File: point_clouds.py

package info (click to toggle)
python-pyvista 0.46.4-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 176,968 kB
  • sloc: python: 94,346; sh: 216; makefile: 70
file content (174 lines) | stat: -rw-r--r-- 4,464 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
"""
.. _point_clouds_example:

Plotting Point Clouds
~~~~~~~~~~~~~~~~~~~~~
This example shows you how to plot point clouds using PyVista using both the
``'points'`` and ``'points_gaussian'`` styles.

"""

from __future__ import annotations

import numpy as np

import pyvista as pv
from pyvista import examples

# sphinx_gallery_start_ignore
# point gaussian does not work in interactive plots
PYVISTA_GALLERY_FORCE_STATIC_IN_DOCUMENT = True
# sphinx_gallery_end_ignore

# %%
# Compare the Plotting methods
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# First, let's create a sample point cloud using :func:`numpy.random.random`.

# Seed rng for reproducibility
rng = np.random.default_rng(seed=0)
points = rng.random((1000, 3))
points

# %%
# Basic Plot
# ~~~~~~~~~~
# We can simply plot this point cloud using the convenience :func:`pyvista.plot`
# function.

pv.plot(points)


# %%
# Plot with Scalars
# ~~~~~~~~~~~~~~~~~
# That's quite boring, so let's spice things up by adding color. We can either
# use a single scalar to plot the points. For example, the z coordinates.
#
# For fun, let's also render the points as spheres.
pv.plot(
    points,
    scalars=points[:, 2],
    render_points_as_spheres=True,
    point_size=20,
    show_scalar_bar=False,
)


# %%
# Plot with RGBA
# ~~~~~~~~~~~~~~
# Alternatively, we can color the point cloud using an RGBA array. This has
# been normalized from (0, 1), but we could have also used a ``numpy.uint8``
# array from 0-255.
rgba = points - points.min(axis=0)
rgba /= rgba.max(axis=0)
pv.plot(points, scalars=rgba, render_points_as_spheres=True, point_size=20, cpos='xy', rgba=True)

# %%
# Point Cloud Plot Styles
# ~~~~~~~~~~~~~~~~~~~~~~~
# PyVista supports the ``'points_gaussian'`` style, which renders points as
# individual soft sprites. You have the option of displaying these as tight
# "spheres" using ``render_points_as_spheres=True`` (default), or disabling it
# to create softer points at the expense of render performance.
#
# Here's the basic plot again, but with the style as ``'points_gaussian'``:
pv.plot(points, style='points_gaussian', opacity=0.5, point_size=15)


# %%
# Here's a plotter with four combinations of the options side-by-side so you
# can see for yourself the different options available when plotting these
# points. PyVista tries to achieve sensible defaults, but should you find these
# insufficient for your needs, feel free to play around with the various options
# and find something that works for you.

pl = pv.Plotter(shape=(2, 2))

# Standard points
actor = pl.add_points(
    points,
    style='points',
    emissive=False,
    scalars=rgba,
    rgba=True,
    point_size=10,
    ambient=0.7,
)
pl.add_text('"points" not as spheres', color='w')

# Gaussian points
pl.subplot(0, 1)
actor = pl.add_points(
    points,
    render_points_as_spheres=False,
    style='points_gaussian',
    emissive=False,
    scalars=rgba,
    rgba=True,
    opacity=0.99,
    point_size=10,
    ambient=1.0,
)
pl.add_text('"points_gaussian" not as spheres\nemissive=False', color='w')

# Gaussian points with emissive=True
pl.subplot(1, 0)
actor = pl.add_points(
    points,
    render_points_as_spheres=False,
    style='points_gaussian',
    emissive=True,
    scalars=rgba,
    rgba=True,
    point_size=10,
)
pl.add_text('"points_gaussian" not as spheres\nemissive=True', color='w')

# With render_points_as_spheres=True
pl.subplot(1, 1)
actor = pl.add_points(
    points,
    style='points_gaussian',
    render_points_as_spheres=True,
    scalars=rgba,
    rgba=True,
    point_size=10,
)
pl.add_text('"points_gaussian" as spheres', color='w')

pl.background_color = 'k'
pl.link_views()
pl.camera_position = 'xy'
pl.camera.zoom(1.2)
pl.show()


# %%
# Orbit a Point Cloud
# ~~~~~~~~~~~~~~~~~~~
# Generate a plot orbiting around a point cloud. Color based on the distance
# from the center of the cloud using :func:`~pyvista.Plotter.generate_orbital_path`.

cloud = examples.download_cloud_dark_matter()
scalars = np.linalg.norm(cloud.points - cloud.center, axis=1)

pl = pv.Plotter(off_screen=True)
pl.add_mesh(
    cloud,
    style='points_gaussian',
    color='#fff7c2',
    scalars=scalars,
    opacity=0.25,
    point_size=4.0,
    show_scalar_bar=False,
)
pl.background_color = 'k'
pl.show(auto_close=False)
path = pl.generate_orbital_path(n_points=36, shift=cloud.length, factor=3.0)
pl.open_gif('orbit_cloud.gif')
pl.orbit_on_path(path, write_frames=True)
pl.close()
# %%
# .. tags:: plot