File: dataobject.py

package info (click to toggle)
python-pyvista 0.46.4-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 176,968 kB
  • sloc: python: 94,346; sh: 216; makefile: 70
file content (1013 lines) | stat: -rw-r--r-- 38,009 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
"""Attributes common to PolyData and Grid Objects."""

from __future__ import annotations

from abc import abstractmethod
from collections import UserDict
from collections import defaultdict
from pathlib import Path
from typing import TYPE_CHECKING
from typing import cast
import warnings

import numpy as np

import pyvista
from pyvista._deprecate_positional_args import _deprecate_positional_args
from pyvista.typing.mypy_plugin import promote_type

from . import _vtk_core as _vtk
from .datasetattributes import DataSetAttributes
from .pyvista_ndarray import pyvista_ndarray
from .utilities.arrays import FieldAssociation
from .utilities.arrays import _JSONValueType
from .utilities.arrays import _SerializedDictArray
from .utilities.fileio import PICKLE_EXT
from .utilities.fileio import read
from .utilities.fileio import save_pickle
from .utilities.fileio import set_vtkwriter_mode
from .utilities.helpers import wrap
from .utilities.misc import _NoNewAttrMixin
from .utilities.misc import abstract_class

if TYPE_CHECKING:
    from types import FunctionType
    from typing import Any
    from typing import ClassVar

    from typing_extensions import Self

    from ._typing_core import NumpyArray
    from .utilities.fileio import _VTKWriterAlias

# vector array names
DEFAULT_VECTOR_KEY = '_vectors'
USER_DICT_KEY = '_PYVISTA_USER_DICT'


@promote_type(_vtk.vtkDataObject)
@abstract_class
class DataObject(_NoNewAttrMixin, _vtk.DisableVtkSnakeCase, _vtk.vtkPyVistaOverride):
    """Methods common to all wrapped data objects.

    Parameters
    ----------
    *args :
        Any extra args are passed as option to all wrapped data objects.

    **kwargs :
        Any extra keyword args are passed as option to all wrapped data objects.

    """

    _WRITERS: ClassVar[dict[str, type[_VTKWriterAlias]]] = {}

    def __init__(self: Self, *args, **kwargs) -> None:
        """Initialize the data object."""
        try:
            super().__init__(*args, **kwargs)
        except TypeError:
            # super() maps to object
            super().__init__()
        # Remember which arrays come from numpy.bool arrays, because there is no direct
        # conversion from bool to vtkBitArray, such arrays are stored as vtkCharArray.
        self._association_bitarray_names: defaultdict[Any, Any] = defaultdict(set)

        # view these arrays as complex128 as VTK doesn't support complex types
        self._association_complex_names: defaultdict[Any, Any] = defaultdict(set)

    def __getattr__(self: Self, item: str) -> Any:
        """Get attribute from base class if not found."""
        return super().__getattribute__(item)

    def shallow_copy(self: Self, to_copy: Self | _vtk.vtkDataObject) -> None:
        """Shallow copy the given mesh to this mesh.

        Parameters
        ----------
        to_copy : DataObject | :vtk:`vtkDataObject`
            Data object to perform a shallow copy from.

        """
        self.ShallowCopy(to_copy)

    def deep_copy(self: Self, to_copy: Self | _vtk.vtkDataObject) -> None:
        """Overwrite this data object with another data object as a deep copy.

        Parameters
        ----------
        to_copy : DataObject | :vtk:`vtkDataObject`
            Data object to perform a deep copy from.

        """
        self.DeepCopy(to_copy)

    def _from_file(self: Self, filename: str | Path, **kwargs) -> None:
        """Read data objects from file."""
        data = read(filename, **kwargs)
        if not isinstance(self, type(data)):
            msg = (
                f'Reading file returned data of `{type(data).__name__}`, '
                f'but `{type(self).__name__}` was expected.'
            )
            raise TypeError(msg)
        self.shallow_copy(data)
        self._post_file_load_processing()

    def _post_file_load_processing(self: Self) -> None:
        """Execute after loading a dataset from file, to be optionally overridden by subclasses."""

    @_deprecate_positional_args(allowed=['filename'])
    def save(
        self: Self,
        filename: Path | str,
        binary: bool = True,  # noqa: FBT001, FBT002
        texture: NumpyArray[np.uint8] | str | None = None,
    ) -> None:
        """Save this vtk object to file.

        .. versionadded:: 0.45

            Support saving pickled meshes

        See Also
        --------
        pyvista.read

        Parameters
        ----------
        filename : str, pathlib.Path
            Filename of output file. Writer type is inferred from
            the extension of the filename.

        binary : bool, default: True
            If ``True``, write as binary.  Otherwise, write as ASCII.

        texture : str, np.ndarray, optional
            Write a single texture array to file when using a PLY
            file.  Texture array must be a 3 or 4 component array with
            the datatype ``np.uint8``.  Array may be a cell array or a
            point array, and may also be a string if the array already
            exists in the PolyData.

            If a string is provided, the texture array will be saved
            to disk as that name.  If an array is provided, the
            texture array will be saved as ``'RGBA'``

            .. note::
               This feature is only available when saving PLY files.

        Notes
        -----
        Binary files write much faster than ASCII and have a smaller
        file size.

        """

        def _warn_multiblock_nested_field_data(mesh: pyvista.MultiBlock) -> None:
            iterator = mesh.recursive_iterator('all', node_type='parent')
            for index, name, nested_multiblock in iterator:
                if len(nested_multiblock.field_data.keys()) > 0:
                    # Avoid circular import
                    from pyvista.core.filters.composite import _format_nested_index

                    index_fmt = _format_nested_index(index)
                    warnings.warn(
                        f"Nested MultiBlock at index {index_fmt} with name '{name}' "
                        f'has field data which will not be saved.\n'
                        'See https://gitlab.kitware.com/vtk/vtk/-/issues/19414 \n'
                        'Use `move_nested_field_data_to_root` to store the field data '
                        'with the root MultiBlock before saving.'
                    )

        def _check_multiblock_hdf_types(mesh: pyvista.MultiBlock) -> None:
            if (9, 4, 0) <= pyvista.vtk_version_info < (9, 5, 0):
                if mesh.is_nested:
                    msg = (
                        'Nested MultiBlocks are not supported by the .vtkhdf format in VTK 9.4.'
                        '\nUpgrade to VTK>=9.5 for this functionality.'
                    )
                    raise TypeError(msg)
                if type(None) in mesh.block_types:
                    msg = (
                        'Saving None blocks is not supported by the .vtkhdf format in VTK 9.4.'
                        '\nUpgrade to VTK>=9.5 for this functionality.'
                    )
                    raise TypeError(msg)

            supported_block_types: list[type] = [
                pyvista.PolyData,
                pyvista.UnstructuredGrid,
                type(None),
                pyvista.MultiBlock,
                pyvista.PartitionedDataSet,
            ]
            for id_, name, block in mesh.recursive_iterator('all'):
                if type(block) not in supported_block_types:
                    from pyvista.core.filters.composite import _format_nested_index

                    index_fmt = _format_nested_index(id_)
                    msg = (
                        f"Block at index {index_fmt} with name '{name}' has type "
                        f'{block.__class__.__name__!r} '
                        f'which cannot be saved to the .vtkhdf format.\n'
                        f'Supported types are: {[typ.__name__ for typ in supported_block_types]}.'
                    )
                    raise TypeError(msg)

        def _warn_imagedata_direction_matrix(mesh: pyvista.ImageData) -> None:
            if not np.allclose(mesh.direction_matrix, np.eye(3)):
                warnings.warn(
                    'The direction matrix for ImageData will not be saved using the '
                    'legacy `.vtk` format.\n'
                    'See https://gitlab.kitware.com/vtk/vtk/-/issues/19663 \n'
                    'Use the `.vti` extension instead (XML format).'
                )

        def _write_vtk(mesh_: DataObject) -> None:
            writer = mesh_._WRITERS[file_ext]()
            set_vtkwriter_mode(vtk_writer=writer, use_binary=binary)
            writer.SetFileName(str(file_path))
            writer.SetInputData(mesh_)
            if isinstance(writer, _vtk.vtkPLYWriter) and texture is not None:  # type: ignore[unreachable]
                mesh_ = cast('pyvista.DataSet', mesh_)  # type: ignore[unreachable]
                if isinstance(texture, str):
                    writer.SetArrayName(texture)
                    array_name = texture
                elif isinstance(texture, np.ndarray):
                    array_name = '_color_array'
                    mesh_[array_name] = texture
                    writer.SetArrayName(array_name)

                # enable alpha channel if applicable
                if mesh_[array_name].shape[-1] == 4:
                    writer.SetEnableAlpha(True)
            writer.Write()

        if self._WRITERS is None:
            msg = (  # type: ignore[unreachable]
                f'{self.__class__.__name__} writers are not specified,'
                ' this should be a dict of (file extension: vtkWriter type)'
            )
            raise NotImplementedError(msg)

        file_path = Path(filename)
        file_path = file_path.expanduser()
        file_path = file_path.resolve()
        file_ext = file_path.suffix

        if file_ext == '.vtkhdf' and binary is False:
            msg = '.vtkhdf files can only be written in binary format.'
            raise ValueError(msg)

        # store complex and bitarray types as field data
        self._store_metadata()

        # warn if data will be lost
        if isinstance(self, pyvista.MultiBlock):
            _warn_multiblock_nested_field_data(self)
            if file_ext == '.vtkhdf':
                _check_multiblock_hdf_types(self)
        if isinstance(self, pyvista.ImageData) and file_ext == '.vtk':
            _warn_imagedata_direction_matrix(self)

        writer_exts = self._WRITERS.keys()
        if file_ext in writer_exts:
            _write_vtk(self)
        elif file_ext in PICKLE_EXT:
            save_pickle(filename, self)
        else:
            msg = (
                'Invalid file extension for this data type.'
                f' Must be one of: {list(writer_exts) + list(PICKLE_EXT)}'
            )
            raise ValueError(msg)

    def _store_metadata(self: Self) -> None:
        """Store metadata as field data."""
        fdata = self.field_data
        for assoc_name in ('bitarray', 'complex'):
            for assoc_type in ('POINT', 'CELL'):
                assoc_data = getattr(self, f'_association_{assoc_name}_names')
                array_names = assoc_data.get(assoc_type)
                if array_names:
                    key = f'_PYVISTA_{assoc_name}_{assoc_type}_'.upper()
                    fdata[key] = list(array_names)

    def _restore_metadata(self: Self) -> None:
        """Restore PyVista metadata from field data.

        Metadata is stored using ``_store_metadata`` and contains entries in
        the format of f'_PYVISTA_{assoc_name}_{assoc_type}_'. These entries are
        removed when calling this method.

        """
        fdata = self.field_data
        for assoc_name in ('bitarray', 'complex'):
            for assoc_type in ('POINT', 'CELL'):
                key = f'_PYVISTA_{assoc_name}_{assoc_type}_'.upper()
                if key in fdata:
                    assoc_data = getattr(self, f'_association_{assoc_name}_names')
                    assoc_data[assoc_type] = set(fdata[key])
                    del fdata[key]

    @abstractmethod
    def get_data_range(
        self: Self, name: str | None, preference: FieldAssociation | str
    ) -> tuple[float, float]:  # pragma: no cover
        """Get the non-NaN min and max of a named array."""
        msg = f'{type(self)} mesh type does not have a `get_data_range` method.'
        raise NotImplementedError(msg)

    def _get_attrs(self: Self) -> list[tuple[str, Any, str]]:  # pragma: no cover
        """Return the representation methods (internal helper)."""
        msg = 'Called only by the inherited class'
        raise NotImplementedError(msg)

    @_deprecate_positional_args
    def head(self: Self, display: bool = True, html: bool | None = None) -> str:  # noqa: FBT001, FBT002
        """Return the header stats of this dataset.

        If in IPython, this will be formatted to HTML. Otherwise
        returns a console friendly string.

        Parameters
        ----------
        display : bool, default: True
            Display this header in iPython.

        html : bool, optional
            Generate the output as HTML.

        Returns
        -------
        str
            Header statistics.

        """
        # Generate the output
        if html:
            fmt = ''
            # HTML version
            fmt += '\n'
            fmt += "<table style='width: 100%;'>\n"
            fmt += f'<tr><th>{type(self).__name__}</th><th>Information</th></tr>\n'
            row = '<tr><td>{}</td><td>{}</td></tr>\n'
            # now make a call on the object to get its attributes as a list of len 2 tuples
            for attr in self._get_attrs():
                try:
                    fmt += row.format(attr[0], attr[2].format(*attr[1]))
                except TypeError:
                    fmt += row.format(attr[0], attr[2].format(attr[1]))
            if hasattr(self, 'n_arrays'):
                fmt += row.format('N Arrays', self.n_arrays)
            fmt += '</table>\n'
            fmt += '\n'
            if display:
                from IPython.display import HTML
                from IPython.display import display as _display

                _display(HTML(fmt))
                return ''
            return fmt
        # Otherwise return a string that is Python console friendly
        fmt = f'{type(self).__name__} ({hex(id(self))})\n'
        # now make a call on the object to get its attributes as a list of len 2 tuples
        # get longest row header
        max_len = max(len(attr[0]) for attr in self._get_attrs()) + 4

        # now make a call on the object to get its attributes as a list of len
        # 2 tuples
        row = f'  {{:{max_len}s}}' + '{}\n'
        for attr in self._get_attrs():
            try:
                fmt += row.format(attr[0] + ':', attr[2].format(*attr[1]))
            except TypeError:
                fmt += row.format(attr[0] + ':', attr[2].format(attr[1]))
        if hasattr(self, 'n_arrays'):
            fmt += row.format('N Arrays:', self.n_arrays)
        return fmt.strip()

    def _repr_html_(self: Self) -> str:  # pragma: no cover
        """Return a pretty representation for Jupyter notebooks.

        This includes header details and information about all arrays.

        """
        msg = 'Called only by the inherited class'
        raise NotImplementedError(msg)

    def copy_meta_from(self: Self, *args, **kwargs) -> None:  # pragma: no cover
        """Copy pyvista meta data onto this object from another object.

        Intended to be overridden by subclasses.

        Parameters
        ----------
        *args : tuple
            Positional arguments.

        **kwargs : dict, optional
            Keyword arguments.

        """
        # called only by the inherited class

    @_deprecate_positional_args
    def copy(self: Self, deep: bool = True) -> Self:  # noqa: FBT001, FBT002
        """Return a copy of the object.

        Parameters
        ----------
        deep : bool, default: True
            When ``True`` makes a full copy of the object.  When
            ``False``, performs a shallow copy where the points, cell,
            and data arrays are references to the original object.

        Returns
        -------
        pyvista.DataSet
            Deep or shallow copy of the input.  Type is identical to
            the input.

        Examples
        --------
        Create and make a deep copy of a PolyData object.

        >>> import pyvista as pv
        >>> mesh_a = pv.Sphere()
        >>> mesh_b = mesh_a.copy()
        >>> mesh_a == mesh_b
        True

        """
        thistype = type(self)
        newobject = thistype()

        if deep:
            newobject.deep_copy(self)
        else:
            newobject.shallow_copy(self)
        newobject.copy_meta_from(self, deep=deep)
        return newobject

    def __eq__(self: Self, other: object) -> bool:
        """Test equivalency between data objects."""
        if not isinstance(self, type(other)):
            return False

        if self is other:
            return True

        # these attrs use numpy.array_equal
        if isinstance(self, pyvista.ImageData):
            equal_attrs = ['extent', 'index_to_physical_matrix']
        else:
            equal_attrs = ['points', 'cells']
            if isinstance(self, pyvista.PolyData):
                equal_attrs.extend(['verts', 'lines', 'faces', 'strips'])
            elif isinstance(self, pyvista.UnstructuredGrid):
                equal_attrs.append('celltypes')

        for attr in equal_attrs:
            # Only check equality for attributes defined by PyVista
            # (i.e. ignore any default vtk snake_case attributes)
            if hasattr(self, attr) and not _vtk.is_vtk_attribute(self, attr):
                if not np.array_equal(getattr(self, attr), getattr(other, attr), equal_nan=True):
                    return False

        # these attrs can be directly compared
        attrs = ['field_data', 'point_data', 'cell_data']
        for attr in attrs:
            if hasattr(self, attr):
                if getattr(self, attr) != getattr(other, attr):
                    return False

        return True

    __hash__ = None  # type: ignore[assignment]  # https://github.com/pyvista/pyvista/pull/7671

    @_deprecate_positional_args(allowed=['array', 'name'])
    def add_field_data(self: Self, array: NumpyArray[float], name: str, deep: bool = True) -> None:  # noqa: FBT001, FBT002
        """Add field data.

        Use field data when size of the data you wish to associate
        with the dataset does not match the number of points or cells
        of the dataset.

        Parameters
        ----------
        array : sequence
            Array of data to add to the dataset as a field array.

        name : str
            Name to assign the field array.

        deep : bool, default: True
            Perform a deep copy of the data when adding it to the
            dataset.

        Examples
        --------
        Add field data to a PolyData dataset.

        >>> import pyvista as pv
        >>> import numpy as np
        >>> mesh = pv.Sphere()
        >>> mesh.add_field_data(np.arange(10), 'my-field-data')
        >>> mesh['my-field-data']
        pyvista_ndarray([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

        Add field data to a ImageData dataset.

        >>> mesh = pv.ImageData(dimensions=(2, 2, 1))
        >>> mesh.add_field_data(['I could', 'write', 'notes', 'here'], 'my-field-data')
        >>> mesh['my-field-data']
        pyvista_ndarray(['I could', 'write', 'notes', 'here'], dtype='<U7')

        Add field data to a MultiBlock dataset.

        >>> blocks = pv.MultiBlock()
        >>> blocks.append(pv.Sphere())
        >>> blocks['cube'] = pv.Cube(center=(0, 0, -1))
        >>> blocks.add_field_data([1, 2, 3], 'my-field-data')
        >>> blocks.field_data['my-field-data']
        pyvista_ndarray([1, 2, 3])

        """
        if not hasattr(self, 'field_data'):
            msg = f'`{type(self)}` does not support field data'
            raise NotImplementedError(msg)

        self.field_data.set_array(array, name, deep_copy=deep)

    @property
    def field_data(self: Self) -> DataSetAttributes:
        """Return FieldData as DataSetAttributes.

        Use field data when size of the data you wish to associate
        with the dataset does not match the number of points or cells
        of the dataset.

        Returns
        -------
        DataSetAttributes
            FieldData as DataSetAttributes.

        Examples
        --------
        Add field data to a PolyData dataset and then return it.

        >>> import pyvista as pv
        >>> import numpy as np
        >>> mesh = pv.Sphere()
        >>> mesh.field_data['my-field-data'] = np.arange(10)
        >>> mesh.field_data['my-field-data']
        pyvista_ndarray([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

        """
        return DataSetAttributes(
            self.GetFieldData(),
            dataset=self,  # type: ignore[arg-type]
            association=FieldAssociation.NONE,
        )

    def clear_field_data(self: Self) -> None:
        """Remove all field data.

        Examples
        --------
        Add field data to a PolyData dataset and then remove it.

        >>> import pyvista as pv
        >>> mesh = pv.Sphere()
        >>> mesh.field_data['my-field-data'] = range(10)
        >>> len(mesh.field_data)
        1
        >>> mesh.clear_field_data()
        >>> len(mesh.field_data)
        0

        """
        if not hasattr(self, 'field_data'):
            msg = f'`{type(self)}` does not support field data'
            raise NotImplementedError(msg)

        self.field_data.clear()

    @property
    def user_dict(self: Self) -> _SerializedDictArray:
        """Set or return a user-specified data dictionary.

        The dictionary is stored as a JSON-serialized string as part of the mesh's
        field data. Unlike regular field data, which requires values to be stored
        as an array, the user dict provides a mapping for scalar values.

        Since the user dict is stored as field data, it is automatically saved
        with the mesh when it is saved in a compatible file format (e.g. ``'.vtk'``).
        Any saved metadata is automatically de-serialized by PyVista whenever
        the user dict is accessed again. Since the data is stored as JSON, it
        may also be easily retrieved or read by other programs.

        Any JSON-serializable values are permitted by the user dict, i.e. values
        can have type ``dict``, ``list``, ``tuple``, ``str``, ``int``, ``float``,
        ``bool``, or ``None``. Storing NumPy arrays is not directly supported, but
        these may be cast beforehand to a supported type, e.g. by calling ``tolist()``
        on the array.

        To completely remove the user dict string from the dataset's field data,
        set its value to ``None``.

        .. note::

            The user dict is a convenience property and is intended for metadata storage.
            It has an inefficient dictionary implementation and should only be used to
            store a small number of infrequently-accessed keys with relatively small
            values. It should not be used to store frequently accessed array data
            with many entries (a regular field data array should be used instead).

        .. warning::

            Field data is typically passed-through by dataset filters, and therefore
            the user dict's items can generally be expected to persist and remain
            unchanged in the output of filtering methods. However, this behavior is
            not guaranteed, as it's possible that some filters may modify or clear
            field data. Use with caution.

        .. versionadded:: 0.44

        Returns
        -------
        UserDict
            JSON-serialized dict-like object which is subclassed from
            :py:class:`collections.UserDict`.

        Examples
        --------
        Load a mesh.

        >>> import pyvista as pv
        >>> from pyvista import examples
        >>> mesh = examples.load_ant()

        Add data to the user dict. The contents are serialized as JSON.

        >>> mesh.user_dict['name'] = 'ant'
        >>> mesh.user_dict
        {"name": "ant"}

        Alternatively, set the user dict from an existing dict.

        >>> mesh.user_dict = dict(name='ant')

        The user dict can be updated like a regular dict.

        >>> mesh.user_dict.update(
        ...     {
        ...         'num_legs': 6,
        ...         'body_parts': ['head', 'thorax', 'abdomen'],
        ...     }
        ... )
        >>> mesh.user_dict
        {"name": "ant", "num_legs": 6, "body_parts": ["head", "thorax", "abdomen"]}

        Data in the user dict is stored as field data.

        >>> mesh.field_data
        pyvista DataSetAttributes
        Association     : NONE
        Contains arrays :
            _PYVISTA_USER_DICT      str        "{"name": "ant",..."

        Since it's field data, the user dict can be saved to file along with the
        mesh and retrieved later.

        >>> mesh.save('ant.vtk')
        >>> mesh_from_file = pv.read('ant.vtk')
        >>> mesh_from_file.user_dict
        {"name": "ant", "num_legs": 6, "body_parts": ["head", "thorax", "abdomen"]}

        """
        self._config_user_dict()
        return self._user_dict

    @user_dict.setter
    def user_dict(
        self: Self,
        dict_: dict[str, _JSONValueType] | UserDict[str, _JSONValueType] | None,
    ) -> None:
        # Setting None removes the field data array
        if dict_ is None:
            if hasattr(self, '_user_dict'):
                del self._user_dict
            if USER_DICT_KEY in self.field_data.keys():
                del self.field_data[USER_DICT_KEY]
            return

        self._config_user_dict()
        if isinstance(dict_, dict):
            self._user_dict.data = dict_
        elif isinstance(dict_, UserDict):
            self._user_dict.data = dict_.data
        else:
            msg = (  # type: ignore[unreachable]
                f'User dict can only be set with type {dict} or {UserDict}.\n'
                f'Got {type(dict_)} instead.'
            )
            raise TypeError(msg)

    def _config_user_dict(self: Self) -> None:
        """Init serialized dict array and ensure it is added to field_data."""
        field_data = self.field_data

        if not hasattr(self, '_user_dict'):
            # Init
            object.__setattr__(self, '_user_dict', _SerializedDictArray())

        if USER_DICT_KEY in field_data.keys():
            if isinstance(array := field_data[USER_DICT_KEY], pyvista_ndarray):
                # When loaded from file, field will be cast as pyvista ndarray
                # Convert to string and initialize new user dict object from it
                self._user_dict = _SerializedDictArray(''.join(array))
            elif isinstance(array, str) and repr(self._user_dict) != array:  # type: ignore[unreachable]
                # Filters may update the field data block separately, e.g.
                # when copying field data, so we need to capture the new
                # string and re-init
                self._user_dict = _SerializedDictArray(array)
            else:
                # User dict is correctly configured, do nothing
                return

        # Set field data array directly instead of calling 'set_array'
        # This skips the call to '_prepare_array' which will otherwise
        # do all kinds of casting/conversions and mangle this array
        self._user_dict.SetName(USER_DICT_KEY)
        field_data.VTKObject.AddArray(self._user_dict)
        field_data.VTKObject.Modified()

    @property
    def memory_address(self: Self) -> str:
        """Get address of the underlying VTK C++ object.

        Returns
        -------
        str
            Memory address formatted as ``'Addr=%p'``.

        Examples
        --------
        >>> import pyvista as pv
        >>> mesh = pv.Sphere()
        >>> mesh.memory_address
        'Addr=...'

        """
        return self.GetInformation().GetAddressAsString('')

    @property
    def actual_memory_size(self: Self) -> int:
        """Return the actual size of the dataset object.

        Returns
        -------
        int
            The actual size of the dataset object in kibibytes (1024
            bytes).

        Examples
        --------
        >>> from pyvista import examples
        >>> mesh = examples.load_airplane()
        >>> mesh.actual_memory_size  # doctest:+SKIP
        93

        """
        return self.GetActualMemorySize()

    def copy_structure(self: Self, dataset: Self) -> None:
        """Copy the structure (geometry and topology) of the input dataset object.

        Parameters
        ----------
        dataset : :vtk:`vtkDataSet`
            Dataset to copy the geometry and topology from.

        Examples
        --------
        >>> import pyvista as pv
        >>> source = pv.ImageData(dimensions=(10, 10, 5))
        >>> target = pv.ImageData()
        >>> target.copy_structure(source)
        >>> target.plot(show_edges=True)

        """
        self.CopyStructure(dataset) if dataset is not self else None

    def copy_attributes(self: Self, dataset: Self) -> None:
        """Copy the data attributes of the input dataset object.

        Parameters
        ----------
        dataset : pyvista.DataSet
            Dataset to copy the data attributes from.

        Examples
        --------
        >>> import pyvista as pv
        >>> source = pv.ImageData(dimensions=(10, 10, 5))
        >>> source = source.compute_cell_sizes()
        >>> target = pv.ImageData(dimensions=(10, 10, 5))
        >>> target.copy_attributes(source)
        >>> target.plot(scalars='Volume', show_edges=True)

        """
        self.CopyAttributes(dataset)

    def __getstate__(  # type: ignore[return]  # noqa: RET503
        self: Self,
    ) -> tuple[FunctionType, tuple[dict[str, Any]]] | dict[str, Any]:
        """Support pickle."""
        pickle_format = pyvista.PICKLE_FORMAT
        if pickle_format == 'vtk':
            return self._serialize_vtk_pickle_format()
        elif pickle_format in ['xml', 'legacy']:
            return self._serialize_pyvista_pickle_format()
        # Invalid format, use the setter to raise an error
        pyvista.set_pickle_format(pickle_format)

    def _serialize_vtk_pickle_format(
        self: Self,
    ) -> tuple[FunctionType, tuple[dict[str, Any]]]:
        # Note: The serialized state has format: ( function, (dict,) )
        serialized = _vtk.serialize_VTK_data_object(self)

        # Add this object's data to the state dictionary
        state_dict = serialized[1][0]
        state_dict['_PYVISTA_STATE_DICT'] = self.__dict__.copy()

        # Unlike the PyVista formats, we do not return a dict. Instead, return
        # the same format returned by the vtk serializer.
        return serialized

    def _serialize_pyvista_pickle_format(self: Self) -> dict[str, Any]:
        """Support pickle by serializing the VTK object data.

        The format of the serialized VTK object data depends on `pyvista.PICKLE_FORMAT`
        (case-insensitive).
        - If ``'xml'``, the data is serialized as an XML-formatted string.
        - If ``'legacy'``, the data is serialized to bytes in VTK's binary format.

        .. note::

            These formats are custom PyVista legacy formats. The native 'vtk' format is
            preferred since it supports more objects (e.g. MultiBlock).

        """
        if isinstance(self, pyvista.MultiBlock):
            msg = (
                "MultiBlock is not supported with 'xml' or 'legacy' pickle formats."
                "\nUse `pyvista.PICKLE_FORMAT='vtk'`."
            )
            raise TypeError(msg)
        state = self.__dict__.copy()

        if pyvista.PICKLE_FORMAT.lower() == 'xml':
            # the generic VTK XML writer `vtkXMLDataSetWriter` currently has a bug where it does
            # not pass all settings down to the sub-writers. Until this is fixed, use the
            # dataset-specific writers
            # https://gitlab.kitware.com/vtk/vtk/-/issues/18661
            writers = {
                _vtk.vtkImageData: _vtk.vtkXMLImageDataWriter,
                _vtk.vtkStructuredGrid: _vtk.vtkXMLStructuredGridWriter,
                _vtk.vtkRectilinearGrid: _vtk.vtkXMLRectilinearGridWriter,
                _vtk.vtkUnstructuredGrid: _vtk.vtkXMLUnstructuredGridWriter,
                _vtk.vtkPolyData: _vtk.vtkXMLPolyDataWriter,
                _vtk.vtkTable: _vtk.vtkXMLTableWriter,
            }

            for parent_type, writer_type in writers.items():
                if isinstance(self, parent_type):
                    writer = writer_type()  # type: ignore[unreachable]
                    break
            else:
                msg = f'Cannot pickle dataset of type {self.GetDataObjectType()}'
                raise TypeError(msg)

            writer.SetInputDataObject(self)  # type: ignore[unreachable]
            writer.SetWriteToOutputString(True)
            writer.SetDataModeToBinary()
            writer.SetCompressorTypeToNone()
            writer.Write()
            to_serialize = writer.GetOutputString()

        elif pyvista.PICKLE_FORMAT.lower() == 'legacy':
            writer = _vtk.vtkDataSetWriter()
            writer.SetInputDataObject(self)
            writer.SetWriteToOutputString(True)
            writer.SetFileTypeToBinary()
            writer.Write()
            to_serialize = writer.GetOutputStdString()

        state['vtk_serialized'] = to_serialize

        # this needs to be here because in multiprocessing situations, `pyvista.PICKLE_FORMAT`
        # is not shared between processes
        state['PICKLE_FORMAT'] = pyvista.PICKLE_FORMAT
        return state

    def __setstate__(self: Self, state: Any) -> None:
        """Support unpickle."""

        def _is_vtk_format(state_: Any) -> bool:
            # Note: The vtk state has format ( function, (dict,) )
            return (
                isinstance(state_, tuple)
                and len(state_) == 2
                and isinstance(state_[1], tuple)
                and len(state_[1]) == 1
                and isinstance(state_[1][0], dict)
            )

        def _is_pyvista_format(state_: Any) -> bool:
            return isinstance(state_, dict) and 'vtk_serialized' in state_

        if _is_vtk_format(state):
            self._unserialize_vtk_pickle_format(state)
        elif _is_pyvista_format(state):
            self._unserialize_pyvista_pickle_format(state)
        else:
            msg = f"Cannot unpickle '{self.__class__.__name__}'. Invalid pickle format."
            raise RuntimeError(msg)

    def _unserialize_vtk_pickle_format(
        self: Self, state: tuple[FunctionType, tuple[dict[str, Any]]]
    ) -> None:
        """Support unpickle of VTK's format."""
        # The vtk state has format: ( function, (dict,) )
        unserialize_func = state[0]
        state_dict = state[1][0]
        self.__dict__.update(state_dict['_PYVISTA_STATE_DICT'])
        obj = unserialize_func(state_dict)
        self.deep_copy(obj)

    def _unserialize_pyvista_pickle_format(self: Self, state: dict[str, Any]) -> None:
        """Support unpickle of PyVista 'xml' and 'legacy' formats.

        .. note::

            These formats are custom PyVista legacy formats. The native 'vtk' format is
            preferred since it supports more objects (e.g. MultiBlock).

        """
        vtk_serialized = state.pop('vtk_serialized')
        pickle_format = state.pop(
            'PICKLE_FORMAT',
            'legacy',  # backwards compatibility - assume 'legacy'
        )
        self.__dict__.update(state)

        if pickle_format.lower() == 'xml':
            # the generic VTK XML reader `vtkXMLGenericDataObjectReader` currently has a
            # bug where it does not pass all settings down to the sub-readers.
            # Until this is fixed, use the dataset-specific readers
            # https://gitlab.kitware.com/vtk/vtk/-/issues/18661
            readers = {
                _vtk.vtkImageData: _vtk.vtkXMLImageDataReader,
                _vtk.vtkStructuredGrid: _vtk.vtkXMLStructuredGridReader,
                _vtk.vtkRectilinearGrid: _vtk.vtkXMLRectilinearGridReader,
                _vtk.vtkUnstructuredGrid: _vtk.vtkXMLUnstructuredGridReader,
                _vtk.vtkPolyData: _vtk.vtkXMLPolyDataReader,
                _vtk.vtkTable: _vtk.vtkXMLTableReader,
            }

            for parent_type, reader_type in readers.items():
                if isinstance(self, parent_type):
                    reader = reader_type()  # type: ignore[unreachable]
                    break
            else:
                msg = f'Cannot unpickle dataset of type {self.GetDataObjectType()}'
                raise TypeError(msg)

            reader.ReadFromInputStringOn()  # type: ignore[unreachable]
            reader.SetInputString(vtk_serialized)
            reader.Update()

        elif pickle_format.lower() == 'legacy':
            reader = _vtk.vtkDataSetReader()
            reader.ReadFromInputStringOn()
            if isinstance(vtk_serialized, bytes):
                reader.SetBinaryInputString(vtk_serialized, len(vtk_serialized))  # type: ignore[arg-type]
            elif isinstance(vtk_serialized, str):
                reader.SetInputString(vtk_serialized)
            reader.Update()

        mesh = wrap(reader.GetOutput())

        # copy data
        self.copy_structure(mesh)  # type: ignore[arg-type]
        self.copy_attributes(mesh)  # type: ignore[arg-type]

    @property
    @abstractmethod
    def is_empty(self) -> bool:
        """Return ``True`` if the object is empty."""