File: composite.py

package info (click to toggle)
python-pyvista 0.46.4-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 176,968 kB
  • sloc: python: 94,346; sh: 216; makefile: 70
file content (2810 lines) | stat: -rw-r--r-- 100,585 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
"""Container to mimic :vtk:`vtkMultiBlockDataSet` objects.

These classes hold many VTK datasets in one object that can be passed
to VTK algorithms and PyVista filtering/plotting routines.
"""

from __future__ import annotations

from collections.abc import Iterator
from collections.abc import MutableSequence
from collections.abc import Sequence
import itertools
import pathlib
from typing import TYPE_CHECKING
from typing import Any
from typing import Literal
from typing import NoReturn
from typing import Union
from typing import cast
from typing import overload

import numpy as np
from typing_extensions import TypedDict
from typing_extensions import Unpack

import pyvista
from pyvista._deprecate_positional_args import _deprecate_positional_args
from pyvista.core import _validation

from . import _vtk_core as _vtk
from ._typing_core import BoundsTuple
from .dataobject import USER_DICT_KEY
from .dataobject import DataObject
from .dataset import DataSet
from .filters.composite import CompositeFilters
from .filters.composite import _format_nested_index
from .pyvista_ndarray import pyvista_ndarray
from .utilities.arrays import CellLiteral
from .utilities.arrays import FieldAssociation
from .utilities.arrays import FieldLiteral
from .utilities.arrays import PointLiteral
from .utilities.arrays import parse_field_choice
from .utilities.geometric_objects import Box
from .utilities.helpers import is_pyvista_dataset
from .utilities.helpers import wrap
from .utilities.misc import _BoundsSizeMixin

if TYPE_CHECKING:
    from collections.abc import Iterable

    from pyvista import PolyData

    from ._typing_core import NumpyArray

_TypeMultiBlockLeaf = Union['MultiBlock', DataSet, None]


class MultiBlock(
    _BoundsSizeMixin,
    CompositeFilters,
    DataObject,
    MutableSequence,  # type: ignore[type-arg]
    _vtk.vtkMultiBlockDataSet,
):
    """A composite class to hold many data sets which can be iterated over.

    This wraps/extends the :vtk:`vtkMultiBlockDataSet` class
    so that we can easily plot these data sets and use the composite in a
    Pythonic manner.

    You can think of ``MultiBlock`` like a list as we
    can iterate over this data structure by index.  It has some dictionary
    features as we can also access blocks by their string name.

    .. versionchanged:: 0.36.0
       ``MultiBlock`` adheres more closely to being list like, and inherits
       from :class:`collections.abc.MutableSequence`.  Multiple nonconforming
       behaviors were removed or modified.

    Parameters
    ----------
    *args : dict, optional
        Data object dictionary.

    **kwargs : dict, optional
        See :func:`pyvista.read` for additional options.

    Examples
    --------
    >>> import pyvista as pv

    Create an empty composite dataset.

    >>> blocks = pv.MultiBlock()

    Add a dataset to the collection.

    >>> sphere = pv.Sphere()
    >>> blocks.append(sphere)

    Add a named block.

    >>> blocks['cube'] = pv.Cube()

    Instantiate from a list of objects.

    >>> data = [
    ...     pv.Sphere(center=(2, 0, 0)),
    ...     pv.Cube(center=(0, 2, 0)),
    ...     pv.Cone(),
    ... ]
    >>> blocks = pv.MultiBlock(data)
    >>> blocks.plot()

    Instantiate from a dictionary.

    >>> data = {
    ...     'cube': pv.Cube(),
    ...     'sphere': pv.Sphere(center=(2, 2, 0)),
    ... }
    >>> blocks = pv.MultiBlock(data)
    >>> blocks.plot()

    Iterate over the collection.

    >>> for name in blocks.keys():
    ...     block = blocks[name]

    >>> for block in blocks:
    ...     # Do something with each dataset
    ...     surf = block.extract_surface()

    """

    plot = pyvista._plot.plot

    _WRITERS = dict.fromkeys(['.vtm', '.vtmb'], _vtk.vtkXMLMultiBlockDataWriter)
    if _vtk.vtk_version_info >= (9, 4):
        _WRITERS['.vtkhdf'] = _vtk.vtkHDFWriter

    def __init__(self: MultiBlock, *args, **kwargs) -> None:
        """Initialize multi block."""
        super().__init__()
        deep = kwargs.pop('deep', False)

        # keep a python reference to the dataset to avoid
        # unintentional garbage collections since python does not
        # add a reference to the dataset when it's added here in
        # MultiBlock.  See https://github.com/pyvista/pyvista/pull/1805
        self._refs: Any = {}

        if len(args) == 1:
            if isinstance(args[0], _vtk.vtkMultiBlockDataSet):
                if deep:
                    self.deep_copy(args[0])
                else:
                    self.shallow_copy(args[0])
            elif isinstance(args[0], (list, tuple)):
                for block in args[0]:
                    self.append(block)
            elif isinstance(args[0], (str, pathlib.Path)):
                self._from_file(args[0], **kwargs)
            elif isinstance(args[0], dict):
                for key, block in args[0].items():
                    self.append(block, key)
            else:
                msg = f'Type {type(args[0])} is not supported by pyvista.MultiBlock'
                raise TypeError(msg)

        elif len(args) > 1:
            msg = 'Invalid number of arguments:\n``pyvista.MultiBlock``supports 0 or 1 arguments.'
            raise ValueError(msg)

        # Upon creation make sure all nested structures are wrapped
        self.wrap_nested()

    def wrap_nested(self: MultiBlock) -> None:
        """Ensure that all nested data structures are wrapped as PyVista datasets.

        This is performed in place.

        """
        for i in range(self.n_blocks):
            block = self.GetBlock(i)
            if not is_pyvista_dataset(block):
                self.SetBlock(i, wrap(block))

    def _items(self) -> Iterable[tuple[str | None, _TypeMultiBlockLeaf]]:
        yield from zip(self.keys(), self)

    _OrderLiteral = Literal['nested_first', 'nested_last']

    class _RecursiveIteratorBasicKwargs(TypedDict, total=False):
        """Define kwargs which have no impact on return type."""

        skip_empty: bool
        prepend_names: bool
        separator: str

    @overload  # 'ids', nested_ids=True
    def recursive_iterator(
        self: MultiBlock,
        contents: Literal['ids'],
        order: _OrderLiteral | None = ...,
        *,
        node_type: Literal['parent', 'child'] = ...,
        skip_none: bool = ...,
        nested_ids: Literal[True] | None = ...,
        **kwargs: Unpack[_RecursiveIteratorBasicKwargs],
    ) -> Iterator[tuple[int, ...]]: ...
    @overload  # 'ids', nested_ids=False
    def recursive_iterator(
        self: MultiBlock,
        contents: Literal['ids'],
        order: _OrderLiteral | None = ...,
        *,
        node_type: Literal['parent', 'child'] = ...,
        skip_none: bool = ...,
        nested_ids: Literal[False],
        **kwargs: Unpack[_RecursiveIteratorBasicKwargs],
    ) -> Iterator[int]: ...
    @overload  # 'names'
    def recursive_iterator(
        self: MultiBlock,
        contents: Literal['names'],
        order: _OrderLiteral | None = ...,
        *,
        node_type: Literal['parent', 'child'] = ...,
        skip_none: bool = ...,
        nested_ids: bool | None = ...,
        **kwargs: Unpack[_RecursiveIteratorBasicKwargs],
    ) -> Iterator[str]: ...
    @overload  # 'items', node_type='child', skip_none=False
    def recursive_iterator(
        self: MultiBlock,
        contents: Literal['items'],
        order: _OrderLiteral | None = ...,
        *,
        node_type: Literal['child'] = ...,
        skip_none: Literal[False] = ...,
        nested_ids: bool | None = ...,
        **kwargs: Unpack[_RecursiveIteratorBasicKwargs],
    ) -> Iterator[tuple[str, DataSet | None]]: ...
    @overload  # 'items', node_type='child', skip_none=True
    def recursive_iterator(
        self: MultiBlock,
        contents: Literal['items'],
        order: _OrderLiteral | None = ...,
        *,
        node_type: Literal['child'] = ...,
        skip_none: Literal[True],
        nested_ids: bool | None = ...,
        **kwargs: Unpack[_RecursiveIteratorBasicKwargs],
    ) -> Iterator[tuple[str, DataSet]]: ...
    @overload  # 'blocks', node_type='child', skip_None=True
    def recursive_iterator(
        self: MultiBlock,
        contents: Literal['blocks'] = ...,
        order: _OrderLiteral | None = ...,
        *,
        node_type: Literal['child'] = ...,
        skip_none: Literal[True],
        nested_ids: bool | None = ...,
        **kwargs: Unpack[_RecursiveIteratorBasicKwargs],
    ) -> Iterator[DataSet]: ...
    @overload  # 'blocks', node_type='child', skip_None=False
    def recursive_iterator(
        self: MultiBlock,
        contents: Literal['blocks'] = ...,
        order: _OrderLiteral | None = ...,
        *,
        node_type: Literal['child'] = ...,
        skip_none: Literal[False] = ...,
        nested_ids: bool | None = ...,
        **kwargs: Unpack[_RecursiveIteratorBasicKwargs],
    ) -> Iterator[DataSet | None]: ...
    @overload  # 'all', node_type='child', skip_none=True, nested_ids=True
    def recursive_iterator(
        self: MultiBlock,
        contents: Literal['all'],
        order: _OrderLiteral | None = ...,
        *,
        node_type: Literal['child'] = ...,
        skip_none: Literal[True],
        nested_ids: Literal[True] | None = ...,
        **kwargs: Unpack[_RecursiveIteratorBasicKwargs],
    ) -> Iterator[tuple[tuple[int, ...], str, DataSet]]: ...
    @overload  # 'all', node_type='child', skip_none=False, nested_ids=True
    def recursive_iterator(
        self: MultiBlock,
        contents: Literal['all'],
        order: _OrderLiteral | None = ...,
        *,
        node_type: Literal['child'] = ...,
        skip_none: Literal[False] = ...,
        nested_ids: Literal[True] | None = ...,
        **kwargs: Unpack[_RecursiveIteratorBasicKwargs],
    ) -> Iterator[tuple[tuple[int, ...], str, DataSet | None]]: ...
    @overload  # 'all', node_type='child', skip_none=True, nested_ids=False
    def recursive_iterator(
        self: MultiBlock,
        contents: Literal['all'],
        order: _OrderLiteral | None = ...,
        *,
        node_type: Literal['child'] = ...,
        skip_none: Literal[True],
        nested_ids: Literal[False],
        **kwargs: Unpack[_RecursiveIteratorBasicKwargs],
    ) -> Iterator[tuple[int, str, DataSet]]: ...
    @overload  # 'all', node_type='child', skip_none=False, nested_ids=False
    def recursive_iterator(
        self: MultiBlock,
        contents: Literal['all'],
        order: _OrderLiteral | None = ...,
        *,
        node_type: Literal['child'] = ...,
        skip_none: Literal[False] = ...,
        nested_ids: Literal[False],
        **kwargs: Unpack[_RecursiveIteratorBasicKwargs],
    ) -> Iterator[tuple[int, str, DataSet | None]]: ...
    @overload  # 'items', node_type='parent'
    def recursive_iterator(
        self: MultiBlock,
        contents: Literal['items'],
        order: _OrderLiteral | None = ...,
        *,
        node_type: Literal['parent'],
        skip_none: bool = ...,
        nested_ids: bool | None = ...,
        **kwargs: Unpack[_RecursiveIteratorBasicKwargs],
    ) -> Iterator[tuple[str, MultiBlock]]: ...
    @overload  # 'blocks', node_type='parent'
    def recursive_iterator(
        self: MultiBlock,
        contents: Literal['blocks'] = ...,
        order: _OrderLiteral | None = ...,
        *,
        node_type: Literal['parent'],
        skip_none: Literal[False] = ...,
        nested_ids: bool | None = ...,
        **kwargs: Unpack[_RecursiveIteratorBasicKwargs],
    ) -> Iterator[MultiBlock]: ...
    @overload  # 'all', node_type='parent', nested_ids=True
    def recursive_iterator(
        self: MultiBlock,
        contents: Literal['all'],
        order: _OrderLiteral | None = ...,
        *,
        node_type: Literal['parent'],
        skip_none: Literal[False] = ...,
        nested_ids: Literal[True] | None = ...,
        **kwargs: Unpack[_RecursiveIteratorBasicKwargs],
    ) -> Iterator[tuple[tuple[int, ...], str, MultiBlock]]: ...
    @overload  # 'all', node_type='parent', nested_ids=False
    def recursive_iterator(
        self: MultiBlock,
        contents: Literal['all'],
        order: _OrderLiteral | None = ...,
        *,
        node_type: Literal['parent'],
        skip_none: Literal[False] = ...,
        nested_ids: Literal[False],
        **kwargs: Unpack[_RecursiveIteratorBasicKwargs],
    ) -> Iterator[tuple[int, str, MultiBlock]]: ...
    @overload  # general case
    def recursive_iterator(
        self: MultiBlock,
        contents: Literal['ids', 'names', 'blocks', 'items', 'all'] = ...,
        order: _OrderLiteral | None = ...,
        *,
        node_type: Literal['parent', 'child'] = ...,
        skip_none: bool = ...,
        skip_empty: bool = ...,
        nested_ids: bool | None = ...,
        prepend_names: bool = ...,
        separator: str = ...,
    ) -> (
        Iterator[int | tuple[int, ...] | str | _TypeMultiBlockLeaf]
        | Iterator[tuple[str, _TypeMultiBlockLeaf]]
        | Iterator[tuple[int | tuple[int, ...], str, _TypeMultiBlockLeaf]]
    ): ...
    def recursive_iterator(
        self: MultiBlock,
        contents: Literal['ids', 'names', 'blocks', 'items', 'all'] = 'blocks',
        order: Literal['nested_first', 'nested_last'] | None = None,
        *,
        node_type: Literal['parent', 'child'] = 'child',
        skip_none: bool = False,
        skip_empty: bool = False,
        nested_ids: bool | None = None,
        prepend_names: bool = False,
        separator: str = '::',
    ) -> (
        Iterator[int | tuple[int, ...] | str | _TypeMultiBlockLeaf]
        | Iterator[tuple[str, _TypeMultiBlockLeaf]]
        | Iterator[tuple[int | tuple[int, ...], str, _TypeMultiBlockLeaf]]
    ):
        """Iterate over all nested blocks recursively.

        .. versionadded:: 0.45

        Parameters
        ----------
        contents : 'ids' | 'names' | 'blocks' | 'items', default: 'blocks'
            Values to include in the iterator.

            - ``'ids'``: Return an iterator with nested block indices.
            - ``'names'``: Return an iterator with nested block names (i.e. :meth:`keys`).
            - ``'blocks'``: Return an iterator with nested blocks.
            - ``'items'``: Return an iterator with nested ``(name, block)`` pairs.
            - ``'all'``: Return an iterator with nested ``(index, name, block)`` triplets.

            .. note::

                Use the ``nested_ids`` and ``prepend_names`` options to modify how
                the block ids and names are represented, respectively.

        order : 'nested_first', 'nested_last', optional
            Order in which to iterate through nested blocks.

            - ``'nested_first'``: Iterate through nested ``MultiBlock`` blocks first.
            - ``'nested_last'``: Iterate through nested ``MultiBlock`` blocks last.

            By default, the ``MultiBlock`` is iterated recursively as-is without
            changing the order. This option only applies when ``node_type`` is ``'child'``.

        node_type : 'parent' | 'child', default: 'child'
            Type of node blocks to generate ``contents`` from. If ``'parent'``, the
            contents are generated from :class:`MultiBlock` nodes.  If ``'child'``, the
            contents are generated from :class:`~pyvista.DataSet` and ``None`` nodes.

        skip_none : bool, default: False
            If ``True``, do not include ``None`` blocks in the iterator. This option
            only applies when ``node_type`` is ``'child'``.

        skip_empty : bool, default: False
            If ``True``, do not include empty meshes in the iterator. If ``node_type``
            is ``'parent'``, any :class:`MultiBlock` block with length ``0`` is skipped.
            If ``node_type`` is ``'child'``, any :class:`~pyvista.DataSet` block with
            ``0`` points is skipped.

        nested_ids : bool, default: True
            Prepend parent block indices to the child block indices. If ``True``, a
            tuple of indices is returned for each block. If ``False``, a single integer
            index is returned for each block. This option only applies when ``contents``
            is ``'ids'`` or ``'all'``.

        prepend_names : bool, default: False
            Prepend any parent block names to the child block names. This option
            only applies when ``contents`` is ``'names'``, ``'items'``, or ``'all'``.

        separator : str, default: '::'
            String separator to use when ``prepend_names`` is enabled. The separator
            is inserted between parent and child block names.

        Returns
        -------
        Iterator
            Iterator of ids, names, blocks, or name-block pairs depending on ``contents``.

        See Also
        --------
        flatten
            Uses the iterator internally to flatten a :class:`MultiBlock`.
        pyvista.CompositeFilters.generic_filter
            Uses the iterator internally to apply filters to all blocks.
        clean
            Remove ``None`` and/or empty mesh blocks.

        Examples
        --------
        Load a :class:`MultiBlock` with nested datasets.

        >>> import pyvista as pv
        >>> from pyvista import examples
        >>> multi = examples.download_biplane()

        The dataset has eight :class:`MultiBlock` blocks.

        >>> multi.n_blocks
        8

        >>> all(isinstance(block, pv.MultiBlock) for block in multi)
        True

        Get the iterator and show the count of all recursively nested blocks.

        >>> iterator = multi.recursive_iterator()
        >>> iterator
        <generator object MultiBlock._recursive_iterator at ...>

        >>> len(list(iterator))
        59

        Check if all blocks are :class:`~pyvista.DataSet` objects. Note that ``None``
        blocks are included by default, so this may not be ``True`` in all cases.

        >>> all(isinstance(item, pv.DataSet) for item in multi.recursive_iterator())
        True

        Use the iterator to apply a filter inplace to all recursively nested datasets.

        >>> _ = [
        ...     dataset.connectivity(inplace=True)
        ...     for dataset in multi.recursive_iterator()
        ... ]

        Iterate through nested block names.

        >>> iterator = multi.recursive_iterator('names')
        >>> next(iterator)
        'Unnamed block ID: 1'

        Prepend parent block names.

        >>> iterator = multi.recursive_iterator('names', prepend_names=True)
        >>> next(iterator)
        'Element Blocks::Unnamed block ID: 1'

        Iterate through name-block pairs. Prepend parent block names again using a
        custom separator.

        >>> iterator = multi.recursive_iterator(
        ...     'items', prepend_names=True, separator='->'
        ... )
        >>> next(iterator)
        ('Element Blocks->Unnamed block ID: 1', UnstructuredGrid (...)
          N Cells:    8
          N Points:   27
          X Bounds:   4.486e-01, 1.249e+00
          Y Bounds:   1.372e+00, 1.872e+00
          Z Bounds:   -6.351e-01, 3.649e-01
          N Arrays:   6)

        Iterate through ids. The ids are returned as a tuple by default.

        >>> iterator = multi.recursive_iterator('ids')
        >>> next(iterator)
        (0, 0)

        Use :meth:`get_block` and get the next block indicated by the nested ids.

        >>> multi.get_block(next(iterator))
        UnstructuredGrid ...

        Use the iterator to :attr:`replace` all blocks with new blocks. Similar to a previous
        example, we use a filter but this time the operation is not performed in place.

        >>> iterator = multi.recursive_iterator('all', nested_ids=True)
        >>> for ids, _, block in iterator:
        ...     multi.replace(ids, block.connectivity())

        Use ``node_type='parent'`` to get information about :class:`MultiBlock` nodes.

        >>> iterator = multi.recursive_iterator(node_type='parent')

        The iterator has ``8`` items. In this case this matches the number of blocks
        in the root block.

        >>> len(list(iterator))
        8

        Use ``skip_empty`` to skip :class:`MultiBlock` nodes which have length ``0``
        and return their block ids.

        >>> iterator = multi.recursive_iterator(
        ...     'ids', node_type='parent', skip_empty=True
        ... )
        >>> ids = list(iterator)

        There are two non-empty blocks at index ``0`` and ``4``.

        >>> len(ids)
        2
        >>> ids
        [(0,), (4,)]

        """
        _validation.check_contains(
            ['ids', 'names', 'blocks', 'items', 'all'],
            must_contain=contents,
            name='contents',
        )
        _validation.check_contains(
            ['nested_first', 'nested_last', None], must_contain=order, name='order'
        )
        nested_ids = contents in ['ids', 'all'] if nested_ids is None else nested_ids
        if nested_ids and contents not in ['ids', 'all']:
            msg = 'Nested ids option only applies when ids are returned.'
            raise ValueError(msg)
        if prepend_names and contents not in ['names', 'items', 'all']:
            msg = 'Prepend names option only applies when names are returned.'
            raise ValueError(msg)
        if node_type == 'parent':
            if skip_none:
                msg = "Cannot skip None blocks when the node type is 'parent'."
                raise ValueError(msg)
            if order is not None:
                msg = "Cannot set order when the node type is 'parent'."
                raise TypeError(msg)
        _validation.check_instance(separator, str, name='separator')
        if not separator:
            msg = 'String separator cannot be empty.'
            raise ValueError(msg)

        return self._recursive_iterator(
            ids=[[i] for i in range(self.n_blocks)],
            names=self.keys(),
            contents=contents,
            order=order,
            node_type=node_type,
            skip_none=skip_none,
            skip_empty=skip_empty,
            nested_ids=nested_ids,
            prepend_names=prepend_names,
            separator=separator,
        )

    def _recursive_iterator(
        self,
        *,
        ids: Iterable[list[int]],
        names: Iterable[str],
        contents: Literal['ids', 'names', 'blocks', 'items', 'all'],
        order: Literal['nested_first', 'nested_last'] | None = None,
        node_type: Literal['parent', 'child'] = 'child',
        skip_none: bool,
        skip_empty: bool,
        nested_ids: bool,
        prepend_names: bool,
        separator: str,
    ) -> (
        Iterator[int | tuple[int, ...] | str | _TypeMultiBlockLeaf]
        | Iterator[tuple[str, _TypeMultiBlockLeaf]]
        | Iterator[tuple[int | tuple[int, ...], str, _TypeMultiBlockLeaf]]
    ):
        # Determine ordering of blocks and names to iterate through
        if order is None:
            blocks: Sequence[_TypeMultiBlockLeaf] = self
        else:
            # Need to reorder blocks
            multi_ids = []
            multi_names = []
            multi_blocks = []
            other_ids = []
            other_names = []
            other_blocks = []
            for id_, name, block in zip(ids, names, self):
                if isinstance(block, MultiBlock):
                    multi_ids.append(id_)
                    multi_names.append(name)
                    multi_blocks.append(block)
                else:
                    other_ids.append(id_)
                    other_names.append(name)
                    other_blocks.append(block)
            if order == 'nested_last':
                ids = [*other_ids, *multi_ids]
                names = [*other_names, *multi_names]
                blocks = [*other_blocks, *multi_blocks]
            else:
                ids = [*multi_ids, *other_ids]
                names = [*multi_names, *other_names]
                blocks = [*multi_blocks, *other_blocks]

        # Iterate through ids, names, blocks
        for id_, name, block in zip(ids, names, blocks):
            if (skip_none and block is None) or (
                skip_empty and (block is not None and block.is_empty)
            ):
                continue
            elif isinstance(block, MultiBlock):
                if skip_empty and len(block) == 0:
                    continue

                # Process names
                names = block.keys()
                if prepend_names:
                    # Include parent name with the block names
                    names = [f'{name}{separator}{block_name}' for block_name in names]

                # Process ids
                if nested_ids:
                    # Include parent id with the block ids
                    ids = [[*id_, i] for i in range(block.n_blocks)]
                else:
                    ids = [[i] for i in range(block.n_blocks)]

                # Yield from multiblock but fall-through in some cases for 'parent' nodes
                if node_type == 'child' or block.is_nested:
                    yield from block._recursive_iterator(
                        ids=ids,
                        names=names,
                        contents=contents,
                        order=order,
                        node_type=node_type,
                        skip_none=skip_none,
                        skip_empty=skip_empty,
                        nested_ids=nested_ids,
                        prepend_names=prepend_names,
                        separator=separator,
                    )
                    if node_type == 'child':
                        continue
            elif node_type == 'parent':
                continue

            if contents == 'ids':
                yield tuple(id_) if nested_ids else id_[0]
            elif contents == 'names':
                yield name
            elif contents == 'blocks':
                yield block
            elif contents == 'items':
                yield name, block
            elif contents == 'all':
                id_out = tuple(id_) if nested_ids else id_[0]
                yield id_out, name, block
            else:  # pragma: no cover
                msg = f"Unexpected contents '{contents}'."  # type: ignore[unreachable]
                raise RuntimeError(msg)

    def move_nested_field_data_to_root(
        self,
        *,
        copy: bool | None = None,
        field_data_mode: Literal['preserve', 'prepend'] = 'preserve',
        user_dict_mode: Literal['preserve', 'prepend', 'flat', 'nested'] = 'preserve',
        separator: str = '::',
        check_duplicate_keys: bool = True,
    ) -> None:
        """Move or copy field data from all nested :class:`MultiBlock` blocks.

        Any nested :class:`MultiBlock` blocks will have its :attr:`~pyvista.DataObject.field_data`
        contents moved to the root block, (i.e. `this` ``MultiBock``). By default, this
        data will be cleared from the nested block(s) but a copy may be made instead.

        If any nested :class:`MultiBlock` blocks define a :attr:`~pyvista.DataObject.user_dict`,
        the root user-dict is also updated to include the nested block's user-dict
        data.

        All field data and user-dict keys are directly updated from the nested blocks
        by default. Optionally, different modes are provided to control the key names
        and/or how the data is moved. The move is done safely such that no key values
        will be overwritten and no data is lost. If any nested keys are duplicates
        of the root keys, an error is raised.

        .. note::
            This operation only applies to nested :class:`MultiBlock` blocks. Field data
            associated with :class:`~pyvista.DataSet` blocks is `not` affected.

        .. versionadded:: 0.45

        Parameters
        ----------
        copy : bool, optional
            Set this value to copy the data. If ``True``, deep-copy the data from nested
            ``MultiBlock`` blocks to the root block. Both the root and nested blocks
            will share the same keys and refer to separate copies of the data. If
            ``False``, both the root and nested blocks will share the same keys but
            refer to the same data. By default, no copy is made; the nested field data
            is moved to the root block and cleared from the nested ``MultiBlock`` blocks.

            .. note::

                This option does not apply to any nested :attr:`~pyvista.DataObject.user_dict`
                data. User-dict data is always deep-copied.

        field_data_mode : 'preserve' | 'prepend', default: 'preserve'
            Mode for naming the root field data keys when moving nested field data.

            - ``'preserve'``: The array names of nested field data are preserved.
            - ``'prepend'``: Preserve the array names and prepend the parent names.

        user_dict_mode : 'preserve' | 'prepend' | 'flat' | 'nested', default: 'preserve'
            Mode for naming the root :attr:`~pyvista.DataObject.user_dict` keys when
            nested :class:`MultiBlock` blocks define a user-dict.

            - ``'preserve'``: Update the root user dict directly with the items of any
              nested user-dict.
            - ``'nested'``: Create nested keys in the root user-dict which match the
              nested hierarchy of any nested ``MultiBlock`` blocks.
            - ``'flat'``: Create a new key in the root user dict for each nested
              ``MultiBlock`` that has a user-dict.
            - ``'prepend'``: Similar to ``'flat'`` except the key names are prepended
              with the parent block names.

            .. note::
                If there is only a single level of nesting the ``'flat'``, ``'nested'``
                and ``'prepend'`` modes are all equivalent. They only differ when there
                is at least two levels of nesting.

        separator : str, default: '::'
            String separator to use when ``'prepend'`` mode is enabled for either field
            data or for the user-dict. The separator is inserted between parent and child
            block names.

        check_duplicate_keys : bool, default: True
            Update the root data safely without overwriting existing data. If ``True``,
            an error is raised if any nested keys match the root block's keys. If
            ``False``, nested data is moved without checking if a key already exists,
            and data may be overwritten.

        Raises
        ------
        ValueError
            If any field data keys in nested :class:`MultiBlock` blocks are duplicated
            in the root block and ``check_duplicate_keys`` is ``True``.

        See Also
        --------
        flatten

        Examples
        --------
        Create a :class:`MultiBlock` with field data.

        >>> import pyvista as pv
        >>> multi = pv.MultiBlock()
        >>> multi.field_data['data'] = [1, 2, 3]

        Nest the dataset inside another ``MultiBlock``.

        >>> root = pv.MultiBlock([multi])

        Show that the root block does not have any field data.

        >>> root.field_data.keys()
        []

        Move the nested field data to the root.

        >>> root.move_nested_field_data_to_root()

        The field data is now at the root.

        >>> root.field_data.keys()
        ['data']

        And no longer exists in the nested ``MultiBlock``.

        >>> multi.field_data.keys()
        []

        Add more field data to the nested block.

        >>> multi.field_data['more_data'] = [4, 5, 6]

        Move it to the root again, but this time prepend the name of the block the data
        came from.

        >>> root.move_nested_field_data_to_root(field_data_mode='prepend')
        >>> root.field_data.keys()
        ['data', 'Block-00::more_data']

        The :attr:`~pyvista.DataObject.user_dict` is also field data which is moved to
        the root block's user-dict.

        Add sample data to the nested block and move it to the root.

        >>> data = dict(foo='bar')
        >>> multi.user_dict = data
        >>> root.move_nested_field_data_to_root()

        Check the root's user-dict. By default, the key names are preserved and the root
        dict is updated with the nested dict.

        >>> root.user_dict
        {"foo": "bar"}

        Clear the field data and re-add data to the nested user-dict.

        >>> root.clear_field_data()
        >>> multi.user_dict = data

        Move the data again but use the ``'flat'`` mode. This time, a new key is added
        which matches the nested block's name.

        >>> root.move_nested_field_data_to_root(user_dict_mode='flat')
        >>> root.user_dict
        {"Block-00": {"foo": "bar"}}

        """
        _validation.check_contains(
            ['prepend', 'preserve'],
            must_contain=field_data_mode,
            name='field_data_mode',
        )
        _validation.check_contains(
            ['prepend', 'preserve', 'flat', 'nested'],
            must_contain=user_dict_mode,
            name='user_dict_mode',
        )

        root_field_data = self.field_data
        prepend_names = field_data_mode == 'prepend'

        iterator = self.recursive_iterator(
            'all', node_type='parent', prepend_names=True, separator=separator
        )
        for index, block_name, nested_multi in iterator:
            # Get nested field data to be moved
            nested_field_data = nested_multi.field_data
            if prepend_names:
                # Add the field data to a temp mesh so we can rename the arrays
                temp_mesh = pyvista.ImageData()
                temp_field_data = temp_mesh.field_data
                for old_name in nested_field_data:
                    new_name = f'{block_name}{separator}{old_name}'
                    temp_field_data[new_name] = nested_field_data[old_name]
                field_data_to_copy = temp_field_data
            else:
                field_data_to_copy = nested_field_data

            for array_name in field_data_to_copy:
                # Check for nested user-dict data
                if array_name.endswith(USER_DICT_KEY):
                    root_user_dict = self.user_dict

                    def raise_key_error(
                        duplicate_key: str, block_name_: str, index_: tuple[int, ...]
                    ) -> NoReturn:
                        index_fmt = _format_nested_index(index_)
                        msg = (
                            f'The root user dict cannot be updated with data from nested '
                            f"MultiBlock at index {index_fmt} with name '{block_name_}'.\n"
                            f"The key '{duplicate_key}' already exists in the root user dict "
                            f'and would be overwritten.'
                        )
                        raise ValueError(msg)

                    if user_dict_mode == 'preserve':
                        if check_duplicate_keys:
                            # Check if the keys already exist before updating
                            root_user_dict_keys = root_user_dict.keys()
                            for nested_key in nested_multi.user_dict.keys():
                                if nested_key in root_user_dict_keys:
                                    raise_key_error(nested_key, block_name, index)
                        root_user_dict.update(nested_multi.user_dict)
                    else:
                        # Remove prepended names
                        new_key = (
                            block_name
                            if user_dict_mode == 'prepend'
                            else block_name.split(separator)[-1]
                        )
                        # Update the parent keys instead of the root keys if 'nested'
                        if user_dict_mode == 'nested':
                            parent, _ = self._navigate_to_parent(index)
                            dict_to_update = parent.user_dict
                        else:
                            dict_to_update = root_user_dict

                        if check_duplicate_keys:
                            # Check if the keys already exist before updating
                            if new_key in dict_to_update:
                                raise_key_error(new_key, block_name, index)
                        dict_to_update[new_key] = dict(nested_multi.user_dict)

                elif check_duplicate_keys and array_name in root_field_data:
                    # Duplicate keys - raise error
                    index_fmt = _format_nested_index(index)
                    msg = (
                        f"The field data array '{array_name}' from nested MultiBlock "
                        f"at index {index_fmt} with name '{block_name}'\n"
                        f"also exists in the root MultiBlock's field data and cannot be moved."
                    )
                    if not prepend_names:
                        msg += "\nUse `field_data_mode='prepend'` to make the array names unique."
                    raise ValueError(msg)

                else:
                    # Copy the field data
                    array = field_data_to_copy[array_name]
                    # Remove prepended names
                    short_array_name = (
                        array_name.split(separator)[-1]
                        if field_data_mode != 'prepend'
                        else array_name
                    )
                    root_field_data._update_array(
                        name=short_array_name, array=array, copy=bool(copy)
                    )

            if copy is None:
                nested_field_data.clear()

    def flatten(
        self,
        *,
        order: Literal['nested_first', 'nested_last'] | None = None,
        name_mode: Literal['preserve', 'prepend', 'reset'] = 'preserve',
        field_data_mode: Literal['preserve', 'prepend'] = 'preserve',
        user_dict_mode: Literal['preserve', 'prepend', 'flat', 'nested'] = 'preserve',
        separator: str = '::',
        check_duplicate_keys: bool = True,
        copy: bool = True,
    ) -> MultiBlock:
        """Flatten this :class:`MultiBlock`.

        Recursively iterate through all blocks and store them in a single
        :class:`MultiBlock` instance. All nested :class:`~pyvista.DataSet` and ``None``
        blocks are preserved, and any nested ``MultiBlock`` container blocks are removed.
        Field data from any nested ``MultiBlock`` containers is preserved, however, and
        is also flattened.

        The flattening operation is "safe" by default in the sense that duplicate keys
        for block names and field data are not allowed and no data will be overwritten.

        .. versionadded:: 0.45

        Parameters
        ----------
        order : 'nested_last', 'nested_first', optional
            Order in which to flatten the contents.

            - ``'nested_first'``: Flatten nested ``MultiBlock`` blocks first.
            - ``'nested_last'``: Flatten nested ``MultiBlock`` blocks last.

            By default, the ``MultiBlock`` is flattened recursively as-is without
            changing the order.

        name_mode : 'preserve' | 'prepend' | 'reset', default: 'preserve'
            Mode for naming blocks in the flattened output.

            - ``'preserve'``: The names of all blocks are preserved.
            - ``'prepend'``: Preserve the block names and prepend the parent names.
            - ``'reset'``: Reset the block names to default values.

        field_data_mode : 'preserve' | 'prepend', default: 'preserve'
            Mode for naming the root field data keys when flattening nested field data.

            - ``'preserve'``: The array names of nested field data are preserved.
            - ``'prepend'``: Preserve the array names and prepend the parent names.

        user_dict_mode : 'preserve' | 'prepend' | 'flat' | 'nested', default: 'preserve'
            Mode for naming the flattened :attr:`~pyvista.DataObject.user_dict` keys when
            nested :class:`MultiBlock` blocks define a user-dict.

            - ``'preserve'``: Update the flattened user dict directly with the items of
              any nested user-dict.
            - ``'nested'``: Create nested keys in the flattened user-dict which match
              the nested hierarchy of any nested ``MultiBlock`` blocks.
            - ``'flat'``: Create a new key in the flattened user dict for each nested
              ``MultiBlock`` that has a user-dict.
            - ``'prepend'``: Similar to ``'flat'`` except the key names are prepended
              with the parent block names.

            .. note::
                If there is only a single level of nesting the ``'flat'``, ``'nested'``
                and ``'prepend'`` modes are all equivalent. They only differ when there
                is at least two levels of nesting.

        separator : str, default: '::'
            String separator to use when ``'prepend'`` mode is used. The separator
            is inserted between parent and child block name or field data array names.

        check_duplicate_keys : bool, default: True
            Flatten the MultiBlock data safely without overwriting any data or
            duplicating block names. If ``True``, an error is raised if any duplicate,
            non-unique field data keys or block names are identified. If ``False``,
            nested field data is flattened without checking for duplicate keys and data
            may be overwritten; the flattened MultiBlock may also have duplicate block
            names.

        copy : bool, default: True
            Return a deep copy of all nested blocks in the flattened ``MultiBlock``.
            If ``False``, shallow copies are returned.

        Returns
        -------
        MultiBlock
            Flattened ``MultiBlock``.

        See Also
        --------
        recursive_iterator
        move_nested_field_data_to_root
        pyvista.CompositeFilters.generic_filter
        clean

        Examples
        --------
        Create a nested :class:`MultiBlock` with three levels of nesting and
        three end nodes.

        >>> import pyvista as pv
        >>> nested = pv.MultiBlock(
        ...     {
        ...         'nested1': pv.MultiBlock(
        ...             {
        ...                 'nested2': pv.MultiBlock({'poly': pv.PolyData()}),
        ...                 'image': pv.ImageData(),
        ...             }
        ...         ),
        ...         'none': None,
        ...     }
        ... )

        The root ``MultiBlock`` has two blocks.

        >>> nested.n_blocks
        2

        >>> type(nested[0]), type(nested[1])
        (<class 'pyvista.core.composite.MultiBlock'>, <class 'NoneType'>)

        Flatten the ``MultiBlock``. The nested ``MultiBlock`` containers are removed
        and only their contents are returned (i.e. the three end nodes).

        >>> flat = nested.flatten()
        >>> flat.n_blocks
        3

        >>> (
        ...     type(flat[0]),
        ...     type(flat[1]),
        ...     type(flat[2]),
        ... )  # doctest: +NORMALIZE_WHITESPACE
        (<class 'pyvista.core.pointset.PolyData'>,
         <class 'pyvista.core.grid.ImageData'>,
         <class 'NoneType'>)

        By default, the block names are preserved.

        >>> flat.keys()
        ['poly', 'image', 'none']

        Prepend the names of parent blocks to the names instead.

        >>> flat = nested.flatten(name_mode='prepend')
        >>> flat.keys()
        ['nested1::nested2::poly', 'nested1::image', 'none']

        Reset the names to default values instead.

        >>> flat = nested.flatten(name_mode='reset')
        >>> flat.keys()
        ['Block-00', 'Block-01', 'Block-02']

        Flatten the ``MultiBlock`` with nested multi-blocks flattened last. Note the difference
        between this ordering of blocks and the default ordering returned earlier.

        >>> flat = nested.flatten(order='nested_last')
        >>> (
        ...     type(flat[0]),
        ...     type(flat[1]),
        ...     type(flat[2]),
        ... )  # doctest: +NORMALIZE_WHITESPACE
        (<class 'NoneType'>,
         <class 'pyvista.core.grid.ImageData'>,
         <class 'pyvista.core.pointset.PolyData'>)

        """
        _validation.check_contains(
            ['preserve', 'prepend', 'reset'], must_contain=name_mode, name='name_mode'
        )
        prepend_names = name_mode == 'prepend'

        if copy:
            input_multi = self.copy()
        else:
            # Shallow copy nested multiblocks to avoid mutating input field data
            input_multi = MultiBlock()
            input_multi.shallow_copy(self, recursive=True)

        # Move field data to output
        output_multi = MultiBlock()
        input_multi.move_nested_field_data_to_root(
            field_data_mode=field_data_mode,
            user_dict_mode=user_dict_mode,
            check_duplicate_keys=check_duplicate_keys,
            separator=separator,
        )
        output_multi.field_data.update(input_multi.field_data, copy=copy)

        # Create iterator
        iterator = input_multi.recursive_iterator(
            contents='all',
            order=order,
            skip_none=False,
            skip_empty=False,
            prepend_names=prepend_names,
            separator=separator,
        )

        # Append blocks to output
        reset_name = name_mode == 'reset'
        for index, name, block in iterator:
            if not reset_name and check_duplicate_keys:
                if name in output_multi.keys():
                    # Duplicate block name - raise error
                    index_fmt = _format_nested_index(index)
                    msg = (
                        f"Block at index {index_fmt} with name '{name}' "
                        f'cannot be flattened. Another block \n'
                        'with the same name already exists. '
                        "Use `name_mode='reset'` or `check_duplicate_keys=False`."
                    )
                    raise ValueError(msg)
            output_multi.append(block, None if reset_name else name)
        return output_multi

    @property
    def is_nested(self) -> bool:  # numpydoc ignore=RT01
        """Return ``True`` if any blocks are a :class:`MultiBlock`.

        .. versionadded:: 0.45

        Examples
        --------
        Create a simple :class:`MultiBlock`:

        >>> import pyvista as pv
        >>> multi = pv.MultiBlock([pv.Sphere()])

        It only contains a :class:`~pyvista.DataSet`, so it is not nested.

        >>> multi.is_nested
        False

        Nest it inside another MultiBlock.

        >>> nested = pv.MultiBlock([multi])
        >>> nested.is_nested
        True

        """
        return any(isinstance(block, pyvista.MultiBlock) for block in self)

    @property
    def is_empty(self) -> bool:  # numpydoc ignore=RT01
        """Return ``True`` if there are no blocks.

        .. versionadded:: 0.45

        Examples
        --------
        >>> import pyvista as pv
        >>> mesh = pv.MultiBlock()
        >>> mesh.is_empty
        True

        >>> mesh.append(pv.Sphere())
        >>> mesh.is_empty
        False

        """
        return self.n_blocks == 0

    @property
    def bounds(self: MultiBlock) -> BoundsTuple:
        """Find min/max for bounds across blocks.

        Returns
        -------
        tuple[float, float, float, float, float, float]
            Length 6 tuple of floats containing min/max along each axis.

        Examples
        --------
        Return the bounds across blocks.

        >>> import pyvista as pv
        >>> data = [
        ...     pv.Sphere(center=(2, 0, 0)),
        ...     pv.Cube(center=(0, 2, 0)),
        ...     pv.Cone(),
        ... ]
        >>> blocks = pv.MultiBlock(data)
        >>> blocks.bounds
        BoundsTuple(x_min = -0.5,
                    x_max =  2.5,
                    y_min = -0.5,
                    y_max =  2.5,
                    z_min = -0.5,
                    z_max =  0.5)

        """
        # apply reduction of min and max over each block
        # (typing.cast necessary to make mypy happy with ufunc.reduce() later)
        all_bounds = [cast('list[float]', block.bounds) for block in self if block]
        # edge case where block has no bounds
        if not all_bounds:  # pragma: no cover
            minima = (0.0, 0.0, 0.0)
            maxima = (0.0, 0.0, 0.0)
        else:
            minima = np.minimum.reduce(all_bounds)[::2].tolist()
            maxima = np.maximum.reduce(all_bounds)[1::2].tolist()

        # interleave minima and maxima for bounds
        return BoundsTuple(minima[0], maxima[0], minima[1], maxima[1], minima[2], maxima[2])

    @property
    def center(self: MultiBlock) -> tuple[float, float, float]:
        """Return the center of the bounding box.

        Returns
        -------
        tuple[float, float, float]
            Center of the bounding box.

        Examples
        --------
        >>> import pyvista as pv
        >>> data = [
        ...     pv.Sphere(center=(2, 0, 0)),
        ...     pv.Cube(center=(0, 2, 0)),
        ...     pv.Cone(),
        ... ]
        >>> blocks = pv.MultiBlock(data)
        >>> blocks.center  # doctest:+SKIP
        array([1., 1., 0.])

        """
        return tuple(np.reshape(self.bounds, (3, 2)).mean(axis=1).tolist())

    @property
    def length(self: MultiBlock) -> float:
        """Return the length of the diagonal of the bounding box.

        Returns
        -------
        float
            Length of the diagonal of the bounding box.

        Examples
        --------
        >>> import pyvista as pv
        >>> data = [
        ...     pv.Sphere(center=(2, 0, 0)),
        ...     pv.Cube(center=(0, 2, 0)),
        ...     pv.Cone(),
        ... ]
        >>> blocks = pv.MultiBlock(data)
        >>> blocks.length
        4.3584

        """
        return Box(self.bounds).length

    @property
    def n_blocks(self: MultiBlock) -> int:
        """Return the total number of blocks set.

        Returns
        -------
        int
            Total number of blocks set.

        Examples
        --------
        >>> import pyvista as pv
        >>> data = [
        ...     pv.Sphere(center=(2, 0, 0)),
        ...     pv.Cube(center=(0, 2, 0)),
        ...     pv.Cone(),
        ... ]
        >>> blocks = pv.MultiBlock(data)
        >>> blocks.n_blocks
        3

        """
        return self.GetNumberOfBlocks()

    @n_blocks.setter
    def n_blocks(self: MultiBlock, n: int) -> None:
        """Change the total number of blocks set.

        Parameters
        ----------
        n : int
            The total number of blocks set.

        """
        self.SetNumberOfBlocks(n)
        self.Modified()

    @property
    def volume(self: MultiBlock) -> float:
        """Return the total volume of all meshes in this dataset.

        Returns
        -------
        float
            Total volume of the mesh.

        Examples
        --------
        >>> import pyvista as pv
        >>> data = [
        ...     pv.Sphere(center=(2, 0, 0)),
        ...     pv.Cube(center=(0, 2, 0)),
        ...     pv.Cone(),
        ... ]
        >>> blocks = pv.MultiBlock(data)
        >>> blocks.volume
        1.7348

        """
        return sum(block.volume for block in self if block)

    @_deprecate_positional_args(allowed=['name'])
    def get_data_range(  # type: ignore[override]
        self: MultiBlock,
        name: str | None,
        allow_missing: bool = False,  # noqa: FBT001, FBT002
        preference: PointLiteral | CellLiteral | FieldLiteral = 'cell',
    ) -> tuple[float, float]:
        """Get the min/max of an array given its name across all blocks.

        Parameters
        ----------
        name : str, optional
            The name of the array to get the range. If ``None``, the
            active scalars are used.

        allow_missing : bool, default: False
            Allow a block to be missing the named array.

        preference : str, default: "cell"
            When scalars is specified, this is the preferred array type
            to search for in the dataset.  Must be either ``'point'``,
            ``'cell'``, or ``'field'``.

            .. versionadded:: 0.45

        Returns
        -------
        tuple
            ``(min, max)`` of the named array.

        """
        mini, maxi = np.inf, -np.inf
        for i in range(self.n_blocks):
            data = self[i]
            if data is None:
                continue
            # get the scalars if available - recursive
            try:
                tmi, tma = data.get_data_range(name, preference=preference)
            except KeyError:
                if allow_missing:
                    continue
                else:
                    raise
            if not np.isnan(tmi) and tmi < mini:
                mini = tmi
            if not np.isnan(tma) and tma > maxi:
                maxi = tma
        return mini, maxi

    def get_index_by_name(self: MultiBlock, name: str) -> int:
        """Find the index number by block name.

        Parameters
        ----------
        name : str
            Name of the block.

        Returns
        -------
        int
            Index of the block.

        Examples
        --------
        >>> import pyvista as pv
        >>> data = {
        ...     'cube': pv.Cube(),
        ...     'sphere': pv.Sphere(center=(2, 2, 0)),
        ... }
        >>> blocks = pv.MultiBlock(data)
        >>> blocks.get_index_by_name('sphere')
        1

        """
        for i in range(self.n_blocks):
            if self.get_block_name(i) == name:
                return i
        msg = f'Block name ({name}) not found'
        raise KeyError(msg)

    @overload
    def __getitem__(
        self: MultiBlock,
        index: int | str,
    ) -> _TypeMultiBlockLeaf: ...  # pragma: no cover

    @overload
    def __getitem__(self: MultiBlock, index: slice) -> MultiBlock: ...  # pragma: no cover

    def __getitem__(self: MultiBlock, index):
        """Get a block by its index or name.

        If the name is non-unique then returns the first occurrence.

        """
        if isinstance(index, slice):
            multi = MultiBlock()
            for i in range(self.n_blocks)[index]:
                multi.append(self[i], self.get_block_name(i))
            return multi
        elif isinstance(index, str):
            index = self.get_index_by_name(index)
        ############################
        if index < -self.n_blocks or index >= self.n_blocks:
            msg = f'index ({index}) out of range for this dataset.'
            raise IndexError(msg)
        if index < 0:
            index = self.n_blocks + index

        return wrap(self.GetBlock(index))

    def append(self: MultiBlock, dataset: _TypeMultiBlockLeaf, name: str | None = None) -> None:
        """Add a data set to the next block index.

        Parameters
        ----------
        dataset : pyvista.DataSet or pyvista.MultiBlock
            Dataset to append to this multi-block.

        name : str, optional
            Block name to give to dataset.  A default name is given
            depending on the block index as ``'Block-{i:02}'``.

        Examples
        --------
        >>> import pyvista as pv
        >>> from pyvista import examples
        >>> data = {
        ...     'cube': pv.Cube(),
        ...     'sphere': pv.Sphere(center=(2, 2, 0)),
        ... }
        >>> blocks = pv.MultiBlock(data)
        >>> blocks.append(pv.Cone())
        >>> len(blocks)
        3
        >>> blocks.append(examples.load_uniform(), 'uniform')
        >>> blocks.keys()
        ['cube', 'sphere', 'Block-02', 'uniform']

        """
        # do not allow to add self
        if dataset is self:
            msg = 'Cannot nest a composite dataset in itself.'
            raise ValueError(msg)

        index = self.n_blocks  # note off by one so use as index
        # always wrap since we may need to reference the VTK memory address
        wrapped = wrap(dataset)
        if isinstance(wrapped, pyvista_ndarray):
            msg = 'dataset should not be or contain an array'  # type: ignore[unreachable]
            raise TypeError(msg)
        dataset = wrapped
        self.n_blocks += 1
        self[index] = dataset
        # No overwrite if name is None
        self.set_block_name(index, name)

    def extend(self: MultiBlock, datasets: Iterable[_TypeMultiBlockLeaf]) -> None:
        """Extend MultiBlock with an Iterable.

        If another MultiBlock object is supplied, the key names will
        be preserved.

        Parameters
        ----------
        datasets : Iterable[pyvista.DataSet or pyvista.MultiBlock]
            Datasets to extend.

        Examples
        --------
        >>> import pyvista as pv
        >>> from pyvista import examples
        >>> data = {
        ...     'cube': pv.Cube(),
        ...     'sphere': pv.Sphere(center=(2, 2, 0)),
        ... }
        >>> blocks = pv.MultiBlock(data)
        >>> blocks_uniform = pv.MultiBlock({'uniform': examples.load_uniform()})
        >>> blocks.extend(blocks_uniform)
        >>> len(blocks)
        3
        >>> blocks.keys()
        ['cube', 'sphere', 'uniform']

        """
        # Code based on collections.abc
        if isinstance(datasets, MultiBlock):
            for key, data in zip(datasets.keys(), datasets):
                self.append(data, key)
        else:
            for v in datasets:
                self.append(v)

    def get(
        self: MultiBlock,
        index: int | str,
        default: _TypeMultiBlockLeaf = None,
    ) -> _TypeMultiBlockLeaf:
        """Get a block by its index or name.

        If the name is non-unique then returns the first occurrence.
        Returns ``default`` if name isn't in the dataset.

        Parameters
        ----------
        index : int | str
            Index or name of the dataset within the multiblock.

        default : pyvista.DataSet or pyvista.MultiBlock, optional
            Default to return if index is not in the multiblock.

        Returns
        -------
        pyvista.DataSet or pyvista.MultiBlock or None
            Dataset from the given index if it exists.

        See Also
        --------
        get_block
            Get a block and raise an ``IndexError`` if index is not found.

        Examples
        --------
        >>> import pyvista as pv
        >>> from pyvista import examples
        >>> data = {'poly': pv.PolyData(), 'img': pv.ImageData()}
        >>> blocks = pv.MultiBlock(data)
        >>> blocks.get('poly')
        PolyData ...
        >>> blocks.get('cone')

        """
        try:
            return self[index]
        except KeyError:
            return default

    def get_block(
        self: MultiBlock,
        index: int | Sequence[int] | str,
    ) -> _TypeMultiBlockLeaf:
        """Get a block by its index or name.

        If the name is non-unique then returns the first occurrence. This
        method is similar to using ``[]`` for indexing except this method also
        supports indexing nested blocks.

        .. versionadded:: 0.45

        Parameters
        ----------
        index : int | Sequence[int] | str
            Index or name of the dataset within the multiblock. Specify a sequence of
            indices to replace a nested block.

        Returns
        -------
        pyvista.DataSet or pyvista.MultiBlock or None
            Dataset from the given index if it exists.

        See Also
        --------
        get
            Get a block and return a default value instead of raising an ``IndexError``.

        Examples
        --------
        >>> import pyvista as pv
        >>> blocks = pv.MultiBlock([pv.PolyData(), pv.ImageData()])
        >>> nested = pv.MultiBlock([blocks])

        >>> nested.get_block(0)
        MultiBlock ...
        >>> nested.get_block((0, 1))
        ImageData ...

        """
        if isinstance(index, Sequence) and not isinstance(index, str):
            parent, final_index = self._navigate_to_parent(index)
            return parent[final_index]
        return self[index]

    def set_block_name(self: MultiBlock, index: int | str, name: str | None) -> None:
        """Set a block's string name at the specified index.

        Parameters
        ----------
        index : int | str
            Index or the dataset within the multiblock.

           .. versionadded:: 0.45

                Allow indexing by name.

        name : str, optional
            Name to assign to the block at ``index``. If ``None``, no name is
            assigned to the block.

        Examples
        --------
        >>> import pyvista as pv
        >>> data = {
        ...     'cube': pv.Cube(),
        ...     'sphere': pv.Sphere(center=(2, 2, 0)),
        ... }
        >>> blocks = pv.MultiBlock(data)
        >>> blocks.append(pv.Cone())
        >>> blocks.set_block_name(2, 'cone')
        >>> blocks.keys()
        ['cube', 'sphere', 'cone']

        """
        if name is None:
            return
        index = (
            self.get_index_by_name(index)
            if isinstance(index, str)
            else range(self.n_blocks)[index]
        )
        self.GetMetaData(index).Set(_vtk.vtkCompositeDataSet.NAME(), name)
        self.Modified()

    def get_block_name(self: MultiBlock, index: int) -> str:
        """Return the string name of the block at the given index.

        Parameters
        ----------
        index : int
            Index of the block to get the name of.

        Returns
        -------
        str
            Name of the block at the given index.

        Examples
        --------
        >>> import pyvista as pv
        >>> data = {
        ...     'cube': pv.Cube(),
        ...     'sphere': pv.Sphere(center=(2, 2, 0)),
        ... }
        >>> blocks = pv.MultiBlock(data)
        >>> blocks.get_block_name(0)
        'cube'

        """
        index = range(self.n_blocks)[index]
        # Safely cast as vtkInformation since `None` case is caught by IndexError above
        meta = cast('_vtk.vtkInformation', self.GetMetaData(index))
        return meta.Get(_vtk.vtkCompositeDataSet.NAME())  # type:ignore[return-value]

    def keys(self: MultiBlock) -> list[str]:
        """Get all the block names in the dataset.

        Returns
        -------
        list
            List of block names.

        Examples
        --------
        >>> import pyvista as pv
        >>> data = {
        ...     'cube': pv.Cube(),
        ...     'sphere': pv.Sphere(center=(2, 2, 0)),
        ... }
        >>> blocks = pv.MultiBlock(data)
        >>> blocks.keys()
        ['cube', 'sphere']

        """
        return [self.get_block_name(i) for i in range(self.n_blocks)]

    def _ipython_key_completions_(self: MultiBlock) -> list[str]:
        return self.keys()

    def replace(
        self: MultiBlock, index: int | Sequence[int] | str, dataset: _TypeMultiBlockLeaf
    ) -> None:
        """Replace dataset at index while preserving key name.

        Parameters
        ----------
        index : int | Sequence[int] | str
            Index or name of the block to replace. Specify a sequence of indices to replace
            a nested block.

            .. versionadded:: 0.45

                Allow indexing nested blocks.

        dataset : pyvista.DataSet or pyvista.MultiBlock
            Dataset for replacing the one at index.

        Examples
        --------
        >>> import pyvista as pv
        >>> from pyvista import examples
        >>> import numpy as np
        >>> data = {
        ...     'cube': pv.Cube(),
        ...     'sphere': pv.Sphere(center=(2, 2, 0)),
        ... }
        >>> blocks = pv.MultiBlock(data)
        >>> blocks.replace(1, pv.Sphere(center=(10, 10, 10)))
        >>> blocks.keys()
        ['cube', 'sphere']
        >>> np.allclose(blocks[1].center, [10.0, 10.0, 10.0])
        True

        Load a dataset with nested blocks.

        >>> multi = examples.download_biplane()

        Get one of the blocks and extract its surface.

        >>> block = multi[0][42]
        >>> surface = block.extract_geometry()

        Replace the block.

        >>> multi.replace((0, 42), surface)

        This is similar to replacing the block directly with indexing but the block
        name is also preserved.

        >>> multi[0][42] = surface

        """
        if isinstance(index, Sequence) and not isinstance(index, str):
            parent, final_index = self._navigate_to_parent(index)
            parent.replace(final_index, dataset)
            return
        name = index if isinstance(index, str) else self.get_block_name(index)
        self[index] = dataset
        self.set_block_name(index, name)
        return

    def _navigate_to_parent(self, indices: Sequence[int]) -> tuple[MultiBlock, int]:
        """Navigate to the parent MultiBlock and return (parent, final_index)."""
        _validation.check_length(indices, min_length=1, name='index')
        # Navigate through the indices except the last one
        target: _TypeMultiBlockLeaf = self
        for ind in indices[:-1]:
            if target is None or isinstance(target, pyvista.DataSet):
                msg = f'Invalid indices {indices}.'
                raise IndexError(msg)
            target = target[ind]
        if not isinstance(target, MultiBlock):
            msg = f'Invalid indices {indices}.'
            raise IndexError(msg)
        return target, indices[-1]

    @overload
    def __setitem__(
        self: MultiBlock,
        index: int | str,
        data: _TypeMultiBlockLeaf,
    ) -> None: ...  # pragma: no cover

    @overload
    def __setitem__(
        self: MultiBlock,
        index: slice,
        data: Iterable[_TypeMultiBlockLeaf],
    ) -> None: ...  # pragma: no cover

    def __setitem__(
        self: MultiBlock,
        index: int | str | slice,
        data,
    ) -> None:
        """Set a block with a VTK data object.

        To set the name simultaneously, pass a string name as the 2nd index.

        Examples
        --------
        >>> import pyvista as pv
        >>> multi = pv.MultiBlock()
        >>> multi.append(pv.PolyData())
        >>> multi[0] = pv.UnstructuredGrid()
        >>> multi.append(pv.PolyData(), 'poly')
        >>> multi.keys()
        ['Block-00', 'poly']
        >>> multi['bar'] = pv.PolyData()
        >>> multi.n_blocks
        3

        """
        i: int = 0
        name: str | None = None
        if isinstance(index, str):
            try:
                i = self.get_index_by_name(index)
            except KeyError:
                self.append(data, index)
                return
            name = index
        elif isinstance(index, slice):
            index_iter = range(self.n_blocks)[index]
            for i, (idx, d) in enumerate(itertools.zip_longest(index_iter, data)):
                if idx is None:
                    self.insert(
                        index_iter[-1] + 1 + (i - len(index_iter)),
                        d,
                    )  # insert after last entry, increasing
                elif d is None:
                    del self[index_iter[-1] + 1]  # delete next entry
                else:
                    self[idx] = d
            return
        else:
            i = index

        # data, i, and name are a single value now
        data = cast('DataSet', wrap(data))

        i = range(self.n_blocks)[i]

        # this is the only spot in the class where we actually add
        # data to the MultiBlock

        # check if we are overwriting a block
        existing_dataset = self.GetBlock(i)
        if existing_dataset is not None:
            self._remove_ref(i)
        self.SetBlock(i, data)
        if data is not None:
            self._refs[data.memory_address] = data

        if name is None:
            name = f'Block-{i:02}'
        self.set_block_name(i, name)  # Note that this calls self.Modified()

    def __delitem__(self: MultiBlock, index: int | str | slice) -> None:
        """Remove a block at the specified index."""
        if isinstance(index, slice):
            if index.indices(self.n_blocks)[2] > 0:
                for i in reversed(range(*index.indices(self.n_blocks))):
                    self.__delitem__(i)
            else:
                for i in range(*index.indices(self.n_blocks)):
                    self.__delitem__(i)
            return
        if isinstance(index, str):
            index = self.get_index_by_name(index)
        self._remove_ref(index)
        self.RemoveBlock(index)

    def _remove_ref(self: MultiBlock, index: int) -> None:
        """Remove python reference to the dataset."""
        dataset = self[index]
        if hasattr(dataset, 'memory_address'):
            self._refs.pop(dataset.memory_address, None)  # type: ignore[union-attr]

    def __eq__(self: MultiBlock, other: object) -> bool:
        """Equality comparison."""
        if not isinstance(other, MultiBlock):
            return False

        if self is other:
            return True

        if len(self) != len(other):
            return False

        if not self.keys() == other.keys():
            return False

        return not any(self_mesh != other_mesh for self_mesh, other_mesh in zip(self, other))

    __hash__ = None  # type: ignore[assignment]  # https://github.com/pyvista/pyvista/pull/7671

    def insert(
        self: MultiBlock,
        index: int,
        dataset: _TypeMultiBlockLeaf,
        name: str | None = None,
    ) -> None:
        """Insert data before index.

        Parameters
        ----------
        index : int
            Index before which to insert data.
        dataset : pyvista.DataSet or pyvista.MultiBlock
            Data to insert.
        name : str, optional
            Name for key to give dataset.  A default name is given
            depending on the block index as ``'Block-{i:02}'``.

        Examples
        --------
        Insert a new :class:`pyvista.PolyData` at the start of the multiblock.

        >>> import pyvista as pv
        >>> data = {
        ...     'cube': pv.Cube(),
        ...     'sphere': pv.Sphere(center=(2, 2, 0)),
        ... }
        >>> blocks = pv.MultiBlock(data)
        >>> blocks.keys()
        ['cube', 'sphere']
        >>> blocks.insert(0, pv.Plane(), 'plane')
        >>> blocks.keys()
        ['plane', 'cube', 'sphere']

        """
        index = range(self.n_blocks)[index]

        self.n_blocks += 1
        for i in reversed(range(index, self.n_blocks - 1)):
            self[i + 1] = self[i]
            self.set_block_name(i + 1, self.get_block_name(i))

        self[index] = dataset
        self.set_block_name(index, name)

    def pop(self: MultiBlock, index: int | str = -1) -> _TypeMultiBlockLeaf:
        """Pop off a block at the specified index.

        Parameters
        ----------
        index : int or str, default: -1
            Index or name of the dataset within the multiblock.  Defaults to
            last dataset.

        Returns
        -------
        pyvista.DataSet or pyvista.MultiBlock
            Dataset from the given index that was removed.

        Examples
        --------
        Pop the ``"cube"`` multiblock.

        >>> import pyvista as pv
        >>> data = {
        ...     'cube': pv.Cube(),
        ...     'sphere': pv.Sphere(center=(2, 2, 0)),
        ... }
        >>> blocks = pv.MultiBlock(data)
        >>> blocks.keys()
        ['cube', 'sphere']
        >>> cube = blocks.pop('cube')
        >>> blocks.keys()
        ['sphere']

        """
        if isinstance(index, int):
            index = range(self.n_blocks)[index]
        data = self[index]
        del self[index]
        return data

    def reverse(self: MultiBlock) -> None:
        """Reverse MultiBlock in-place.

        Examples
        --------
        Reverse a multiblock.

        >>> import pyvista as pv
        >>> data = {
        ...     'cube': pv.Cube(),
        ...     'sphere': pv.Sphere(center=(2, 2, 0)),
        ... }
        >>> blocks = pv.MultiBlock(data)
        >>> blocks.keys()
        ['cube', 'sphere']
        >>> blocks.reverse()
        >>> blocks.keys()
        ['sphere', 'cube']

        """
        # Taken from implementation in collections.abc.MutableSequence
        names = self.keys()
        n = len(self)
        for i in range(n // 2):
            self[i], self[n - i - 1] = self[n - i - 1], self[i]
        for i, name in enumerate(reversed(names)):
            self.set_block_name(i, name)

    @_deprecate_positional_args
    def clean(self: MultiBlock, empty: bool = True) -> None:  # noqa: FBT001, FBT002
        """Remove any null blocks in place.

        Parameters
        ----------
        empty : bool, default: True
            Remove any meshes that are empty as well (have zero points).

        Examples
        --------
        >>> import pyvista as pv
        >>> data = {'cube': pv.Cube(), 'empty': pv.PolyData()}
        >>> blocks = pv.MultiBlock(data)
        >>> blocks.clean(empty=True)
        >>> blocks.keys()
        ['cube']

        """
        null_blocks = []
        for i in range(self.n_blocks):
            data = self[i]
            if isinstance(data, MultiBlock):
                # Recursively move through nested structures
                data.clean()
                if data.n_blocks < 1:
                    null_blocks.append(i)
            elif data is None or (empty and data.n_points < 1):
                null_blocks.append(i)
        # Now remove the null/empty meshes
        null_blocks = np.array(null_blocks, dtype=int)  # type: ignore[assignment]
        for i in range(len(null_blocks)):
            # Cast as int because windows is super annoying
            del self[int(null_blocks[i])]
            null_blocks -= 1  # type: ignore[assignment, operator]

    def _get_attrs(self: MultiBlock) -> list[tuple[str, Any, str]]:
        """Return the representation methods (internal helper)."""
        attrs: list[tuple[str, Any, str]] = []
        attrs.append(('N Blocks:', self.n_blocks, '{}'))
        bds = self.bounds
        attrs.append(('X Bounds:', (bds.x_min, bds.x_max), '{:.3e}, {:.3e}'))
        attrs.append(('Y Bounds:', (bds.y_min, bds.y_max), '{:.3e}, {:.3e}'))
        attrs.append(('Z Bounds:', (bds.z_min, bds.z_max), '{:.3e}, {:.3e}'))
        return attrs

    def _repr_html_(self: MultiBlock) -> str:
        """Define a pretty representation for Jupyter notebooks."""
        fmt = ''
        fmt += "<table style='width: 100%;'>"
        fmt += '<tr><th>Information</th><th>Blocks</th></tr>'
        fmt += '<tr><td>'
        fmt += '\n'
        fmt += '<table>\n'
        fmt += f'<tr><th>{type(self).__name__}</th><th>Values</th></tr>\n'
        row = '<tr><td>{}</td><td>{}</td></tr>\n'

        # now make a call on the object to get its attributes as a list of len 2 tuples
        for attr in self._get_attrs():
            try:
                fmt += row.format(attr[0], attr[2].format(*attr[1]))
            except TypeError:
                fmt += row.format(attr[0], attr[2].format(attr[1]))

        fmt += '</table>\n'
        fmt += '\n'
        fmt += '</td><td>'
        fmt += '\n'
        fmt += '<table>\n'
        row = '<tr><th>{}</th><th>{}</th><th>{}</th></tr>\n'
        fmt += row.format('Index', 'Name', 'Type')

        for i in range(self.n_blocks):
            data = self[i]
            fmt += row.format(i, self.get_block_name(i), type(data).__name__)

        fmt += '</table>\n'
        fmt += '\n'
        fmt += '</td></tr> </table>'
        return fmt

    def __repr__(self: MultiBlock) -> str:
        """Define an adequate representation."""
        # return a string that is Python console friendly
        fmt = f'{type(self).__name__} ({hex(id(self))})\n'
        # now make a call on the object to get its attributes as a list of len 2 tuples
        max_len = max(len(attr[0]) for attr in self._get_attrs()) + 3
        row = f'  {{:{max_len}s}}' + '{}\n'
        for attr in self._get_attrs():
            try:
                fmt += row.format(attr[0], attr[2].format(*attr[1]))
            except TypeError:
                fmt += row.format(attr[0], attr[2].format(attr[1]))
        return fmt.strip()

    def __str__(self: MultiBlock) -> str:
        """Return the str representation of the multi block."""
        return MultiBlock.__repr__(self)

    def __len__(self: MultiBlock) -> int:
        """Return the number of blocks."""
        return self.n_blocks

    @_deprecate_positional_args(allowed=['ido'])
    def copy_meta_from(
        self: MultiBlock,
        ido: MultiBlock,
        deep: bool,  # noqa: FBT001
    ) -> None:  # numpydoc ignore=PR01
        """Copy pyvista meta data onto this object from another object."""
        # Note that `pyvista.MultiBlock` datasets currently don't have any meta.
        # This method is here for consistency with the rest of the API and
        # in case we add meta data to this pbject down the road.

    @_deprecate_positional_args
    def copy(self: MultiBlock, deep: bool = True) -> MultiBlock:  # noqa: FBT001, FBT002
        """Return a copy of the multiblock.

        Parameters
        ----------
        deep : bool, default: True
            When ``True``, make a full copy of the object.

        Returns
        -------
        pyvista.MultiBlock
           Deep or shallow copy of the ``MultiBlock``.

        Examples
        --------
        >>> import pyvista as pv
        >>> data = [
        ...     pv.Sphere(center=(2, 0, 0)),
        ...     pv.Cube(center=(0, 2, 0)),
        ...     pv.Cone(),
        ... ]
        >>> blocks = pv.MultiBlock(data)
        >>> new_blocks = blocks.copy()
        >>> len(new_blocks)
        3

        """
        thistype = type(self)
        newobject = thistype()
        if deep:
            newobject.deep_copy(self)
        else:
            newobject.shallow_copy(self)
        newobject.copy_meta_from(self, deep=deep)
        return newobject

    @_deprecate_positional_args(allowed=['to_copy'])
    def shallow_copy(  # type: ignore[override]
        self: MultiBlock,
        to_copy: _vtk.vtkMultiBlockDataSet,
        recursive: bool = False,  # noqa: FBT001, FBT002
    ) -> None:
        """Shallow copy the given multiblock to this multiblock.

        Parameters
        ----------
        to_copy : MultiBlock | :vtk:`vtkMultiBlockDataSet`
            Data object to perform a shallow copy from.

        recursive : bool, default: False
            Also shallow-copy any nested :class:`~pyvista.MultiBlock` blocks. By
            default, only the root :class:`~pyvista.MultiBlock` is shallow-copied and
            any nested multi-blocks are not shallow-copied.

        """
        if pyvista.vtk_version_info >= (9, 3):  # pragma: no cover
            self.CompositeShallowCopy(to_copy)
        else:
            self.ShallowCopy(to_copy)
        self.wrap_nested()

        # Shallow copy creates new instances of nested multiblocks
        # Iterate through the blocks to fix this recursively
        def _replace_nested_multiblocks(
            this_object_: MultiBlock, new_object: _vtk.vtkMultiBlockDataSet
        ) -> None:
            for i, this_block in enumerate(this_object_):
                if isinstance(this_block, _vtk.vtkMultiBlockDataSet):
                    block_to_copy = cast('MultiBlock', new_object.GetBlock(i))
                    this_object_.replace(i, block_to_copy)
                    _replace_nested_multiblocks(cast('MultiBlock', this_block), block_to_copy)

        if not recursive:
            _replace_nested_multiblocks(self, to_copy)

    def deep_copy(self: MultiBlock, to_copy: _vtk.vtkMultiBlockDataSet) -> None:  # type: ignore[override]
        """Overwrite this MultiBlock with another MultiBlock as a deep copy.

        Parameters
        ----------
        to_copy : MultiBlock | :vtk:`vtkMultiBlockDataSet`
            MultiBlock to perform a deep copy from.

        """
        super().deep_copy(to_copy)
        self.wrap_nested()

        # Deep copy will not copy the block name for None blocks (name is set to None instead)
        # Iterate through the blocks to fix this recursively
        def _set_name_for_none_blocks(
            this_object_: MultiBlock, new_object_: _vtk.vtkMultiBlockDataSet
        ) -> None:
            new_object_ = pyvista.wrap(new_object_)
            for i, dataset in enumerate(new_object_):
                if dataset is None:
                    this_object_.set_block_name(i, new_object_.get_block_name(i))
                elif isinstance(dataset, MultiBlock):
                    _set_name_for_none_blocks(cast('MultiBlock', this_object_[i]), dataset)

        _set_name_for_none_blocks(self, to_copy)

    @_deprecate_positional_args(allowed=['name'])
    def set_active_scalars(
        self: MultiBlock,
        name: str | None,
        preference: PointLiteral | CellLiteral = 'cell',
        allow_missing: bool = False,  # noqa: FBT001, FBT002
    ) -> tuple[FieldAssociation, NumpyArray[float]]:
        """Find the scalars by name and appropriately set it as active.

        To deactivate any active scalars, pass ``None`` as the ``name``.

        Parameters
        ----------
        name : str or None
            Name of the scalars array to assign as active.  If
            ``None``, deactivates active scalars for both point and
            cell data.

        preference : str, default: "cell"
            If there are two arrays of the same name associated with
            points or cells, it will prioritize an array matching this
            type.  Can be either ``'cell'`` or ``'point'``.

        allow_missing : bool, default: False
            Allow missing scalars in part of the composite dataset. If all
            blocks are missing the array, it will raise a ``KeyError``.

        Returns
        -------
        pyvista.core.utilities.arrays.FieldAssociation
            Field association of the scalars activated.

        numpy.ndarray
            An array from the dataset matching ``name``.

        Notes
        -----
        The number of components of the data must match.

        """
        data_assoc: list[tuple[FieldAssociation, NumpyArray[float], _TypeMultiBlockLeaf]] = []
        for block in self:
            if block is not None:
                if isinstance(block, MultiBlock):
                    field, scalars = block.set_active_scalars(
                        name,
                        preference=preference,
                        allow_missing=allow_missing,
                    )
                else:
                    try:
                        field, scalars_out = block.set_active_scalars(name, preference=preference)
                        if scalars_out is None:
                            field, scalars = FieldAssociation.NONE, pyvista_ndarray([])
                        else:
                            scalars = scalars_out
                    except KeyError:
                        if not allow_missing:
                            raise
                        block.set_active_scalars(None, preference=preference)
                        field, scalars = FieldAssociation.NONE, pyvista_ndarray([])

                if field != FieldAssociation.NONE:
                    data_assoc.append((field, scalars, block))

        if name is None:
            return FieldAssociation.NONE, pyvista_ndarray([])

        if not data_assoc:
            msg = f'"{name}" is missing from all the blocks of this composite dataset.'
            raise KeyError(msg)

        field_asc = data_assoc[0][0]
        # set the field association to the preference if at least one occurrence
        # of it exists
        preference_ = parse_field_choice(preference)
        if field_asc != preference_:
            for field, _, _ in data_assoc:
                if field == preference_:
                    field_asc = preference_
                    break

        # Verify array consistency
        dims: set[int] = set()
        dtypes: set[np.dtype[Any]] = set()
        for _ in self:
            for field, scalars, _ in data_assoc:
                # only check for the active field association
                if field != field_asc:
                    continue
                dims.add(scalars.ndim)
                dtypes.add(scalars.dtype)

        if len(dims) > 1:
            msg = f'Inconsistent dimensions {dims} in active scalars.'
            raise ValueError(msg)

        # check complex mismatch
        is_complex = [np.issubdtype(dtype, np.complexfloating) for dtype in dtypes]
        if any(is_complex) and not all(is_complex):
            msg = 'Inconsistent complex and real data types in active scalars.'
            raise ValueError(msg)

        return field_asc, scalars

    @_deprecate_positional_args
    def as_polydata_blocks(self: MultiBlock, copy: bool = False) -> MultiBlock:  # noqa: FBT001, FBT002
        """Convert all the datasets within this MultiBlock to :class:`~pyvista.PolyData`.

        Parameters
        ----------
        copy : bool, default: False
            Option to create a shallow copy of any datasets that are already a
            :class:`~pyvista.PolyData`. When ``False``, any datasets that are
            already PolyData will not be copied.

        Returns
        -------
        pyvista.MultiBlock
            MultiBlock containing only :class:`pyvista.PolyData` datasets.

        See Also
        --------
        as_unstructured_grid_blocks
            Convert all blocks to :class:`~pyvista.UnstructuredGrid`.
        is_all_polydata
            Check if all blocks are :class:`~pyvista.PolyData`.
        :meth:`~pyvista.CompositeFilters.extract_geometry`
            Convert this :class:`~pyvista.MultiBlock` to :class:`~pyvista.PolyData`.

        Notes
        -----
        Null blocks are converted to empty :class:`pyvista.PolyData`
        objects. Downstream filters that operate on PolyData cannot accept
        MultiBlocks with null blocks.

        """

        # Define how to process each block
        def block_filter(block: DataSet | None) -> PolyData:
            if block is None:
                return pyvista.PolyData()
            elif isinstance(block, pyvista.PointSet):
                return block.cast_to_polydata(deep=True)
            elif isinstance(block, pyvista.PolyData):
                return block.copy(deep=False) if copy else block
            else:
                return block.extract_surface()

        return self.generic_filter(block_filter, _skip_none=False)

    @_deprecate_positional_args
    def as_unstructured_grid_blocks(self: MultiBlock, copy: bool = False) -> MultiBlock:  # noqa: FBT001, FBT002
        """Convert all the datasets within this MultiBlock to :class:`~pyvista.UnstructuredGrid`.

        .. versionadded:: 0.45

        Parameters
        ----------
        copy : bool, default: False
            Option to create a shallow copy of any datasets that are already a
            :class:`~pyvista.UnstructuredGrid`. When ``False``, any datasets that are
            already UnstructuredGrid will not be copied.

        Returns
        -------
        MultiBlock
            MultiBlock containing only :class:`~pyvista.UnstructuredGrid` datasets.

        See Also
        --------
        as_polydata_blocks

        Notes
        -----
        Null blocks are converted to empty :class:`~pyvista.UnstructuredGrid`
        objects. Downstream filters that operate on UnstructuredGrid may not accept
        MultiBlocks with null blocks.

        """

        # Define how to process each block
        def block_filter(block: DataSet | None) -> DataSet:
            if block is None:
                return pyvista.UnstructuredGrid()
            elif isinstance(block, pyvista.UnstructuredGrid):
                return block.copy(deep=False) if copy else block
            else:
                return block.cast_to_unstructured_grid()

        return self.generic_filter(block_filter, _skip_none=False)

    @property
    def is_all_polydata(self: MultiBlock) -> bool:
        """Return ``True`` when all the blocks are :class:`~pyvista.PolyData`.

        This method will recursively check if any internal blocks are also
        :class:`~pyvista.PolyData`.

        Returns
        -------
        bool
            Return ``True`` when all blocks are :class:`~pyvista.PolyData`.

        See Also
        --------
        as_polydata_blocks
            Convert all blocks to :class:`~pyvista.PolyData`.
        :meth:`~pyvista.CompositeFilters.extract_geometry`
            Convert this :class:`~pyvista.MultiBlock` to :class:`~pyvista.PolyData`.

        """
        return all(isinstance(block, pyvista.PolyData) for block in self.recursive_iterator())

    @property
    def block_types(self) -> set[type[_TypeMultiBlockLeaf]]:  # numpydoc ignore=RT01
        """Return a set of all block type(s).

        .. versionadded:: 0.45

        See Also
        --------
        nested_block_types

        Examples
        --------
        Load a dataset with nested multi-blocks. Here we load
        :func:`~pyvista.examples.downloads.download_biplane`.

        >>> from pyvista import examples
        >>> multi = examples.download_biplane()

        The dataset has eight nested multi-block blocks, so the block types
        only contains :class:`MultiBlock`.

        >>> multi.block_types
        {<class 'pyvista.core.composite.MultiBlock'>}

        The nested blocks only contain a single mesh type so the nested block types
        only contains :class:`~pyvista.UnstructuredGrid`.

        >>> multi.nested_block_types
        {<class 'pyvista.core.pointset.UnstructuredGrid'>}

        """
        return {type(block) for block in self}

    @property
    def nested_block_types(self) -> set[type[DataSet | None]]:  # numpydoc ignore=RT01
        """Return a set of all nested block type(s).

        .. versionadded:: 0.45

        See Also
        --------
        block_types
        is_homogeneous
        is_heterogeneous
        recursive_iterator

        Examples
        --------
        Load a dataset with nested multi-blocks. Here we load
        :func:`~pyvista.examples.downloads.download_biplane`.

        >>> from pyvista import examples
        >>> multi = examples.download_biplane()

        The dataset has eight nested multi-block blocks, so the block types
        only contains :class:`MultiBlock`.

        >>> multi.block_types
        {<class 'pyvista.core.composite.MultiBlock'>}

        The nested blocks only contain a single mesh type so the nested block types
        only contains :class:`~pyvista.UnstructuredGrid`.

        >>> multi.nested_block_types
        {<class 'pyvista.core.pointset.UnstructuredGrid'>}

        """
        return {type(block) for block in self.recursive_iterator()}

    @property
    def is_homogeneous(self: MultiBlock) -> bool:  # numpydoc ignore=RT01
        """Return ``True`` if all nested blocks have the same type.

        .. versionadded:: 0.45

        See Also
        --------
        is_heterogeneous
        nested_block_types
        recursive_iterator

        Examples
        --------
        Load a dataset with nested multi-blocks. Here we load
        :func:`~pyvista.examples.downloads.download_biplane`.

        >>> from pyvista import examples
        >>> multi = examples.download_biplane()

        Show the :attr:`nested_block_types`.

        >>> multi.nested_block_types
        {<class 'pyvista.core.pointset.UnstructuredGrid'>}

        Since there is only one type, the dataset is homogeneous.

        >>> multi.is_homogeneous
        True

        """
        return len(self.nested_block_types) == 1

    @property
    def is_heterogeneous(self: MultiBlock) -> bool:  # numpydoc ignore=RT01
        """Return ``True`` any two nested blocks have different type.

        .. versionadded:: 0.45

        See Also
        --------
        is_homogeneous
        nested_block_types
        recursive_iterator

        Examples
        --------
        Load a dataset with nested multi-blocks. Here we load
        :func:`~pyvista.examples.downloads.download_mug`.

        >>> from pyvista import examples
        >>> multi = examples.download_mug()

        Show the :attr:`nested_block_types`.

        >>> multi.nested_block_types  # doctest:+SKIP
        {<class 'pyvista.core.pointset.UnstructuredGrid'>, <class 'NoneType'>}

        Since there is more than one type, the dataset is heterogeneous.

        >>> multi.is_heterogeneous
        True

        """
        return len(self.nested_block_types) > 1

    def _activate_plotting_scalars(
        self: MultiBlock,
        *,
        scalars_name: str,
        preference: PointLiteral | CellLiteral,
        component: int | None,
        rgb: NumpyArray[float],
    ) -> tuple[FieldAssociation, str, np.dtype[np.number[Any]]]:
        """Active a scalars for an instance of :class:`pyvista.Plotter`."""
        # set the active scalars
        field, scalars = self.set_active_scalars(
            scalars_name,
            preference=preference,
            allow_missing=True,
        )

        data_attr = f'{field.name.lower()}_data'
        dtype = scalars.dtype
        if rgb:
            if scalars.ndim != 2 or scalars.shape[1] not in (3, 4):
                msg = 'RGB array must be n_points/n_cells by 3/4 in shape.'
                raise ValueError(msg)
            if dtype != np.uint8:
                # uint8 is required by the mapper to display correctly
                _validation.check_subdtype(scalars, (np.floating, np.integer), name='rgb scalars')
                scalars_name = self._convert_to_uint8_rgb_scalars(data_attr, scalars_name)
        elif np.issubdtype(scalars.dtype, np.complexfloating):
            # Use only the real component if an array is complex
            scalars_name = self._convert_to_real_scalars(data_attr, scalars_name)
        elif scalars.dtype in (np.bool_, np.uint8):
            # bool and uint8 do not display properly, must convert to float
            self._convert_to_real_scalars(data_attr, scalars_name)
            if scalars.dtype == np.bool_:
                dtype = np.bool_  # type: ignore[assignment]
        elif scalars.ndim > 1:
            # multi-component
            if not isinstance(component, (int, type(None))):
                msg = '`component` must be either None or an integer'  # type: ignore[unreachable]
                raise TypeError(msg)
            if component is not None:
                if component >= scalars.shape[1] or component < 0:
                    msg = (
                        'Component must be nonnegative and less than the '
                        f'dimensionality of the scalars array: {scalars.shape[1]}'
                    )
                    raise ValueError(msg)
            scalars_name = self._convert_to_single_component(data_attr, scalars_name, component)

        return field, scalars_name, dtype

    def _convert_to_real_scalars(self: MultiBlock, data_attr: str, scalars_name: str) -> str:
        """Extract the real component of the active scalars of this dataset."""
        for block in self:
            if isinstance(block, MultiBlock):
                block._convert_to_real_scalars(data_attr, scalars_name)
            elif block is not None:
                scalars = getattr(block, data_attr).get(scalars_name, None)
                if scalars is not None:
                    scalars = np.array(scalars.astype(float))
                    dattr = getattr(block, data_attr)
                    dattr[f'{scalars_name}-real'] = scalars
                    dattr.active_scalars_name = f'{scalars_name}-real'
        return f'{scalars_name}-real'

    def _convert_to_uint8_rgb_scalars(self: MultiBlock, data_attr: str, scalars_name: str) -> str:
        """Convert rgb float or int scalars to uint8."""
        for block in self:
            if isinstance(block, MultiBlock):
                block._convert_to_uint8_rgb_scalars(data_attr, scalars_name)
            elif block is not None:
                scalars = getattr(block, data_attr).get(scalars_name, None)
                if scalars is not None:
                    if np.issubdtype(scalars.dtype, np.floating):
                        _validation.check_range(scalars, [0.0, 1.0], name='rgb float scalars')
                        scalars = np.array(scalars, dtype=np.uint8) * 255
                    elif np.issubdtype(scalars.dtype, np.integer):
                        _validation.check_range(scalars, [0, 255], name='rgb int scalars')
                        scalars = np.array(scalars, dtype=np.uint8)
                    dattr = getattr(block, data_attr)
                    dattr[f'{scalars_name}-uint8'] = scalars
                    dattr.active_scalars_name = f'{scalars_name}-uint8'
        return f'{scalars_name}-uint8'

    def _convert_to_single_component(
        self: MultiBlock,
        data_attr: str,
        scalars_name: str,
        component: int | None,
    ) -> str:
        """Convert multi-component scalars to a single component."""
        if component is None:
            for block in self:
                if isinstance(block, MultiBlock):
                    block._convert_to_single_component(data_attr, scalars_name, component)
                elif block is not None:
                    scalars = getattr(block, data_attr).get(scalars_name, None)
                    if scalars is not None:
                        scalars = np.linalg.norm(scalars, axis=1)
                        dattr = getattr(block, data_attr)
                        dattr[f'{scalars_name}-normed'] = scalars
                        dattr.active_scalars_name = f'{scalars_name}-normed'
            return f'{scalars_name}-normed'

        for block in self:
            if isinstance(block, MultiBlock):
                block._convert_to_single_component(data_attr, scalars_name, component)
            elif block is not None:
                scalars = getattr(block, data_attr).get(scalars_name, None)
                if scalars is not None:
                    dattr = getattr(block, data_attr)
                    dattr[f'{scalars_name}-{component}'] = scalars[:, component]
                    dattr.active_scalars_name = f'{scalars_name}-{component}'
        return f'{scalars_name}-{component}'

    def _get_consistent_active_scalars(
        self: MultiBlock,
    ) -> tuple[str | None, str | None]:
        """Get if there are any consistent active scalars."""
        point_names = set()
        cell_names = set()
        for block in self:
            if block is not None:
                if isinstance(block, MultiBlock):
                    point_name, cell_name = block._get_consistent_active_scalars()
                else:
                    point_name = block.point_data.active_scalars_name
                    cell_name = block.cell_data.active_scalars_name
                point_names.add(point_name)
                cell_names.add(cell_name)

        point_name = point_names.pop() if len(point_names) == 1 else None
        cell_name = cell_names.pop() if len(cell_names) == 1 else None
        return point_name, cell_name

    def clear_all_data(self: MultiBlock) -> None:
        """Clear all data from all blocks."""
        for block in self:
            if isinstance(block, MultiBlock):
                block.clear_all_data()
            elif block is not None:
                block.clear_data()

    def clear_all_point_data(self: MultiBlock) -> None:
        """Clear all point data from all blocks."""
        for block in self:
            if isinstance(block, MultiBlock):
                block.clear_all_point_data()
            elif block is not None:
                block.clear_point_data()

    def clear_all_cell_data(self: MultiBlock) -> None:
        """Clear all cell data from all blocks."""
        for block in self:
            if isinstance(block, MultiBlock):
                block.clear_all_cell_data()
            elif block is not None:
                block.clear_cell_data()