File: create_sphere.py

package info (click to toggle)
python-pyvista 0.46.4-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 176,968 kB
  • sloc: python: 94,346; sh: 216; makefile: 70
file content (262 lines) | stat: -rw-r--r-- 7,814 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
"""
.. _create_sphere_example:

Create Sphere Mesh Multiple Ways
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

This example shows how to create meshes in different ways.

"""

# sphinx_gallery_thumbnail_number = 5
from __future__ import annotations

import numpy as np

import pyvista as pv

# %%
# Simple Sphere
# ~~~~~~~~~~~~~
# The quickest method to get a Sphere mesh is to use :func:`pyvista.Sphere`.

mesh = pv.Sphere()
mesh.plot(show_edges=True)

# %%
# This gives an :class:`pyvista.PolyData` mesh, i.e. a 2D surface.

mesh

# %%
# In this case, it is :func:`manifold <pyvista.PolyData.is_manifold>` and
# encloses a volume. To demonstrate this, there are no boundaries on the mesh
# as indicated by no points/cells being extracted.

boundaries = mesh.extract_feature_edges(
    non_manifold_edges=True, feature_edges=False, manifold_edges=False
)
boundaries

# %%
# The cells are :attr:`~pyvista.CellType.TRIANGLE` cells. For example, the first cell

mesh.get_cell(0).type

# %%
# Structured quadrilateral mesh of Sphere
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# The structure of the mesh can be important. Instead of a
# triangulated mesh, it can be useful to have a structured
# mesh that has an i-j-k ordering that allows for simplified
# cell connectivity.
#
# The points are generated as a regular grid in spherical coordinates using
# :func:`pyvista.spherical_to_cartesian`.
# Here, we will used the convention that ``theta`` is the
# azimuthal angle, similar to longitude on the globe.  ``phi`` is the
# polar angle, similar to latitude on the globe.

radius = 0.5
ntheta = 9
nphi = 12
theta = np.linspace(0, 2 * np.pi, ntheta)
phi = np.linspace(0, np.pi, nphi)

r_, phi_, theta_ = np.meshgrid([radius], phi, theta, indexing='ij')
x, y, z = pv.spherical_to_cartesian(r_, phi_, theta_)
mesh = pv.StructuredGrid(x, y, z)

# %%
# The mesh has :attr:`~pyvista.CellType.QUAD` cells. The cells that look triangular
# at the poles are actually degenerate quadrilaterals, i.e. two
# points are coincident at the pole, as will be shown later.

mesh.plot(show_edges=True)

# %%
# The mesh is of type :class:`pyvista.StructuredGrid`.

mesh

# %%
# The first cell is at the top pole, and it is a :attr:`~pyvista.CellType.QUAD` cell.

cell = mesh.get_cell(0)
cell.type

# %%
# The first cell has two degenerate points.

cell.points

# %%
# The cells on either side of the 'seam' along the start and end of
# the azimuthal component are not connected. These can be detected by
# extracting the boundary edges.

boundaries = mesh.extract_feature_edges(
    non_manifold_edges=True, feature_edges=False, manifold_edges=False
)
boundaries

# %%
# Visualize this by plotting the boundary edges of the mesh.

pl = pv.Plotter()
pl.add_mesh(mesh, show_edges=True)
pl.add_mesh(boundaries, line_width=10, color='red')
pl.show()

# %%
# Generate quadrilateral mesh of Sphere
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# This example shows how a more complicated mesh can be defined.
#
# In contrast to the example above, this example generates a mesh
# that does not have degenerate points at the poles. :attr:`~pyvista.CellType.TRIANGLE` cells
# will be used at the poles.  First, regenerate the structured data.

radius = 0.5
ntheta = 9
nphi = 12
theta = np.linspace(0, 2 * np.pi, ntheta)
phi = np.linspace(0, np.pi, nphi)

# %%
# We do not want duplicate points, so remove the duplicate in theta, which
# results in 8 unique points in theta. Similarly, the poles at ``phi=0`` and
# ``phi=pi`` will be handled separately to avoid duplicate points, which
# results in 10 unique points in phi.  Remove these from the grid in spherical
# coordinates.

theta = theta[:-1]
ntheta -= 1
phi = phi[1:-1]
nphi -= 2

# %%
# Use :func:`pyvista.spherical_to_cartesian` to generate cartesian coordinates for
# points in the ``(N, 3)`` format required by PyVista.  Note that this method results in
# the theta variable changing the fastest.

r_, phi_, theta_ = np.meshgrid([radius], phi, theta, indexing='ij')
x, y, z = pv.spherical_to_cartesian(r_, phi_, theta_)
points = np.vstack((x.ravel(), y.ravel(), z.ravel())).transpose()

# %%
# The first and last points are the poles.

points = np.insert(points, 0, [0.0, 0.0, radius], axis=0)
points = np.append(points, [[0.0, 0.0, -radius]], axis=0)

# %%
# First we will generate the cell-point connectivity similar to the
# previous examples.  At the poles, we will form triangles with the pole
# and two adjacent points from the closest ring of points at a given ``phi``
# position.  Otherwise, we will form quadrilaterals between two adjacent points
# on consecutive ``phi`` positions.
#
# The first triangle in the mesh is point id ``0``, i.e. the pole, and
# the first two points at the first ``phi`` position, id's ``1`` and ``2``.
# the next triangle contains the pole again and the next set of points,
# id's ``2`` and ``3`` and so on.  The last point in the ring, id ``8`` connects
# to the first point in the ring, ``1``, to form the last triangle.  Exclude it
# from the loop and add separately.

faces = []
for i in range(1, ntheta):
    faces.extend([3, 0, i, i + 1])

faces.extend([3, 0, ntheta, 1])

# %%
# Demonstrate the connectivity of the mesh so far.

points_to_label = tuple(range(ntheta + 1))
mesh = pv.PolyData(points, faces=faces)
pl = pv.Plotter()
pl.add_mesh(mesh, show_edges=True)
pl.add_point_labels(
    mesh.points[points_to_label, :], points_to_label, font_size=30, fill_shape=False
)
pl.view_xy()
pl.show()

# %%
# Next form the quadrilaterals. This process is the same except
# by connecting points across two levels of ``phi``.  For point ``1``
# and point ``2``, these are connected to point ``9`` and point ``10``. Note
# for quadrilaterals it must be defined in a consistent direction.
# Again, the last point(s) in the theta direction connect back to the
# first point(s).

for i in range(1, ntheta):
    faces.extend([4, i, i + 1, i + ntheta + 1, i + ntheta])

faces.extend([4, ntheta, 1, ntheta + 1, ntheta * 2])

# %%
# Demonstrate the connectivity of the mesh with first quad layer.

points_to_label = tuple(range(ntheta * 2 + 1))
mesh = pv.PolyData(points, faces=faces)
pl = pv.Plotter()
pl.add_mesh(mesh, show_edges=True)
pl.add_point_labels(
    mesh.points[points_to_label, :],
    points_to_label,
    font_size=30,
    fill_shape=False,
    always_visible=True,
)
pl.view_xy()
pl.show()

# %%
# Next we loop over all adjacent levels of phi to form all the quadrilaterals
# and add the layer of triangles on the ending pole.  Since we already formed
# the first layer of quadrilaterals, let's start over to make cleaner code.

faces = []
for i in range(1, ntheta):
    faces.extend([3, 0, i, i + 1])

faces.extend([3, 0, ntheta, 1])

for j in range(nphi - 1):
    for i in range(1, ntheta):
        faces.extend(
            [4, j * ntheta + i, j * ntheta + i + 1, i + (j + 1) * ntheta + 1, i + (j + 1) * ntheta]
        )

    faces.extend([4, (j + 1) * ntheta, j * ntheta + 1, (j + 1) * ntheta + 1, (j + 2) * ntheta])

for i in range(1, ntheta):
    faces.extend([3, nphi * ntheta + 1, (nphi - 1) * ntheta + i, (nphi - 1) * ntheta + i + 1])

faces.extend([3, nphi * ntheta + 1, nphi * ntheta, (nphi - 1) * ntheta + 1])

# %%
# We will use a :class:`pyvista.PolyData` mesh here, but a
# :class:`pyvista.UnstructuredGrid` could also be used.

mesh = pv.PolyData(points, faces=faces)

# %%
# This mesh is :func:`manifold <pyvista.PolyData.is_manifold>` like :func:`pyvista.Sphere`.
# To demonstrate this, there are no boundaries on the mesh
# as indicated by no points/cells being extracted.

boundaries = mesh.extract_feature_edges(
    non_manifold_edges=True, feature_edges=False, manifold_edges=False
)
boundaries

# %%
# All the point labels are messy when plotted, so don't add to the final plot.

mesh.plot(show_edges=True)

# %%
# .. tags:: load