card's header info
func, func_name = DatasetCard._get_dataset_function(dataset_name)
func_ref = f':func:`~{_get_fullname(func)}`'
func_doc = _get_doc(func)
return index_name, header, func_ref, func_doc, func_name
@staticmethod
def _generate_cross_references(dataset_name: str, index_name: str, header_name):
def find_seealso_refs(func: FunctionType) -> list[str]:
# Find and return the :ref: references from the .. seealso:: directive
# in the docstring of a function.
if not callable(func):
msg = 'Input must be a callable function.'
raise TypeError(msg)
# Get the docstring of the function
docstring = func.__doc__
if not docstring:
return []
# Search for the .. seealso:: section
seealso_start = docstring.find('.. seealso::')
if seealso_start == -1:
return []
# Extract lines from the start of the seealso section
lines = docstring[seealso_start:].splitlines()
# Determine the expected indentation of the section body
refs = []
body_indent = None
for line in lines[1:]: # Skip the .. seealso:: line itself
if not line.strip(): # Allow blank lines within the block
continue
# Detect indentation level of the body
if body_indent is None and line.startswith(' '):
body_indent = len(line) - len(line.lstrip())
# Stop if the line is less indented than the body
current_indent = len(line) - len(line.lstrip())
if body_indent is not None and current_indent < body_indent:
break
# Only capture lines starting with :ref:
if line.strip().startswith(':ref:'):
refs.append(line.strip())
return refs
func, _ = DatasetCard._get_dataset_function(dataset_name)
refs = find_seealso_refs(func)
# Filter the references
self_ref = f':ref:`{header_name} <{index_name}>`'
self_ref_count = 0
keep_refs = []
for ref in refs:
# strip any refs to galleries since there is already a badge for that
if '_gallery' in ref:
continue
# skip refs to self
if self_ref in ref:
self_ref_count += 1
continue
keep_refs.append(ref)
assert self_ref_count == 1, (
f"Dataset '{dataset_name}' is missing a cross-reference link to its corresponding "
f'entry in the Dataset Gallery.\n'
f'A reference link should be included in a see also directive, e.g.:\n'
f'\n'
f' .. seealso::\n'
f'\n'
f' {self_ref}\n'
' See this dataset in the Dataset Gallery for more info.'
)
return ', '.join(keep_refs)
@staticmethod
def _generate_carousel_badges(badges: list[_BaseDatasetBadge]):
"""Sort badges by type and join all badge rst into a single string."""
module_badges, datatype_badges, special_badges, category_badges = [], [], [], []
for badge in badges:
if isinstance(badge, ModuleBadge):
module_badges.append(badge)
elif isinstance(badge, DataTypeBadge):
datatype_badges.append(badge)
elif isinstance(badge, SpecialDataTypeBadge):
special_badges.append(badge)
elif isinstance(badge, CategoryBadge):
category_badges.append(badge)
elif isinstance(badge, CellTypeBadge):
pass # process these separately
elif isinstance(badge, _BaseDatasetBadge):
msg = f'No implementation for badge type {type(badge)}.'
raise NotImplementedError(msg)
all_badges = module_badges + datatype_badges + special_badges + category_badges
return ' '.join([badge.generate() for badge in all_badges])
@staticmethod
def _generate_celltype_badges(badges: list[_BaseDatasetBadge]):
"""Sort badges by type and join all badge rst into a single string."""
celltype_badges = [badge for badge in badges if isinstance(badge, CellTypeBadge)]
rst = '\n'.join([badge.generate() for badge in celltype_badges])
if rst == '':
rst = '``None``'
return rst
@staticmethod
def _create_default_image():
"""Process the thumbnail image to ensure it's the right size."""
from PIL import Image
img_path = Path(DATASET_GALLERY_DIR, 'not_available.png').as_posix()
if os.path.isfile(img_path):
return img_path
IMG_WIDTH, IMG_HEIGHT = 400, 300
not_available_mesh = pv.Text3D('Not Available')
p = pv.Plotter(off_screen=True, window_size=(IMG_WIDTH, IMG_HEIGHT))
p.background_color = 'white'
p.add_mesh(not_available_mesh, color='black')
p.view_xy()
p.camera.up = (1, IMG_WIDTH / IMG_HEIGHT, 0)
p.enable_parallel_projection()
img_array = p.show(screenshot=True)
img = Image.fromarray(img_array)
img.save(img_path)
return img_path
@staticmethod
def _format_and_indent_from_template(*args, template=None, indent_level=None):
"""Format args using a template and indent all formatted lines by some amount."""
assert template is not None
assert indent_level is not None
formatted = template.format(*args)
return _indent_multi_line_string(formatted, indent_level=indent_level)
@classmethod
def _generate_field_grid(cls, field_name, field_values):
"""Generate a rst grid with field data.
The grid uses the class templates for the field name and field value(s).
"""
if field_values in [None, '']:
return None
value_lines = str(field_values).splitlines()
first_value = value_lines.pop(0)
field = cls.field_grid_template.format(field_name, first_value)
if len(value_lines) >= 1:
# Add another grid for extra values
extra_values_grid = cls.field_grid_extra_values_grid_template
extra_values = [
cls.field_grid_extra_values_item_template.format(val) for val in value_lines
]
return '\n'.join([field, extra_values_grid, *extra_values])
return field
@staticmethod
def _generate_field_block(fields: list[tuple[str, str | None]], indent_level: int = 0):
"""Generate a grid for each field and combine them into an indented multi-line rst block.
Any fields with a `None` value are completely excluded from the block.
"""
field_grids = list(starmap(DatasetCard._generate_field_grid, fields))
block = '\n'.join([grid for grid in field_grids if grid])
return _indent_multi_line_string(block, indent_level=indent_level)
@classmethod
def _create_header_block(cls, index_name, header_name, carousel_badges):
"""Generate header rst block."""
# Two headers are created: one with a reference target and one without
header = cls._format_and_indent_from_template(
header_name,
carousel_badges,
template=cls.header_template,
indent_level=cls.HEADER_FOOTER_INDENT_LEVEL,
)
header_name_with_ref = DatasetCard._format_and_indent_from_template(
index_name,
header_name,
template=cls.dataset_title_with_ref_template,
indent_level=cls.REF_ANCHOR_INDENT_LEVEL,
)
header_ref = DatasetCard._format_and_indent_from_template(
header_name_with_ref,
carousel_badges,
template=cls.header_template,
indent_level=cls.HEADER_FOOTER_INDENT_LEVEL,
)
return header, header_ref
@classmethod
def _create_image_block(cls, img_path):
"""Generate rst block for the dataset image."""
return cls._format_and_indent_from_template(
img_path,
template=cls.image_template,
indent_level=cls.GRID_ITEM_INDENT_LEVEL,
)
@classmethod
def _create_info_block(cls, func_ref, func_doc):
return cls._format_and_indent_from_template(
func_ref,
func_doc,
template=cls.dataset_info_template,
indent_level=cls.GRID_ITEM_INDENT_LEVEL,
)
@classmethod
def _create_dataset_props_block(
cls,
*,
dataset_type,
celltype_badges,
n_cells,
n_points,
length,
dimensions,
spacing,
n_arrays,
):
dataset_fields = [
('Data Type', dataset_type),
('Cell Type', celltype_badges),
('N Cells', n_cells),
('N Points', n_points),
('Length', length),
('Dimensions', dimensions),
('Spacing', spacing),
('N Arrays', n_arrays),
]
return cls._generate_field_block(
dataset_fields,
indent_level=cls.GRID_ITEM_FIELDS_INDENT_LEVEL,
)
@classmethod
def _create_file_props_block(cls, *, loader, file_size, num_files, file_ext, reader_type):
if isinstance(loader, _DatasetLoader):
file_info_fields = [
('File Size', file_size),
('Num Files', num_files),
('File Ext', file_ext),
('Reader', reader_type),
]
return DatasetCard._generate_field_block(
file_info_fields,
indent_level=cls.GRID_ITEM_FIELDS_INDENT_LEVEL,
)
file_info_fields = '``Not Applicable.``\n\n``Dataset is not loaded from file.``'
return _indent_multi_line_string(
file_info_fields,
indent_level=cls.GRID_ITEM_FIELDS_INDENT_LEVEL,
)
@classmethod
def _create_seealso_block(cls, cross_references):
if cross_references:
return cls._format_and_indent_from_template(
cross_references,
template=cls.seealso_template,
indent_level=cls.HEADER_FOOTER_INDENT_LEVEL,
)
# Return empty content
return ''
@classmethod
def _create_footer_block(cls, datasource_links):
if datasource_links:
# indent links one level from the dropdown directive in template
datasource_links = _indent_multi_line_string(datasource_links, indent_level=1)
return cls._format_and_indent_from_template(
datasource_links,
template=cls.footer_template,
indent_level=cls.HEADER_FOOTER_INDENT_LEVEL,
)
# Return empty footer content
return ''
class DatasetPropsGenerator:
"""Static class to generate rst for dataset properties collected by a dataset loader.
This class is purely static and is only useful to separate rst generation from the
dataset loader from all other rst generation.
"""
@staticmethod
def generate_file_size(loader: _DatasetLoader):
sz = DatasetPropsGenerator._try_getattr(loader, 'total_size')
return '``' + sz + '``' if sz else None
@staticmethod
def generate_num_files(loader: _DatasetLoader):
num = DatasetPropsGenerator._try_getattr(loader, 'num_files')
return '``' + str(num) + '``' if num else None
@staticmethod
def generate_file_ext(loader: _SingleFilePropsProtocol | _MultiFilePropsProtocol):
# Format extension as single str with rst backticks
# Multiple extensions are comma-separated
def _format_ext(file_ext_: list[str]):
return sep.join(['``' + ext + '``' for ext in file_ext_])
sep = ',\n'
file_ext = DatasetPropsGenerator._try_getattr(loader, 'unique_extension')
if file_ext:
file_ext = loader.unique_extension
file_ext = [file_ext] if isinstance(file_ext, str) else file_ext
if len(file_ext) > 10:
# Limit number of extensions displayed
first = _format_ext(file_ext[:3])
last = _format_ext(file_ext[-3:])
return first + sep + '...' + sep + last
return _format_ext(file_ext)
return None
@staticmethod
def generate_reader_type(
loader: _SingleFilePropsProtocol | _MultiFilePropsProtocol,
):
"""Format reader type(s) with doc references to reader class(es)."""
reader_type = DatasetPropsGenerator._try_getattr(loader, 'unique_reader_type')
if reader_type is None:
return '``None``'
else:
reader_type = (
repr(loader.unique_reader_type)
.replace("<class '", ':class:`~')
.replace("'>", '`')
.replace('(', '')
.replace(')', '')
).replace(', ', '\n')
return reader_type
@staticmethod
def generate_dataset_type(loader: _DatasetLoader):
"""Format dataset type(s) with doc references to dataset class(es)."""
return (
repr(loader.unique_dataset_type)
.replace("<class '", ':class:`~')
.replace("'>", '`')
.replace('(', '')
.replace(')', '')
).replace(', ', '\n')
@staticmethod
def _generate_dataset_repr(loader: _DatasetLoader, indent_level: int) -> str:
"""Format the dataset's representation as a single multi-line string.
The returned string is indented up to the specified indent level.
"""
# Replace any hex code memory addresses with ellipses
dataset_repr = repr(loader.dataset)
dataset_repr = re.sub(
pattern=r'0x[0-9a-f]*',
repl='...',
string=dataset_repr,
)
return _indent_multi_line_string(dataset_repr, indent_size=3, indent_level=indent_level)
@staticmethod
def generate_datasource_links(loader: _DatasetLoader) -> str | None:
def _rst_link(name, url):
return f'`{name} <{url}>`_'
if not isinstance(loader, _Downloadable):
return None
# Collect url names and links as sequences
name = loader.source_name
names = [name] if isinstance(name, str) else name
url = loader.source_url_blob
urls = [url] if isinstance(url, str) else url
# Use dict to create an ordered set to make sure links are unique
url_dict = {url: name for name, url in zip(names, urls)}
rst_links = [_rst_link(name, url) for url, name in url_dict.items()]
return '\n'.join(rst_links)
@staticmethod
def generate_n_cells(loader):
return DatasetPropsGenerator._generate_number(
DatasetPropsGenerator._try_getattr(loader.dataset, 'n_cells'),
fmt='spaced',
)
@staticmethod
def generate_n_points(loader):
return DatasetPropsGenerator._generate_number(
DatasetPropsGenerator._try_getattr(loader.dataset, 'n_points'),
fmt='spaced',
)
@staticmethod
def generate_length(loader):
return DatasetPropsGenerator._generate_number(
DatasetPropsGenerator._try_getattr(loader.dataset, 'length'),
fmt='exp',
)
@staticmethod
def generate_dimensions(loader):
dimensions = DatasetPropsGenerator._try_getattr(loader.dataset, 'dimensions')
if dimensions:
return ', '.join([DatasetPropsGenerator._generate_number(dim) for dim in dimensions])
return None
@staticmethod
def generate_spacing(loader):
spacing = DatasetPropsGenerator._try_getattr(loader.dataset, 'spacing')
if spacing:
# Format as regular decimals if possible
spacing_maybe = [DatasetPropsGenerator._generate_number(num) for num in spacing]
if any(len(space) > 8 for space in spacing_maybe):
# Too long, use scientific notation
return ', '.join(
[DatasetPropsGenerator._generate_number(num, fmt='exp') for num in spacing],
)
return ', '.join(spacing_maybe)
return None
@staticmethod
def generate_n_arrays(loader):
return DatasetPropsGenerator._generate_number(
DatasetPropsGenerator._try_getattr(loader.dataset, 'n_arrays'),
)
@staticmethod
def _try_getattr(dataset, attr: str):
try:
return getattr(dataset, attr)
except AttributeError:
return None
@staticmethod
def _generate_number(num: float | None, fmt: Literal['exp', 'spaced'] | None = None):
"""Format a number and add rst backticks."""
if num is None:
return None
if fmt == 'exp':
num_fmt = f'{num:.2e}'
elif fmt == 'spaced':
num_fmt = f'{num:,}'.replace(',', ' ')
else:
num_fmt = str(num)
return f'``{num_fmt}``'
class DatasetCardFetcher:
"""Class for storing and retrieving dataset card info."""
# Dict of all card objects
DATASET_CARDS_OBJ: ClassVar[dict[str, DatasetCard]] = {}
# Dict of generated rst cards
DATASET_CARDS_RST_REF: ClassVar[dict[str, str]] = {}
DATASET_CARDS_RST: ClassVar[dict[str, str]] = {}
@classmethod
def _add_dataset_card(cls, dataset_name: str, dataset_loader: _DatasetLoader):
"""Add a new dataset card so that it can be fetched later."""
cls.DATASET_CARDS_OBJ[dataset_name] = DatasetCard(dataset_name, dataset_loader)
@classmethod
def init_cards(cls):
"""Download and load all datasets and initialize a card object for each dataset."""
cls._init_cards_from_module(pv.examples.examples)
cls._init_cards_from_module(pv.examples.downloads)
cls._init_cards_from_module(pv.examples.planets)
cls.DATASET_CARDS_OBJ = dict(sorted(cls.DATASET_CARDS_OBJ.items()))
@classmethod
def clear_datasets(cls):
"""Clear loaded datasets."""
[loader.clear_dataset() for _, loader in cls.fetch_all_dataset_loaders()]
@classmethod
def _init_cards_from_module(cls, module: ModuleType):
# Collect all `_dataset_<name>` file loaders from the module
module_members: dict[str, FunctionType] = dict(inspect.getmembers(module))
for name, item in sorted(module_members.items()):
# Extract data set name from loader name
if name.startswith('_dataset_') and isinstance(item, _DatasetLoader):
# Create a card for this dataset
dataset_name = name.replace('_dataset_', '')
dataset_loader = item
# Store module as a dynamic property for access later
dataset_loader._module = module
cls._add_dataset_card(dataset_name, dataset_loader)
# Load data
print(f'loading datasets... {dataset_name}', flush=True)
try:
if isinstance(dataset_loader, _Downloadable):
dataset_loader.download()
except pv.VTKVersionError as err:
# caused by 'download_can', this error is handled later
msg = f'could not load {dataset_name} due to {err!r}'
warnings.warn(msg, UserWarning)
else:
dataset_loader.load_and_store_dataset()
assert dataset_loader.dataset is not None
@classmethod
def generate_rst_all_cards(cls):
"""Generate formatted rst output for all cards."""
for name in cls.DATASET_CARDS_OBJ:
card, card_with_ref = cls.DATASET_CARDS_OBJ[name].generate()
# indent one level from the carousel header directive
cls.DATASET_CARDS_RST_REF[name] = _pad_lines(card_with_ref, pad_left=' ')
cls.DATASET_CARDS_RST[name] = _pad_lines(card, pad_left=' ')
@classmethod
def generate_alphabet_index(cls, dataset_names):
"""Generate single-letter index buttons to link to the datasets by their first letter."""
def _generate_button(string, ref):
return _indent_multi_line_string(
f'.. button-ref:: {ref}\n\n {string}\n',
indent_level=1,
)
def _generate_grid_item(string):
return _aligned_dedent(
"""
|.. grid-item::
| :columns: auto
|
| {}
""",
)[1:].format(_indent_multi_line_string(string, indent_level=1))
def _generate_grid(string):
return _aligned_dedent(
"""
|.. grid::
| :margin: 1
| :padding: 0
| :gutter: 1
|
| {}
""",
)[1:].format(_indent_multi_line_string(string, indent_level=1))
# Get mapping of alphabet letters to first dataset name which begins with each letter
alphabet_dict = {}
for dataset_name in sorted(dataset_names):
index_character = dataset_name[0].upper()
try:
int(index_character)
except ValueError:
pass
else:
index_character = '#'
alphabet_dict.setdefault(index_character, dataset_name)
buttons = []
for letter, dataset_name in alphabet_dict.items():
# Get reference target for this dataset
target_name = DatasetCard._generate_dataset_name(dataset_name)[0]
button_rst = _generate_grid_item(_generate_button(letter, target_name))
buttons.append(button_rst)
return _generate_grid('\n'.join(buttons))
@classmethod
def add_badge_to_cards(cls, dataset_names: list[str], badge: _BaseDatasetBadge | None):
"""Add a single badge to all specified datasets."""
if badge:
for dataset_name in dataset_names:
cls.DATASET_CARDS_OBJ[dataset_name].add_badge(badge)
@classmethod
def add_cell_badges_to_all_cards(cls):
"""Add cell type badge(s) to every dataset."""
for card in cls.DATASET_CARDS_OBJ.values():
for cell_type in card.loader.unique_cell_types:
name = cell_type.name
card.add_badge(CellTypeBadge(name, 'pyvista.CellType.' + name))
@classmethod
def fetch_dataset_names_by_datatype(cls, datatype) -> Iterator[str]:
for name, dataset_iterable in cls.fetch_all_dataset_objects():
if datatype in [type(data) for data in dataset_iterable]:
yield name
@classmethod
def fetch_dataset_names_by_module(cls, module) -> Iterator[str]:
for name, loader in cls.fetch_all_dataset_loaders():
if loader._module is module: # type: ignore[attr-defined]
yield name
@classmethod
def fetch_all_dataset_objects(cls) -> Iterator[tuple[str, Iterable[DatasetObject]]]:
for name, card in DatasetCardFetcher.DATASET_CARDS_OBJ.items():
yield name, card.loader.dataset_iterable
@classmethod
def fetch_all_dataset_loaders(cls) -> Iterator[tuple[str, _DatasetLoader]]:
for name, card in DatasetCardFetcher.DATASET_CARDS_OBJ.items():
yield name, card.loader
@classmethod
def fetch_and_filter(cls, filter_func: Callable[..., bool]) -> list[str]:
"""Return dataset names where any dataset object returns 'True' for a given function."""
names_dict: dict[str, None] = {} # Use dict as an ordered set
for name, dataset_iterable in cls.fetch_all_dataset_objects():
for obj in dataset_iterable:
try:
keep = filter_func(obj)
except AttributeError:
keep = False
if keep:
names_dict[name] = None
names_list = list(names_dict.keys())
assert len(names_list) > 0, f'No datasets were matched by the filter {filter_func}.'
return names_list
@classmethod
def fetch_multiblock(cls, kind: Literal['hetero', 'homo', 'single']):
dataset_names = []
for name, dataset_objects in cls.fetch_all_dataset_objects():
types_list = [type(obj) for obj in dataset_objects]
if pv.MultiBlock in types_list:
types_list.remove(pv.MultiBlock)
num_datasets = len(types_list)
num_types = len(set(types_list))
is_single = num_datasets == 1
is_homo = num_datasets >= 2 and num_types == 1
is_hetero = num_datasets >= 2 and num_types > 1
if (
(is_single and kind == 'single')
or (is_homo and kind == 'homo')
or (is_hetero and kind == 'hetero')
):
dataset_names.append(name)
return dataset_names
@dataclass
class _BaseDatasetBadge:
class SemanticColorEnum(StrEnum):
"""Enum of badge colors.
See: https://sphinx-design.readthedocs.io/en/pydata-theme/badges_buttons.html
"""
primary = auto()
secondary = auto()
success = auto()
muted = auto()
# Name of the badge
name: str
# Internal reference label for the badge to link to
ref: str = None # type: ignore[assignment]
def __post_init__(self: _BaseDatasetBadge):
"""Use post-init to set private variables.
Sub classes should configure these options as required.
"""
# Configure whether the badge should appear filled or not.
# If False, a badge outline is shown.
self.filled: bool = True
# Set the badge's color
self.semantic_color: _BaseDatasetBadge.SemanticColorEnum = None # type: ignore[assignment]
def generate(self):
# Generate rst
color = self.semantic_color.name
name = self.name
line = '-line' if hasattr(self, 'filled') and not self.filled else ''
if self.ref:
# the badge's bdg-ref uses :any: under the hood to find references
# so we use _gallery to point to the explicit reference instead
# of the carousel's rst file
ref_name = self.ref.replace('_carousel', '_gallery')
ref_link_rst = f' <{ref_name}>'
bdg_ref_rst = 'ref-'
else:
bdg_ref_rst = ''
ref_link_rst = ''
return f':bdg-{bdg_ref_rst}{color}{line}:`{name}{ref_link_rst}`'
@dataclass
class ModuleBadge(_BaseDatasetBadge):
"""Badge given to a dataset based on its source module.
e.g. 'Downloads' for datasets from `pyvista.examples.downloads`.
"""
name: str
ref: str
@classmethod
def __post_init__(cls):
cls.semantic_color = _BaseDatasetBadge.SemanticColorEnum.primary
@dataclass
class DataTypeBadge(_BaseDatasetBadge):
"""Badge given to a dataset based strictly on its type.
The badge name should correspond to the type of the dataset.
e.g. 'UnstructuredGrid'.
"""
name: str
ref: str
@classmethod
def __post_init__(cls):
cls.semantic_color = _BaseDatasetBadge.SemanticColorEnum.secondary
@dataclass
class SpecialDataTypeBadge(_BaseDatasetBadge):
"""Badge given to a dataset with special properties.
Use this badge for specializations of data types (e.g. 2D ImageData
as a special kind of ImageData, or Cubemap as a special kind of Texture),
or for special classifications of datasets (e.g. point clouds).
"""
name: str
ref: str
@classmethod
def __post_init__(cls):
cls.filled = False
cls.semantic_color = _BaseDatasetBadge.SemanticColorEnum.secondary
@dataclass
class CategoryBadge(_BaseDatasetBadge):
"""Badge given to a dataset based on its application or use.
e.g. 'Medical' for medical datasets.
"""
name: str
ref: str
@classmethod
def __post_init__(cls):
cls.semantic_color = _BaseDatasetBadge.SemanticColorEnum.success
@dataclass
class CellTypeBadge(_BaseDatasetBadge):
"""Badge given to a dataset based with a specific cell type."""
name: str
ref: str
@classmethod
def __post_init__(cls):
cls.filled = False
cls.semantic_color = _BaseDatasetBadge.SemanticColorEnum.muted
class DatasetGalleryCarousel(DocTable):
# Print the doc, badges, and dataset count
# The header defines the start of the card carousel
header_template = _aligned_dedent(
"""
|{}
|
|{}
|:Dataset Count: ``{}``
|
|.. card-carousel:: 1
|
""",
)[1:-1]
# Subclasses should give the carousel a name
# The name should end with '_carousel'
name: str = None # type: ignore[assignment]
# Subclasses should give the carousel a short description
# describing the carousel's contents
doc: str = None # type: ignore[assignment]
# Subclasses may optionally define a badge for the carousel
# All datasets in the carousel will be given this badge.
badge: _BaseDatasetBadge | None = None
dataset_names: list[str] = None # type: ignore[assignment]
@property
@final
def path(self):
assert isinstance(self.name, str), 'Table name must be defined.'
assert self.name.endswith('_carousel'), 'Table name must end with "_carousel".'
return f'{DATASET_GALLERY_DIR}/{self.name}.rst'
@classmethod
def fetch_data(cls):
return list(cls.dataset_names)
@classmethod
@abstractmethod
def fetch_dataset_names(cls) -> list[str]:
"""Return all dataset names to include in the gallery."""
@classmethod
@final
def init_dataset_names(cls):
names = list(cls.fetch_dataset_names())
assert names is not None, (
f'Dataset names cannot be None, {cls.fetch_dataset_names} must return '
f'a string iterable.'
)
cls.dataset_names = names
@classmethod
@final
def get_header(cls, data):
"""Generate the rst for the carousel's header."""
assert isinstance(cls.name, str), f'Carousel {cls} must have a name.'
# Get doc value
doc = cls.doc.fget(cls) if isinstance(cls.doc, property) else cls.doc
assert isinstance(doc, str), f'Carousel {cls} must have a doc string.'
badge_info = f':Section Badge: {cls.badge.generate()}' if cls.badge else ''
num_datasets = len(data)
assert num_datasets > 0, f'No datasets were found for carousel {cls}.'
return cls.header_template.format(cls.doc, badge_info, num_datasets)
@classmethod
def get_row(cls, _, dataset_name: str):
"""Generate the rst card for a given dataset.
A standard card is returned by default. Subclasses
should override this method to customize the card.
"""
assert isinstance(
dataset_name,
str,
), f'Dataset name {dataset_name} for {cls} must be a string.'
return DatasetCardFetcher.DATASET_CARDS_RST[dataset_name]
class AllDatasetsCarousel(DatasetGalleryCarousel):
"""Class to generate a carousel with cards for all datasets.
Cards in this carousel also include a reference target to link directly
to the card.
"""
name = 'all_datasets_carousel'
@_classproperty
def doc(cls): # noqa: N805
return DatasetCardFetcher.generate_alphabet_index(cls.dataset_names)
@classmethod
def fetch_dataset_names(cls):
return DatasetCardFetcher.DATASET_CARDS_OBJ.keys()
@classmethod
def get_row(cls, _, dataset_name):
# Override method since we want to include a reference label for each card
return DatasetCardFetcher.DATASET_CARDS_RST_REF[dataset_name]
class BuiltinCarousel(DatasetGalleryCarousel):
"""Class to generate a carousel with cards for built-in datasets."""
name = 'builtin_carousel'
doc = (
'Built-in datasets that ship with pyvista. Available through '
':mod:`examples <pyvista.examples.examples>` module.'
)
badge = ModuleBadge('Built-in', ref='modules_gallery')
@classmethod
def fetch_dataset_names(cls):
return DatasetCardFetcher.fetch_dataset_names_by_module(pv.examples.examples)
class DownloadsCarousel(DatasetGalleryCarousel):
"""Class to generate a carousel with cards from the downloads module."""
name = 'downloads_carousel'
doc = 'Datasets from the :mod:`downloads <pyvista.examples.downloads>` module.'
badge = ModuleBadge('Downloads', ref='modules_gallery')
@classmethod
def fetch_dataset_names(cls):
return DatasetCardFetcher.fetch_dataset_names_by_module(pv.examples.downloads)
class PlanetsCarousel(DatasetGalleryCarousel):
"""Class to generate a carousel with cards from the planets module."""
name = 'planets_carousel'
doc = 'Datasets from the :mod:`planets <pyvista.examples.planets>` module.'
badge = ModuleBadge('Planets', ref='modules_gallery')
@classmethod
def fetch_dataset_names(cls):
return DatasetCardFetcher.fetch_dataset_names_by_module(pv.examples.planets)
class PointSetCarousel(DatasetGalleryCarousel):
"""Class to generate a carousel of PointSet cards."""
name = 'pointset_carousel'
doc = ':class:`~pyvista.PointSet` datasets.'
badge = DataTypeBadge('PointSet', ref='pointset_datatype_gallery')
@classmethod
def fetch_dataset_names(cls):
return DatasetCardFetcher.fetch_dataset_names_by_datatype(pv.PointSet)
class PolyDataCarousel(DatasetGalleryCarousel):
"""Class to generate a carousel of PolyData cards."""
name = 'polydata_carousel'
doc = ':class:`~pyvista.PolyData` datasets.'
badge = DataTypeBadge('PolyData', ref='pointset_datatype_gallery')
@classmethod
def fetch_dataset_names(cls):
return DatasetCardFetcher.fetch_dataset_names_by_datatype(pv.PolyData)
class UnstructuredGridCarousel(DatasetGalleryCarousel):
"""Class to generate a carousel of UnstructuredGrid cards."""
name = 'unstructuredgrid_carousel'
doc = ':class:`~pyvista.UnstructuredGrid` datasets.'
badge = DataTypeBadge('UnstructuredGrid', ref='pointset_datatype_gallery')
@classmethod
def fetch_dataset_names(cls):
return DatasetCardFetcher.fetch_dataset_names_by_datatype(pv.UnstructuredGrid)
class StructuredGridCarousel(DatasetGalleryCarousel):
"""Class to generate a carousel of StructuredGrid cards."""
name = 'structuredgrid_carousel'
doc = ':class:`~pyvista.StructuredGrid` datasets.'
badge = DataTypeBadge('StructuredGrid', ref='pointset_datatype_gallery')
@classmethod
def fetch_dataset_names(cls):
return DatasetCardFetcher.fetch_dataset_names_by_datatype(pv.StructuredGrid)
class ExplicitStructuredGridCarousel(DatasetGalleryCarousel):
"""Class to generate a carousel of ExplicitStructuredGrid cards."""
name = 'explicitstructuredgrid_carousel'
doc = ':class:`~pyvista.ExplicitStructuredGrid` datasets.'
badge = DataTypeBadge('ExplicitStructuredGrid', ref='pointset_datatype_gallery')
@classmethod
def fetch_dataset_names(cls):
return DatasetCardFetcher.fetch_dataset_names_by_datatype(pv.ExplicitStructuredGrid)
class PointCloudCarousel(DatasetGalleryCarousel):
"""Class to generate a carousel of point cloud cards."""
name = 'pointcloud_carousel'
doc = (
'Datasets represented as points in space. May be :class:`~pyvista.PointSet` or '
':class:`~pyvista.PolyData` with :any:`VERTEX<pyvista.CellType.VERTEX>` cells.'
)
badge = SpecialDataTypeBadge('Point Cloud', ref='pointcloud_surfacemesh_gallery')
@classmethod
def fetch_dataset_names(cls):
pointset_names = DatasetCardFetcher.fetch_dataset_names_by_datatype(pv.PointSet)
vertex_polydata_filter = (
lambda poly: isinstance(poly, pv.PolyData) and poly.n_verts == poly.n_cells
)
vertex_polydata_names = DatasetCardFetcher.fetch_and_filter(vertex_polydata_filter)
return sorted(list(pointset_names) + list(vertex_polydata_names))
class SurfaceMeshCarousel(DatasetGalleryCarousel):
"""Class to generate a carousel of surface mesh cards."""
name = 'surfacemesh_carousel'
doc = ':class:`~pyvista.PolyData` surface meshes.'
badge = SpecialDataTypeBadge('Surface Mesh', ref='pointcloud_surfacemesh_gallery')
@classmethod
def fetch_dataset_names(cls):
surface_polydata_filter = (
lambda poly: isinstance(poly, pv.PolyData)
and (poly.n_cells - poly.n_verts - poly.n_lines) > 0
)
surface_polydata_names = DatasetCardFetcher.fetch_and_filter(surface_polydata_filter)
return sorted(surface_polydata_names)
class RectilinearGridCarousel(DatasetGalleryCarousel):
"""Class to generate a carousel of RectilinearGrid cards."""
name = 'rectilineargrid_carousel'
doc = ':class:`~pyvista.RectilinearGrid` datasets.'
badge = DataTypeBadge('RectilinearGrid', ref='grid_datatype_gallery')
@classmethod
def fetch_dataset_names(cls):
return DatasetCardFetcher.fetch_dataset_names_by_datatype(pv.RectilinearGrid)
class ImageDataCarousel(DatasetGalleryCarousel):
"""Class to generate a carousel of ImageData cards."""
name = 'imagedata_carousel'
doc = ':class:`~pyvista.ImageData` datasets.'
badge = DataTypeBadge('ImageData', ref='grid_datatype_gallery')
@classmethod
def fetch_dataset_names(cls):
return DatasetCardFetcher.fetch_dataset_names_by_datatype(pv.ImageData)
class ImageData3DCarousel(DatasetGalleryCarousel):
"""Class to generate a carousel of 3D ImageData cards."""
name = 'imagedata_3d_carousel'
doc = 'Three-dimensional volumetric :class:`~pyvista.ImageData` datasets.'
badge = SpecialDataTypeBadge('3D Volume', ref='imagedata_texture_gallery')
@classmethod
def fetch_dataset_names(cls):
image_3d_filter = lambda img: isinstance(img, pv.ImageData) and not np.any(
np.array(img.dimensions) == 1,
)
return DatasetCardFetcher.fetch_and_filter(image_3d_filter)
class ImageData2DCarousel(DatasetGalleryCarousel):
"""Class to generate a carousel of 2D ImageData cards."""
name = 'imagedata_2d_carousel'
doc = 'Two-dimensional :class:`~pyvista.ImageData` datasets.'
badge = SpecialDataTypeBadge('2D Image', ref='imagedata_texture_gallery')
@classmethod
def fetch_dataset_names(cls):
image_2d_filter = lambda img: isinstance(img, pv.ImageData) and np.any(
np.array(img.dimensions) == 1,
)
return DatasetCardFetcher.fetch_and_filter(image_2d_filter)
class TextureCarousel(DatasetGalleryCarousel):
"""Class to generate a carousel of all Texture cards."""
name = 'texture_carousel'
doc = ':class:`~pyvista.Texture` datasets.'
badge = DataTypeBadge('Texture', ref='imagedata_texture_gallery')
@classmethod
def fetch_dataset_names(cls):
return DatasetCardFetcher.fetch_dataset_names_by_datatype(pv.Texture)
class CubemapCarousel(DatasetGalleryCarousel):
"""Class to generate a carousel of cubemap cards."""
name = 'cubemap_carousel'
doc = ':class:`~pyvista.Texture` datasets with six images: one for each side of the cube.'
badge = SpecialDataTypeBadge('Cubemap', ref='imagedata_texture_gallery')
@classmethod
def fetch_dataset_names(cls):
cube_map_filter = lambda cubemap: isinstance(cubemap, pv.Texture) and cubemap.cube_map
return DatasetCardFetcher.fetch_and_filter(cube_map_filter)
class MultiBlockCarousel(DatasetGalleryCarousel):
"""Class to generate a carousel of MultiBlock dataset cards."""
name = 'multiblock_carousel'
doc = ':class:`~pyvista.MultiBlock` datasets.'
badge = DataTypeBadge('MultiBlock', ref='composite_dataset_gallery')
@classmethod
def fetch_dataset_names(cls):
return DatasetCardFetcher.fetch_dataset_names_by_datatype(pv.MultiBlock)
class MultiBlockHeteroCarousel(DatasetGalleryCarousel):
"""Class to generate a carousel of heterogeneous MultiBlock dataset cards."""
name = 'multiblock_hetero_carousel'
doc = ':class:`~pyvista.MultiBlock` datasets with multiple blocks of different mesh types.'
badge = SpecialDataTypeBadge('Heterogeneous', ref='composite_dataset_gallery')
@classmethod
def fetch_dataset_names(cls):
return DatasetCardFetcher.fetch_multiblock('hetero')
class MultiBlockHomoCarousel(DatasetGalleryCarousel):
"""Class to generate a carousel of homogeneous MultiBlock dataset cards."""
name = 'multiblock_homo_carousel'
doc = ':class:`~pyvista.MultiBlock` datasets with multiple blocks of the same mesh type.'
badge = SpecialDataTypeBadge('Homogeneous', ref='composite_dataset_gallery')
@classmethod
def fetch_dataset_names(cls):
return DatasetCardFetcher.fetch_multiblock('homo')
class MultiBlockSingleCarousel(DatasetGalleryCarousel):
"""Class to generate a carousel of MultiBlock dataset cards which contain a single mesh."""
name = 'multiblock_single_carousel'
doc = ':class:`~pyvista.MultiBlock` datasets which contain a single mesh.'
badge = SpecialDataTypeBadge('Single Block', ref='composite_dataset_gallery')
@classmethod
def fetch_dataset_names(cls):
return DatasetCardFetcher.fetch_multiblock('single')
class MiscCarousel(DatasetGalleryCarousel):
"""Class to generate a carousel of misc dataset cards."""
name = 'misc_carousel'
doc = 'Datasets which have a non-standard representation.'
badge = DataTypeBadge('Misc', ref='misc_dataset_gallery')
@classmethod
def fetch_dataset_names(cls):
misc_dataset_filter = lambda obj: not isinstance(
obj,
(pv.MultiBlock, pv.Texture, pv.DataSet),
)
return DatasetCardFetcher.fetch_and_filter(misc_dataset_filter)
class MedicalCarousel(DatasetGalleryCarousel):
"""Class to generate a carousel of medical dataset cards."""
name = 'medical_carousel'
doc = 'Medical datasets.'
badge = CategoryBadge('Medical', ref='medical_dataset_gallery')
@classmethod
def fetch_dataset_names(cls):
return sorted(
[
'brain',
'brain_atlas_with_sides',
'chest',
'carotid',
'dicom_stack',
'embryo',
'foot_bones',
'frog',
'frog_tissues',
'head',
'head_2',
'knee',
'knee_full',
'prostate',
'whole_body_ct_female',
'whole_body_ct_male',
],
)
def make_all_carousels(carousels: list[DatasetGalleryCarousel]): # noqa: D103
# Load datasets and create card objects
DatasetCardFetcher.init_cards()
# Create lists of dataset names for each carousel
[carousel.init_dataset_names() for carousel in carousels]
# Add carousel badges to cards
[
DatasetCardFetcher.add_badge_to_cards(carousel.dataset_names, carousel.badge)
for carousel in carousels
]
# Add celltype badges to cards
DatasetCardFetcher.add_cell_badges_to_all_cards()
# Generate rst for all card objects
DatasetCardFetcher.generate_rst_all_cards()
# Generate rst for all carousels
[carousel.generate() for carousel in carousels]
# Clear loaded datasets from memory
DatasetCardFetcher.clear_datasets()
CAROUSEL_LIST = [
AllDatasetsCarousel,
BuiltinCarousel,
DownloadsCarousel,
PlanetsCarousel,
PointSetCarousel,
PolyDataCarousel,
UnstructuredGridCarousel,
StructuredGridCarousel,
ExplicitStructuredGridCarousel,
PointCloudCarousel,
SurfaceMeshCarousel,
RectilinearGridCarousel,
ImageDataCarousel,
ImageData3DCarousel,
ImageData2DCarousel,
TextureCarousel,
CubemapCarousel,
MultiBlockCarousel,
MultiBlockHomoCarousel,
MultiBlockHeteroCarousel,
MultiBlockSingleCarousel,
MiscCarousel,
MedicalCarousel,
]
def make_all_tables(): # noqa: D103
# Make cell quality tables
os.makedirs(CELL_QUALITY_DIR, exist_ok=True)
CellQualityMeasuresTable.generate()
CellQualityInfoTableTRIANGLE.generate()
CellQualityInfoTableQUAD.generate()
CellQualityInfoTableHEXAHEDRON.generate()
CellQualityInfoTableTETRA.generate()
CellQualityInfoTableWEDGE.generate()
CellQualityInfoTablePYRAMID.generate()
# Make colormap tables
os.makedirs(COLORMAP_IMAGE_DIR, exist_ok=True)
os.makedirs(COLORMAP_TABLE_DIR, exist_ok=True)
ColormapTableLINEAR.generate()
ColormapTableDIVERGING.generate()
ColormapTableMULTISEQUENTIAL.generate()
ColormapTableCYCLIC.generate()
ColormapTableCATEGORICAL.generate()
ColormapTableMISC.generate()
CETColormapTableLINEAR.generate()
CETColormapTableDIVERGING.generate()
CETColormapTableCYCLIC.generate()
CETColormapTableRAINBOW.generate()
CETColormapTableISOLUMINANT.generate()
# Make color and chart tables
os.makedirs(CHARTS_IMAGE_DIR, exist_ok=True)
os.makedirs(COLORS_TABLE_DIR, exist_ok=True)
LineStyleTable.generate()
MarkerStyleTable.generate()
ColorSchemeTable.generate()
ColorTable.generate()
ColorTableGRAY.generate()
ColorTableWHITE.generate()
ColorTableBLACK.generate()
ColorTableRED.generate()
ColorTableORANGE.generate()
ColorTableBROWN.generate()
ColorTableYELLOW.generate()
ColorTableGREEN.generate()
ColorTableCYAN.generate()
ColorTableBLUE.generate()
ColorTableVIOLET.generate()
ColorTableMAGENTA.generate()
# Make dataset gallery carousels
os.makedirs(DATASET_GALLERY_DIR, exist_ok=True)
make_all_carousels(CAROUSEL_LIST)
if __name__ == '__main__':
make_all_tables()
|