1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
|
"""
.. _chart_basics_example:
Chart Basics
~~~~~~~~~~~~
This example shows how different types of charts can be added to the scene.
A more complex example, showing how to combine multiple charts as overlays
in the same renderer, is given in :ref:`chart_overlays_example`.
"""
from __future__ import annotations
import numpy as np
import pyvista as pv
# sphinx_gallery_start_ignore
# chart background images do not seem to work in interactive mode
PYVISTA_GALLERY_FORCE_STATIC_IN_DOCUMENT = True
# sphinx_gallery_end_ignore
rng = np.random.default_rng(1) # Seeded random number generator for consistent data generation
# %%
# This example shows how to create a 2D scatter plot from 100 randomly sampled
# datapoints using :func:`~pyvista.Chart2D.scatter`. By default, the chart automatically
# rescales its axes such that all plotted data is visible. By right clicking on the chart
# you can enable zooming and panning of the chart.
x = rng.standard_normal(100)
y = rng.standard_normal(100)
chart = pv.Chart2D()
chart.scatter(x, y, size=10, style='+')
chart.show()
# %%
# To connect datapoints with lines, you can create a 2D line plot as shown in
# the example below using :func:`~pyvista.Chart2D.line`. You can also dynamically
# 'zoom in' on the plotted data by specifying a custom axis range yourself.
x = np.linspace(0, 10, 1000)
y = np.sin(x**2)
chart = pv.Chart2D()
chart.line(x, y)
chart.x_range = [5, 10] # Focus on the second half of the curve
chart.show()
# %%
# You can also easily combine scatter and line plots using the general
# :func:`~pyvista.Chart2D.plot` function, specifying both the line and marker
# style at once.
x = np.arange(11)
y = rng.integers(-5, 6, 11)
chart = pv.Chart2D()
chart.background_color = (0.5, 0.9, 0.5) # Use custom background color for chart
chart.plot(x, y, 'x--b') # Marker style 'x', striped line style '--', blue color 'b'
chart.show()
# %%
# The following example shows how to create filled areas between two polylines
# using :func:`~pyvista.Chart2D.area`.
x = np.linspace(0, 10, 1000)
y1 = np.cos(x) + np.sin(3 * x)
y2 = 0.1 * (x - 5)
chart = pv.Chart2D()
chart.area(x, y1, y2, color=(0.1, 0.1, 0.9, 0.5))
chart.line(x, y1, color=(0.9, 0.1, 0.1), width=4, style='--')
chart.line(x, y2, color=(0.1, 0.9, 0.1), width=4, style='--')
chart.title = 'Area plot' # Set custom chart title
chart.show()
# %%
# Bar charts are also supported using :func:`~pyvista.Chart2D.bar`.
# Multiple bar plots are placed next to each other.
x = np.arange(1, 13)
y1 = rng.integers(1e2, 1e4, 12)
y2 = rng.integers(1e2, 1e4, 12)
chart = pv.Chart2D()
chart.bar(x, y1, color='b', label='2020')
chart.bar(x, y2, color='r', label='2021')
chart.x_axis.tick_locations = x
chart.x_axis.tick_labels = [
'Jan',
'Feb',
'Mar',
'Apr',
'May',
'Jun',
'Jul',
'Aug',
'Sep',
'Oct',
'Nov',
'Dec',
]
chart.x_label = 'Month'
chart.y_axis.tick_labels = '2e'
chart.y_label = '# incidents'
chart.show()
# %%
# In case you want to stack the bars, instead of drawing them next to each
# other, pass a sequence of y values.
x = np.arange(1, 11)
ys = [rng.integers(1, 11, 10) for _ in range(5)]
labels = [f'Machine {i}' for i in range(5)]
chart = pv.Chart2D()
chart.bar(x, ys, label=labels)
chart.x_axis.tick_locations = x
chart.x_label = 'Configuration'
chart.y_label = 'Production'
chart.grid = False # Disable the grid lines
chart.show()
# %%
# In a similar way, you can stack multiple area plots on top of
# each other using :func:`~pyvista.Chart2D.stack`.
x = np.arange(0, 11)
ys = [rng.integers(1, 11, 11) for _ in range(5)]
labels = [f'Segment {i}' for i in range(5)]
chart = pv.Chart2D()
chart.stack(x, ys, labels=labels)
chart.show()
# %%
# Beside the flexible Chart2D used in the previous examples, there are a couple
# other dedicated charts you can create. The example below shows how a pie
# chart can be created using :class:`~pyvista.ChartPie`.
data = np.array([8.4, 6.1, 2.7, 2.4, 0.9])
chart = pv.ChartPie(data)
chart.plot.labels = [f'slice {i}' for i in range(len(data))]
chart.show()
# %%
# To summarize statistics of datasets, you can easily create a boxplot
# using :class:`~pyvista.ChartBox`.
data = [rng.poisson(lam, 20) for lam in range(2, 12, 2)]
chart = pv.ChartBox(data)
chart.plot.labels = [f'Experiment {i}' for i in range(len(data))]
chart.show()
# %%
# If you would like to add other types of chart that are currently not
# supported by pyvista or VTK, you can resort to matplotlib to create your
# custom chart and afterwards embed it into a pyvista plotting window.
# The below example shows how you can do this.
import matplotlib.pyplot as plt
# First, create the matplotlib figure
f, ax = plt.subplots(
tight_layout=True,
) # Tight layout to keep axis labels visible on smaller figures
alphas = [0.5 + i for i in range(5)]
betas = [*reversed(alphas)]
N = int(1e4)
data = [rng.beta(alpha, beta, N) for alpha, beta in zip(alphas, betas)]
labels = [f'$\\alpha={alpha:.1f}\\,;\\,\\beta={beta:.1f}$' for alpha, beta in zip(alphas, betas)]
ax.violinplot(data)
ax.set_xticks(np.arange(1, 1 + len(labels)))
ax.set_xticklabels(labels)
ax.set_title('$B(\\alpha, \\beta)$')
# Next, embed the figure into a pyvista plotting window
p = pv.Plotter()
chart = pv.ChartMPL(f)
chart.background_color = 'w'
p.add_chart(chart)
p.show()
# %%
# .. tags:: plot
|