File: cell.py

package info (click to toggle)
python-pyvista 0.46.4-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 176,968 kB
  • sloc: python: 94,346; sh: 216; makefile: 70
file content (904 lines) | stat: -rw-r--r-- 27,422 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
"""Contains the pyvista.Cell class."""

from __future__ import annotations

from typing import TYPE_CHECKING
from typing import cast
import warnings

import numpy as np

import pyvista
from pyvista._deprecate_positional_args import _deprecate_positional_args

from . import _vtk_core as _vtk
from ._typing_core import BoundsTuple
from .celltype import CellType
from .dataobject import DataObject
from .errors import CellSizeError
from .errors import PyVistaDeprecationWarning
from .utilities.cells import numpy_to_idarr
from .utilities.misc import _BoundsSizeMixin
from .utilities.misc import _NoNewAttrMixin

if TYPE_CHECKING:
    from typing import Any

    from typing_extensions import Self

    from pyvista import UnstructuredGrid

    from ._typing_core import CellsLike
    from ._typing_core import MatrixLike
    from ._typing_core import NumpyArray


def _get_vtk_id_type() -> type[np.int32 | np.int64]:
    """Return the numpy datatype responding to :vtk:`vtkIdTypeArray`."""
    VTK_ID_TYPE_SIZE = _vtk.vtkIdTypeArray().GetDataTypeSize()
    if VTK_ID_TYPE_SIZE == 4:
        return np.int32
    elif VTK_ID_TYPE_SIZE == 8:
        return np.int64
    return np.int32


class Cell(_BoundsSizeMixin, DataObject, _vtk.vtkGenericCell):
    """Wrapping of :vtk:`vtkCell`.

    This class provides the capability to access a given cell topology and can
    be useful when walking through a cell's individual faces or investigating
    cell properties.

    Parameters
    ----------
    vtk_cell : :vtk:`vtkCell`, optional
        The vtk object to wrap as Cell, that must be of :vtk:`vtkCell` type.

    cell_type : int, optional
        VTK cell type. Determined from ``vtk_cell`` if not input.

    deep : bool, default: False
        Perform a deep copy of the original cell.

    Notes
    -----
    Accessing individual cells from a :class:`pyvista.DataSet` using this class
    will be much slower than accessing bulk data from the
    :attr:`pyvista.PolyData.faces` or :attr:`pyvista.UnstructuredGrid.cells` attributes.

    Also note that the cell object is a deep copy of the original cell and
    is unassociated with the original cell. Changing any data of
    that cell (for example, :attr:`pyvista.Cell.points`) will not change the original dataset.

    Examples
    --------
    Get the 0-th cell from a :class:`pyvista.PolyData`.

    >>> import pyvista as pv
    >>> mesh = pv.Sphere()
    >>> cell = mesh.get_cell(0)
    >>> cell  # doctest: +SKIP
    Cell (0x7fa760075a10)
      Type:       <CellType.TRIANGLE: 5>
      Linear:     True
      Dimension:  2
      N Points:   3
      N Faces:    0
      N Edges:    3
      X Bounds:   -5.406e-02, -5.551e-17
      Y Bounds:   0.000e+00, 1.124e-02
      Z Bounds:   -5.000e-01, -4.971e-01

    Get the 0-th cell from a :class:`pyvista.UnstructuredGrid`.

    >>> from pyvista import examples
    >>> mesh = examples.load_hexbeam()
    >>> cell = mesh.get_cell(0)
    >>> cell  # doctest: +SKIP
    Cell (0x7fdc71a3c210)
      Type:       <CellType.HEXAHEDRON: 12>
      Linear:     True
      Dimension:  3
      N Points:   8
      N Faces:    6
      N Edges:    12
      X Bounds:   0.000e+00, 5.000e-01
      Y Bounds:   0.000e+00, 5.000e-01
      Z Bounds:   0.000e+00, 5.000e-01

    """

    @_deprecate_positional_args(allowed=['vtk_cell', 'cell_type'])
    def __init__(
        self: Self,
        vtk_cell: _vtk.vtkCell | None = None,
        cell_type: CellType | None = None,
        deep: bool = False,  # noqa: FBT001, FBT002
    ) -> None:
        """Initialize the cell."""
        super().__init__()
        if vtk_cell is not None:
            if not isinstance(vtk_cell, _vtk.vtkCell):
                msg = f'`vtk_cell` must be a vtkCell, not {type(vtk_cell)}'  # type: ignore[unreachable]
                raise TypeError(msg)
            # cell type must be set first before deep or shallow copy
            if cell_type is None:
                self.SetCellType(vtk_cell.GetCellType())
            else:
                self.SetCellType(cell_type)

            if deep:
                self.DeepCopy(vtk_cell)
            else:
                self.ShallowCopy(vtk_cell)

    @property
    def type(self: Self) -> CellType:
        """Get the cell type from the enum :class:`pyvista.CellType`.

        Returns
        -------
        pyvista.CellType
            Type of cell.

        Examples
        --------
        >>> import pyvista as pv
        >>> mesh = pv.Sphere()
        >>> mesh.get_cell(0).type
        <CellType.TRIANGLE: 5>

        """
        return CellType(self.GetCellType())

    @property
    def is_linear(self: Self) -> bool:
        """Return if the cell is linear.

        Returns
        -------
        bool
            If the cell is linear.

        Examples
        --------
        >>> import pyvista as pv
        >>> mesh = pv.Sphere()
        >>> mesh.get_cell(0).is_linear
        True

        """
        return bool(self.IsLinear())

    def plot(self: Self, **kwargs) -> None:
        """Plot this cell.

        Parameters
        ----------
        **kwargs : dict, optional
            See :func:`pyvista.plot` for a description of the optional keyword
            arguments.

        Examples
        --------
        >>> from pyvista import examples
        >>> mesh = examples.load_hexbeam()
        >>> cell = mesh.get_cell(0)
        >>> cell.plot()

        """
        self.cast_to_unstructured_grid().plot(**kwargs)

    def cast_to_polydata(self: Self) -> pyvista.PolyData:
        """Cast this cell to PolyData.

        Can only be used for 0D, 1D, or 2D cells.

        Returns
        -------
        pyvista.PolyData
            This cell cast to a :class:`pyvista.PolyData`.

        Examples
        --------
        >>> from pyvista import examples
        >>> mesh = examples.load_sphere()
        >>> cell = mesh.get_cell(0)
        >>> grid = cell.cast_to_polydata()
        >>> grid  # doctest: +SKIP
        PolyData (0x7f09ae437b80)
          N Cells:    1
          N Points:   3
          N Strips:   0
           X Bounds:   0.000e+00, 1.000e+01
          Y Bounds:   0.000e+00, 2.500e+01
          Z Bounds:   -1.270e+02, -1.250e+02
          N Arrays:   0

        """
        cells = [len(self.point_ids), *list(range(len(self.point_ids)))]
        if self.dimension == 0:
            return pyvista.PolyData(self.points.copy(), verts=cells)
        if self.dimension == 1:
            return pyvista.PolyData(self.points.copy(), lines=cells)
        if self.dimension == 2:
            if self.type == CellType.TRIANGLE_STRIP:
                return pyvista.PolyData(self.points.copy(), strips=cells)
            else:
                return pyvista.PolyData(self.points.copy(), faces=cells)
        else:
            msg = f'3D cells cannot be cast to PolyData: got cell type {self.type}'
            raise ValueError(msg)

    def cast_to_unstructured_grid(self: Self) -> UnstructuredGrid:
        """Cast this cell to an unstructured grid.

        Returns
        -------
        pyvista.UnstructuredGrid
            This cell cast to a :class:`pyvista.UnstructuredGrid`.

        Examples
        --------
        >>> from pyvista import examples
        >>> mesh = examples.load_hexbeam()
        >>> cell = mesh.get_cell(0)
        >>> grid = cell.cast_to_unstructured_grid()
        >>> grid  # doctest: +SKIP
        UnstructuredGrid (0x7f9383619540)
          N Cells:      1
          N Points:     8
          X Bounds:     0.000e+00, 5.000e-01
          Y Bounds:     0.000e+00, 5.000e-01
          Z Bounds:     0.000e+00, 5.000e-01
          N Arrays:     0

        """
        if self.type == CellType.POLYHEDRON:
            # construct from faces
            cell_ids = [self.n_faces]
            for face in self.faces:
                cell_ids.append(len(face.point_ids))
                cell_ids.extend(self.point_ids.index(i) for i in face.point_ids)
            cell_ids.insert(0, len(cell_ids))
        else:
            cell_ids = [len(self.point_ids), *list(range(len(self.point_ids)))]
        return pyvista.UnstructuredGrid(
            cell_ids,
            [int(self.type)],
            self.points.copy(),
        )

    @property
    def dimension(self: Self) -> int:
        """Return the cell dimension.

        This returns the dimensionality of the cell. For example, 1 for an edge,
        2 for a triangle, and 3 for a tetrahedron.

        Returns
        -------
        int
            The cell dimension.

        Examples
        --------
        >>> import pyvista as pv
        >>> mesh = pv.Sphere()
        >>> mesh.get_cell(0).dimension
        2

        """
        return self.GetCellDimension()

    @property
    def n_points(self: Self) -> int:
        """Get the number of points composing the cell.

        Returns
        -------
        int
            The number of points.

        Examples
        --------
        >>> import pyvista as pv
        >>> mesh = pv.Sphere()
        >>> mesh.get_cell(0).n_points
        3

        """
        return self.GetNumberOfPoints()

    @property
    def n_faces(self: Self) -> int:
        """Get the number of faces composing the cell.

        Returns
        -------
        int
            The number of faces.

        Examples
        --------
        >>> from pyvista.examples.cells import Tetrahedron
        >>> mesh = Tetrahedron()
        >>> mesh.get_cell(0).n_faces
        4

        """
        return self.GetNumberOfFaces()

    @property
    def n_edges(self: Self) -> int:
        """Get the number of edges composing the cell.

        Returns
        -------
        int
            The number of edges composing the cell.

        Examples
        --------
        >>> import pyvista as pv
        >>> mesh = pv.Sphere()
        >>> mesh.get_cell(0).n_edges
        3

        """
        return self.GetNumberOfEdges()

    @property
    def point_ids(self: Self) -> list[int]:
        """Get the point IDs composing the cell.

        Returns
        -------
        list[int]
            The point IDs composing the cell.

        Examples
        --------
        >>> import pyvista as pv
        >>> mesh = pv.Sphere()
        >>> mesh.get_cell(0).point_ids
        [2, 30, 0]

        """
        point_ids = self.GetPointIds()
        return [point_ids.GetId(i) for i in range(point_ids.GetNumberOfIds())]

    @property
    def points(self: Self) -> NumpyArray[float]:
        """Get the point coordinates of the cell.

        Returns
        -------
        np.ndarray
            The point coordinates of the cell.

        Examples
        --------
        >>> import pyvista as pv
        >>> mesh = pv.Sphere()
        >>> mesh.get_cell(0).points
        array([[0.05405951, 0.        , 0.49706897],
               [0.05287818, 0.0112396 , 0.49706897],
               [0.        , 0.        , 0.5       ]])

        """
        return _vtk.vtk_to_numpy(self.GetPoints().GetData())

    def get_edge(self: Self, index: int) -> Cell:
        """Get the i-th edge composing the cell.

        Parameters
        ----------
        index : int
            Edge ID.

        Returns
        -------
        pyvista.Cell
            Edge given by ``index``.

        Examples
        --------
        Extract a single edge from a face and output the IDs of the edge
        points.

        >>> import pyvista as pv
        >>> mesh = pv.Sphere()
        >>> cell = mesh.get_cell(0)
        >>> edge = cell.get_edge(0)
        >>> edge.point_ids
        [2, 30]

        """
        if index + 1 > self.n_edges:
            msg = f'Invalid index {index} for a cell with {self.n_edges} edges.'
            raise IndexError(msg)

        # must deep copy here as multiple sequental calls to GetEdge overwrite
        # the underlying pointer
        return Cell(self.GetEdge(index), deep=True)  # type: ignore[abstract]

    @property
    def edges(self: Self) -> list[Cell]:
        """Return a list of edges composing the cell.

        Returns
        -------
        list[Cell]
            A list of edges composing the cell.

        Examples
        --------
        >>> from pyvista.examples.cells import Hexahedron
        >>> mesh = Hexahedron()
        >>> cell = mesh.get_cell(0)
        >>> edges = cell.edges
        >>> len(edges)
        12

        """
        return [self.get_edge(i) for i in range(self.n_edges)]

    @property
    def faces(self: Self) -> list[Cell]:
        """Return a list of faces composing the cell.

        Returns
        -------
        list[Cell]
            A list of faces composing the cell.

        Examples
        --------
        >>> from pyvista.examples.cells import Tetrahedron
        >>> mesh = Tetrahedron()
        >>> cell = mesh.get_cell(0)
        >>> faces = cell.faces
        >>> len(faces)
        4

        """
        return [self.get_face(i) for i in range(self.n_faces)]

    def get_face(self: Self, index: int) -> Cell:
        """Get the i-th face composing the cell.

        Parameters
        ----------
        index : int
            Face ID.

        Returns
        -------
        pyvista.Cell
            Face given by ``index``.

        Examples
        --------
        Return the face IDs composing the first face of an example tetrahedron.

        >>> from pyvista.examples.cells import Tetrahedron
        >>> mesh = Tetrahedron()
        >>> cell = mesh.get_cell(0)
        >>> face = cell.get_face(0)
        >>> face.point_ids
        [0, 1, 3]

        """
        # must deep copy here as sequental calls overwrite the underlying pointer
        if index + 1 > self.n_faces:
            msg = f'Invalid index {index} for a cell with {self.n_faces} faces.'
            raise IndexError(msg)

        # must deep copy here as multiple sequental calls to GetFace overwrite
        # the underlying pointer
        cell = self.GetFace(index)
        return Cell(cell, deep=True, cell_type=cast('CellType', cell.GetCellType()))  # type: ignore[abstract]

    @property
    def bounds(self: Self) -> BoundsTuple:
        """Get the cell bounds in ``(x_min, x_max, y_min, y_max, z_min, z_max)``.

        Returns
        -------
        BoundsTuple
            The cell bounds in ``(x_min, x_max, y_min, y_max, z_min, z_max)``.

        Examples
        --------
        >>> import pyvista as pv
        >>> mesh = pv.Sphere()
        >>> mesh.get_cell(0).bounds
        BoundsTuple(x_min = 0.0,
                    x_max = 0.05405950918793678,
                    y_min = 0.0,
                    y_max = 0.011239604093134403,
                    z_min = 0.49706897139549255,
                    z_max = 0.5)

        """
        return BoundsTuple(*self.GetBounds())

    @property
    def center(self: Self) -> tuple[float, float, float]:
        """Get the center of the cell.

        Uses parametric coordinate center to determine x-y-z center.

        Returns
        -------
        tuple[float, float, float]
            The center of the cell.

        Examples
        --------
        >>> import pyvista as pv
        >>> mesh = pv.Sphere()
        >>> mesh.get_cell(0).center
        (0.03564589594801267, 0.0037465346977114677, 0.49804598093032837)

        """
        para_center = [0.0, 0.0, 0.0]
        sub_id = self.GetParametricCenter(para_center)
        # EvaluateLocation requires mutable sub_id
        sub_id = _vtk.mutable(sub_id)  # type: ignore[assignment]
        # center and weights are returned from EvaluateLocation
        center = [0.0, 0.0, 0.0]
        weights = [0.0] * self.n_points
        self.EvaluateLocation(sub_id, para_center, center, weights)
        return cast('tuple[float, float, float]', tuple(center))

    def _get_attrs(self: Self) -> list[tuple[str, Any, str]]:
        """Return the representation methods (internal helper)."""
        attrs = []
        attrs.append(('Type', repr(self.type), '{}' * len(repr(self.type))))
        attrs.append(('Linear', self.is_linear, '{}'))  # type: ignore[arg-type]
        attrs.append(('Dimension', self.dimension, '{}'))  # type: ignore[arg-type]
        attrs.append(('N Points', self.n_points, '{}'))  # type: ignore[arg-type]
        attrs.append(('N Faces', self.n_faces, '{}'))  # type: ignore[arg-type]
        attrs.append(('N Edges', self.n_edges, '{}'))  # type: ignore[arg-type]
        bds = self.bounds
        fmt = f'{pyvista.FLOAT_FORMAT}, {pyvista.FLOAT_FORMAT}'
        attrs.append(('X Bounds', (bds[0], bds[1]), fmt))  # type: ignore[arg-type]
        attrs.append(('Y Bounds', (bds[2], bds[3]), fmt))  # type: ignore[arg-type]
        attrs.append(('Z Bounds', (bds[4], bds[5]), fmt))  # type: ignore[arg-type]

        return attrs

    def __repr__(self: Self) -> str:
        """Return the object representation."""
        return self.head(display=False, html=False)

    def __str__(self: Self) -> str:
        """Return the object string representation."""
        return self.head(display=False, html=False)

    @_deprecate_positional_args
    def copy(self: Self, deep: bool = True) -> Self:  # noqa: FBT001, FBT002
        """Return a copy of the cell.

        Parameters
        ----------
        deep : bool, optional
            When ``True`` makes a full copy of the cell.  When ``False``,
            performs a shallow copy where the new cell still references the
            original cell.

        Returns
        -------
        pyvista.Cell
            Deep or shallow copy of the cell.

        Examples
        --------
        Create a deep copy of the cell and demonstrate it is deep.

        >>> from pyvista.examples.cells import Tetrahedron
        >>> mesh = Tetrahedron()
        >>> cell = mesh.get_cell(0)
        >>> deep_cell = cell.copy(deep=True)
        >>> deep_cell.points[:] = 0
        >>> cell != deep_cell
        True

        Create a shallow copy of the cell and demonstrate it is shallow.

        >>> shallow_cell = cell.copy(deep=False)
        >>> shallow_cell.points[:] = 0
        >>> cell == shallow_cell
        True

        """
        return type(self)(self, deep=deep)


class CellArray(
    _NoNewAttrMixin,
    _vtk.DisableVtkSnakeCase,
    _vtk.vtkPyVistaOverride,
    _vtk.vtkCellArray,
):
    """PyVista wrapping of :vtk:`vtkCellArray`.

    Provides convenience functions to simplify creating a CellArray from
    a numpy array or list.

    .. deprecated:: 0.44.0
       The parameters ``n_cells`` and ``deep`` are deprecated and no longer used.

    Parameters
    ----------
    cells : np.ndarray or list, optional
        Import an array of data with the legacy :vtk:`vtkCellArray` layout, e.g.
        ``{ n0, p0_0, p0_1, ..., p0_n, n1, p1_0, p1_1, ..., p1_n, ... }``
        Where n0 is the number of points in cell 0, and pX_Y is the Y'th
        point in cell X.

    n_cells : int, optional
        The number of cells.

    deep : bool, default: False
        Perform a deep copy of the original cell.

    Examples
    --------
    Create a cell array containing two triangles from the traditional interleaved format

    >>> from pyvista.core.cell import CellArray
    >>> cellarr = CellArray([3, 0, 1, 2, 3, 3, 4, 5])

    Create a cell array containing two triangles from separate offsets and connectivity arrays

    >>> from pyvista.core.cell import CellArray
    >>> offsets = [0, 3, 6]
    >>> connectivity = [0, 1, 2, 3, 4, 5]
    >>> cellarr = CellArray.from_arrays(offsets, connectivity)

    """

    @_deprecate_positional_args(allowed=['cells'])
    def __init__(
        self: Self,
        cells: CellsLike | None = None,
        n_cells: int | None = None,
        deep: bool | None = None,  # noqa: FBT001
    ) -> None:
        """Initialize a :vtk:`vtkCellArray`."""
        super().__init__()
        self.__offsets: _vtk.vtkIdTypeArray | None = None
        self.__connectivity: _vtk.vtkIdTypeArray | None = None
        if cells is not None:
            self.cells = cells

        # deprecated 0.44.0, convert to error in 0.47.0, remove 0.48.0
        for k, v in (('n_cells', n_cells), ('deep', deep)):
            if v is not None:
                warnings.warn(
                    f'`CellArray parameter `{k}` is deprecated and no longer used.',
                    PyVistaDeprecationWarning,
                )

    @property
    def cells(self: Self) -> NumpyArray[int]:
        """Return a numpy array of the cells.

        Returns
        -------
        np.ndarray
            A numpy array of the cells.

        """
        cells = _vtk.vtkIdTypeArray()
        self.ExportLegacyFormat(cells)
        return _vtk.vtk_to_numpy(cells)

    @cells.setter
    def cells(self: Self, cells: CellsLike) -> None:
        cells = np.asarray(cells)
        vtk_idarr = numpy_to_idarr(cells, deep=False, return_ind=False)
        self.ImportLegacyFormat(vtk_idarr)
        imported_size = self.GetNumberOfConnectivityEntries()

        # https://github.com/pyvista/pyvista/pull/5404
        if imported_size != cells.size:
            msg = (
                f'Cell array size is invalid. Size ({cells.size}) does not'
                f' match expected size ({imported_size}). This is likely'
                ' due to invalid connectivity array.'
            )
            raise CellSizeError(msg)
        self.__offsets = self.__connectivity = None

    @property
    def n_cells(self: Self) -> int:
        """Return the number of cells.

        Returns
        -------
        int
            The number of cells.

        """
        return self.GetNumberOfCells()

    @property
    def connectivity_array(self: Self) -> NumpyArray[int]:
        """Return the array with the point ids that define the cells' connectivity.

        Returns
        -------
        np.ndarray
            Array with the point ids that define the cells' connectivity.

        """
        return _get_connectivity_array(self)

    @property
    def offset_array(self: Self) -> NumpyArray[int]:
        """Return the array used to store cell offsets.

        Returns
        -------
        np.ndarray
            Array used to store cell offsets.

        """
        return _get_offset_array(self)

    def _set_data(
        self: Self,
        offsets: MatrixLike[int],
        connectivity: MatrixLike[int],
        *,
        deep: bool = False,
    ) -> None:
        """Set the offsets and connectivity arrays."""
        vtk_offsets = numpy_to_idarr(offsets, deep=deep)
        vtk_connectivity = numpy_to_idarr(connectivity, deep=deep)
        self.SetData(vtk_offsets, vtk_connectivity)

        # Because vtkCellArray doesn't take ownership of the arrays, it's possible for them to get
        # garbage collected. Keep a reference to them for safety
        self.__offsets = vtk_offsets
        self.__connectivity = vtk_connectivity

    @staticmethod
    @_deprecate_positional_args(allowed=['offsets', 'connectivity'])
    def from_arrays(
        offsets: MatrixLike[int],
        connectivity: MatrixLike[int],
        deep: bool = False,  # noqa: FBT001, FBT002
    ) -> CellArray:
        """Construct a CellArray from offsets and connectivity arrays.

        Parameters
        ----------
        offsets : MatrixLike[int]
            Offsets array of length `n_cells + 1`.

        connectivity : MatrixLike[int]
            Connectivity array.

        deep : bool, default: False
            Whether to deep copy the array data into the vtk arrays.

        Returns
        -------
        CellArray
            Constructed CellArray.

        """
        cellarr = CellArray()
        cellarr._set_data(offsets, connectivity, deep=deep)
        return cellarr

    @property
    def regular_cells(self: Self) -> NumpyArray[int]:
        """Return a (n_cells, cell_size)-shaped array of point indices for equal-sized faces.

        Returns
        -------
        numpy.ndarray
            Array of face indices of shape (n_cells, cell_size).

        Notes
        -----
        This property does not validate that the cells are all
        actually the same size. If they're not, this property may either
        raise a `ValueError` or silently return an incorrect array.

        """
        return _get_regular_cells(self)

    @classmethod
    @_deprecate_positional_args(allowed=['cells'])
    def from_regular_cells(
        cls: type[CellArray],
        cells: MatrixLike[int],
        deep: bool = False,  # noqa: FBT001, FBT002
    ) -> pyvista.CellArray:
        """Construct a ``CellArray`` from a (n_cells, cell_size) array of cell indices.

        Parameters
        ----------
        cells : numpy.ndarray or list[list[int]]
            Cell array of shape (n_cells, cell_size) where all cells have the same `cell_size`.

        deep : bool, default: False
            Whether to deep copy the cell array data into the vtk connectivity array.

        Returns
        -------
        pyvista.CellArray
            Constructed ``CellArray``.

        """
        cells = np.asarray(cells, dtype=pyvista.ID_TYPE)
        n_cells, cell_size = cells.shape
        offsets = cell_size * np.arange(n_cells + 1, dtype=pyvista.ID_TYPE)
        cellarr = cls()
        cellarr._set_data(offsets, cells, deep=deep)
        return cellarr

    @classmethod
    def from_irregular_cells(cls: type[CellArray], cells: MatrixLike[int]) -> pyvista.CellArray:
        """Construct a ``CellArray`` from a (n_cells, cell_size) array of cell indices.

        Parameters
        ----------
        cells : numpy.ndarray or list[list[int]]
            Cell array of shape (n_cells, cell_size) where all cells have the same `cell_size`.

        Returns
        -------
        pyvista.CellArray
            Constructed ``CellArray``.

        """
        offsets = np.cumsum([len(c) for c in cells])
        offsets = np.concatenate([[0], offsets], dtype=pyvista.ID_TYPE)
        connectivity = np.concatenate(cells, dtype=pyvista.ID_TYPE)
        return cls.from_arrays(offsets, connectivity)  # type: ignore[arg-type]


# The following methods would be much nicer bound to CellArray,
# but then they wouldn't be available on bare vtkCellArrays. In the future,
# consider using vtkCellArray.override decorator, so they're all automatically
# returned as CellArrays


def _get_connectivity_array(cellarr: _vtk.vtkCellArray) -> NumpyArray[int]:
    """Return the array with the point ids that define the cells' connectivity."""
    return _vtk.vtk_to_numpy(cellarr.GetConnectivityArray())


def _get_offset_array(cellarr: _vtk.vtkCellArray) -> NumpyArray[int]:
    """Return the array used to store cell offsets."""
    return _vtk.vtk_to_numpy(cellarr.GetOffsetsArray())


def _get_regular_cells(cellarr: _vtk.vtkCellArray) -> NumpyArray[int]:
    """Return a (n_cells, cell_size)-shaped array of point indices for equal-sized faces."""
    cells = _get_connectivity_array(cellarr)
    if len(cells) == 0:
        return cells

    offsets = _get_offset_array(cellarr)
    cell_size = offsets[1] - offsets[0]
    return cells.reshape(-1, cell_size)


def _get_irregular_cells(cellarr: _vtk.vtkCellArray) -> tuple[NumpyArray[int], ...]:
    """Return a tuple of length n_cells of each cell's point indices."""
    cells = _get_connectivity_array(cellarr)
    if len(cells) == 0:
        return ()

    offsets = _get_offset_array(cellarr)
    return tuple(np.split(cells, offsets[1:-1]))