1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
|
"""
.. _scalar_bar_example:
Customize Scalar Bars
~~~~~~~~~~~~~~~~~~~~~
Walk through of all the different capabilities of scalar bars and
how a user can customize scalar bars.
"""
# sphinx_gallery_thumbnail_number = 2
from __future__ import annotations
import pyvista as pv
from pyvista import examples
# sphinx_gallery_start_ignore
# setting scalar bar position does not work in interactive plots
PYVISTA_GALLERY_FORCE_STATIC_IN_DOCUMENT = True
# sphinx_gallery_end_ignore
# %%
# By default, when plotting a dataset with a scalar array, a scalar bar for that
# array is added. To turn off this behavior, a user could specify
# ``show_scalar_bar=False`` when calling :func:`~pyvista.Plotter.add_mesh`.
# Let's start with a sample dataset provide via PyVista to demonstrate the default behavior of
# scalar bar plotting:
# Load St Helens DEM and warp the topography
mesh = examples.download_st_helens().warp_by_scalar()
# First a default plot with jet colormap
p = pv.Plotter()
# Add the data, use active scalar for coloring, and show the scalar bar
p.add_mesh(mesh)
# Display the scene
p.show()
# %%
# We could also plot the scene with an interactive scalar bar to move around
# and place where we like by specifying passing keyword arguments to control
# the scalar bar via the ``scalar_bar_args`` parameter in
# :func:`pyvista.Plotter.add_mesh`. The keyword arguments to control the
# scalar bar are defined in :func:`pyvista.Plotter.add_scalar_bar`.
# create dictionary of parameters to control scalar bar
sargs = dict(interactive=True) # Simply make the bar interactive
p = pv.Plotter(notebook=False) # If in IPython, be sure to show the scene
p.add_mesh(mesh, scalar_bar_args=sargs)
p.show()
# Remove from plotters so output is not produced in docs
pv.plotting.plotter._ALL_PLOTTERS.clear()
# %%
# .. figure:: ../../images/gifs/scalar-bar-interactive.gif
#
# Or manually define the scalar bar's location:
# Set a custom position and size
sargs = dict(height=0.25, vertical=True, position_x=0.05, position_y=0.05)
p = pv.Plotter()
p.add_mesh(mesh, scalar_bar_args=sargs)
p.show()
# %%
# The text properties of the scalar bar can also be controlled:
# Controlling the text properties
sargs = dict(
title_font_size=20,
label_font_size=16,
shadow=True,
n_labels=3,
italic=True,
fmt='%.1f',
font_family='arial',
)
p = pv.Plotter()
p.add_mesh(mesh, scalar_bar_args=sargs)
p.show()
# %%
# Labelling values outside of the scalar range
p = pv.Plotter()
p.add_mesh(mesh, clim=[1000, 2000], below_color='blue', above_color='red', scalar_bar_args=sargs)
p.show()
# %%
# Annotate values of interest using a dictionary. The key of the dictionary
# must be the value to annotate, and the value must be the string label.
# Make a dictionary for the annotations
annotations = {
2300: 'High',
805.3: 'Cutoff value',
}
p = pv.Plotter()
p.add_mesh(mesh, scalars='Elevation', annotations=annotations)
p.show()
# %%
# .. tags:: plot
|