1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
|
"""
.. _streamlines_example:
Streamlines
~~~~~~~~~~~
Integrate a vector field to generate streamlines.
"""
# %%
# This example generates streamlines of blood velocity. An isosurface of speed
# provides context. The starting positions for the streamtubes were determined
# by experimenting with the data.
# sphinx_gallery_thumbnail_number = 3
from __future__ import annotations
import numpy as np
import pyvista as pv
from pyvista import examples
# %%
# Carotid
# +++++++
# Download a sample dataset containing a vector field that can be integrated.
mesh = examples.download_carotid()
# %%
# Run the stream line filtering algorithm using random seed points inside a
# sphere with radius of 2.0.
streamlines, src = mesh.streamlines(
return_source=True,
max_length=100.0,
initial_step_length=2.0,
terminal_speed=0.1,
n_points=25,
source_radius=2.0,
source_center=(133.1, 116.3, 5.0),
)
# %%
# Display the results. Please note that because this dataset's velocity field
# was measured with low resolution, many streamlines travel outside the artery.
p = pv.Plotter()
p.add_mesh(mesh.outline(), color='k')
p.add_mesh(streamlines.tube(radius=0.15))
p.add_mesh(src)
p.add_mesh(mesh.contour([160]).extract_all_edges(), color='grey', opacity=0.25)
p.camera_position = [(182.0, 177.0, 50), (139, 105, 19), (-0.2, -0.2, 1)]
p.show()
# %%
# Blood Vessels
# +++++++++++++
# Here is another example of blood flow:
mesh = examples.download_blood_vessels().cell_data_to_point_data()
mesh.set_active_scalars('velocity')
streamlines, src = mesh.streamlines(
return_source=True,
source_radius=10,
source_center=(92.46, 74.37, 135.5),
)
# %%
boundary = mesh.decimate_boundary().extract_all_edges()
sargs = dict(vertical=True, title_font_size=16)
p = pv.Plotter()
p.add_mesh(streamlines.tube(radius=0.2), lighting=False, scalar_bar_args=sargs)
p.add_mesh(src)
p.add_mesh(boundary, color='grey', opacity=0.25)
p.camera_position = [(10, 9.5, -43), (87.0, 73.5, 123.0), (-0.5, -0.7, 0.5)]
p.show()
# %%
# A source mesh can also be provided using the
# :func:`pyvista.DataSetFilters.streamlines_from_source`
# filter, for example if an inlet surface is available. In this example, the
# inlet surface is extracted just inside the domain for use as the seed for
# the streamlines.
source_mesh = mesh.slice('z', origin=(0, 0, 182)) # inlet surface
# thin out ~40% points to get a nice density of streamlines
seed_mesh = source_mesh.decimate_boundary(0.4)
streamlines = mesh.streamlines_from_source(seed_mesh, integration_direction='forward')
# print *only* added arrays from streamlines filter
print('Added arrays from streamlines filter:')
print([array_name for array_name in streamlines.array_names if array_name not in mesh.array_names])
# %%
# Plot streamlines colored by the time along the streamlines.
sargs = dict(vertical=True, title_font_size=16)
p = pv.Plotter()
p.add_mesh(
streamlines.tube(radius=0.2),
scalars='IntegrationTime',
clim=[0, 1000],
lighting=False,
scalar_bar_args=sargs,
)
p.add_mesh(boundary, color='grey', opacity=0.25)
p.add_mesh(source_mesh, color='red')
p.camera_position = [(10, 9.5, -43), (87.0, 73.5, 123.0), (-0.5, -0.7, 0.5)]
p.show()
# %%
# Kitchen
# +++++++
#
kpos = [(-6.68, 11.9, 11.6), (3.5, 2.5, 1.26), (0.45, -0.4, 0.8)]
mesh = examples.download_kitchen()
kitchen = examples.download_kitchen(split=True)
# %%
streamlines = mesh.streamlines(n_points=40, source_center=(0.08, 3, 0.71), max_length=200)
# %%
p = pv.Plotter()
p.add_mesh(mesh.outline(), color='k')
p.add_mesh(kitchen, color=True)
p.add_mesh(streamlines.tube(radius=0.01), scalars='velocity', lighting=False)
p.camera_position = kpos
p.show()
# %%
# Custom 3D Vector Field
# ++++++++++++++++++++++
#
nx = 20
ny = 15
nz = 5
origin = (-(nx - 1) * 0.1 / 2, -(ny - 1) * 0.1 / 2, -(nz - 1) * 0.1 / 2)
mesh = pv.ImageData(dimensions=(nx, ny, nz), spacing=(0.1, 0.1, 0.1), origin=origin)
x = mesh.points[:, 0]
y = mesh.points[:, 1]
z = mesh.points[:, 2]
vectors = np.empty((mesh.n_points, 3))
vectors[:, 0] = np.sin(np.pi * x) * np.cos(np.pi * y) * np.cos(np.pi * z)
vectors[:, 1] = -np.cos(np.pi * x) * np.sin(np.pi * y) * np.cos(np.pi * z)
vectors[:, 2] = np.sqrt(3.0 / 3.0) * np.cos(np.pi * x) * np.cos(np.pi * y) * np.sin(np.pi * z)
mesh['vectors'] = vectors
# %%
stream, src = mesh.streamlines(
'vectors',
return_source=True,
terminal_speed=0.0,
n_points=200,
source_radius=0.1,
)
# %%
cpos = [(1.2, 1.2, 1.2), (-0.0, -0.0, -0.0), (0.0, 0.0, 1.0)]
stream.tube(radius=0.0015).plot(cpos=cpos)
# %%
# .. tags:: filter
|