File: grid.py

package info (click to toggle)
python-pyvista 0.46.4-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 176,968 kB
  • sloc: python: 94,346; sh: 216; makefile: 70
file content (1237 lines) | stat: -rw-r--r-- 40,494 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
"""Sub-classes for :vtk:`vtkRectilinearGrid` and :vtk:`vtkImageData`."""

from __future__ import annotations

from collections.abc import Sequence
from functools import wraps
from pathlib import Path
from typing import TYPE_CHECKING
from typing import Any
from typing import ClassVar
from typing import Literal
from typing import cast
import warnings

import numpy as np

import pyvista
from pyvista._deprecate_positional_args import _deprecate_positional_args
from pyvista.core import _validation

if TYPE_CHECKING:
    from typing_extensions import Self

    from pyvista import StructuredGrid
    from pyvista import UnstructuredGrid
    from pyvista import pyvista_ndarray
    from pyvista.core._typing_core import MatrixLike
    from pyvista.core._typing_core import NumpyArray
    from pyvista.core._typing_core import RotationLike
    from pyvista.core._typing_core import TransformLike
    from pyvista.core._typing_core import VectorLike


from . import _vtk_core as _vtk
from .dataset import DataSet
from .filters import ImageDataFilters
from .filters import RectilinearGridFilters
from .filters import _get_output
from .utilities.arrays import array_from_vtkmatrix
from .utilities.arrays import convert_array
from .utilities.arrays import raise_has_duplicates
from .utilities.arrays import vtkmatrix_from_array
from .utilities.misc import abstract_class


@abstract_class
class Grid(DataSet):
    """A class full of common methods for non-pointset grids."""

    @property
    def dimensions(self: Self) -> tuple[int, int, int]:
        """Return the grid's dimensions.

        These are effectively the number of points along each of the
        three dataset axes.

        Returns
        -------
        tuple[int]
            Dimensions of the grid.

        Examples
        --------
        Create a uniform grid with dimensions ``(1, 2, 3)``.

        >>> import pyvista as pv
        >>> grid = pv.ImageData(dimensions=(2, 3, 4))
        >>> grid.dimensions
        (2, 3, 4)
        >>> grid.plot(show_edges=True)

        Set the dimensions to ``(3, 4, 5)``

        >>> grid.dimensions = (3, 4, 5)
        >>> grid.plot(show_edges=True)

        """
        return self.GetDimensions()

    @dimensions.setter
    def dimensions(self: Self, dims: VectorLike[int]) -> None:
        self.SetDimensions(*dims)
        self.Modified()

    def _get_attrs(self: Self) -> list[tuple[str, Any, str]]:
        """Return the representation methods (internal helper)."""
        attrs = DataSet._get_attrs(self)
        attrs.append(('Dimensions', self.dimensions, '{:d}, {:d}, {:d}'))
        return attrs

    @property
    def dimensionality(self: Self) -> int:
        """Return the dimensionality of the grid.

        Returns
        -------
        int
            The grid dimensionality.

        Examples
        --------
        Get the dimensionality of a 2D uniform grid.

        >>> import pyvista as pv
        >>> grid = pv.ImageData(dimensions=(1, 2, 3))
        >>> grid.dimensionality
        2

        Get the dimensionality of a 3D uniform grid.

        >>> grid = pv.ImageData(dimensions=(2, 3, 4))
        >>> grid.dimensionality
        3

        """
        dims = np.asarray(self.dimensions)
        return int(3 - (dims == 1).sum())


class RectilinearGrid(Grid, RectilinearGridFilters, _vtk.vtkRectilinearGrid):
    """Dataset with variable spacing in the three coordinate directions.

    Can be initialized in several ways:

    * Create empty grid
    * Initialize from a :vtk:`vtkRectilinearGrid` object
    * Initialize directly from the point arrays

    Parameters
    ----------
    uinput : str, pathlib.Path, :vtk:`vtkRectilinearGrid`, numpy.ndarray, optional
        Filename, dataset, or array to initialize the rectilinear grid from. If a
        filename is passed, pyvista will attempt to load it as a
        :class:`RectilinearGrid`. If passed a :vtk:`vtkRectilinearGrid`, it
        will be wrapped. If a :class:`numpy.ndarray` is passed, this will be
        loaded as the x range.

    y : numpy.ndarray, optional
        Coordinates of the points in y direction. If this is passed, ``uinput``
        must be a :class:`numpy.ndarray`.

    z : numpy.ndarray, optional
        Coordinates of the points in z direction. If this is passed, ``uinput``
        and ``y`` must be a :class:`numpy.ndarray`.

    check_duplicates : bool, optional
        Check for duplications in any arrays that are passed. Defaults to
        ``False``. If ``True``, an error is raised if there are any duplicate
        values in any of the array-valued input arguments.

    deep : bool, optional
        Whether to deep copy a :vtk:`vtkRectilinearGrid` object.
        Default is ``False``.  Keyword only.

    Examples
    --------
    >>> import pyvista as pv
    >>> import vtk
    >>> import numpy as np

    Create an empty grid.

    >>> grid = pv.RectilinearGrid()

    Initialize from a :vtk:`vtkRectilinearGrid` object

    >>> vtkgrid = vtk.vtkRectilinearGrid()
    >>> grid = pv.RectilinearGrid(vtkgrid)

    Create from NumPy arrays.

    >>> xrng = np.arange(-10, 10, 2)
    >>> yrng = np.arange(-10, 10, 5)
    >>> zrng = np.arange(-10, 10, 1)
    >>> grid = pv.RectilinearGrid(xrng, yrng, zrng)
    >>> grid.plot(show_edges=True)

    """

    _WRITERS: ClassVar[
        dict[
            str,
            type[_vtk.vtkRectilinearGridWriter | _vtk.vtkXMLRectilinearGridWriter],
        ]
    ] = {  # type: ignore[assignment]
        '.vtk': _vtk.vtkRectilinearGridWriter,
        '.vtr': _vtk.vtkXMLRectilinearGridWriter,
    }

    def __init__(
        self: Self,
        *args,
        check_duplicates: bool = False,
        deep: bool = False,
        **kwargs,
    ) -> None:  # numpydoc ignore=PR01,RT01
        """Initialize the rectilinear grid."""
        super().__init__(**kwargs)

        if len(args) == 1:
            if isinstance(args[0], _vtk.vtkRectilinearGrid):
                if deep:
                    self.deep_copy(args[0])
                else:
                    self.shallow_copy(args[0])
            elif isinstance(args[0], (str, Path)):
                self._from_file(args[0], **kwargs)
            elif isinstance(args[0], (np.ndarray, Sequence)):
                self._from_arrays(
                    x=np.asanyarray(args[0]),
                    y=None,  # type: ignore[arg-type]
                    z=None,  # type: ignore[arg-type]
                    check_duplicates=check_duplicates,
                )
            else:
                msg = f'Type ({type(args[0])}) not understood by `RectilinearGrid`'
                raise TypeError(msg)

        elif len(args) == 3 or len(args) == 2:
            arg0_is_arr = isinstance(args[0], (np.ndarray, Sequence))
            arg1_is_arr = isinstance(args[1], (np.ndarray, Sequence))
            arg2_is_arr = isinstance(args[2], (np.ndarray, Sequence)) if len(args) == 3 else False

            if all([arg0_is_arr, arg1_is_arr, arg2_is_arr]):
                self._from_arrays(
                    x=np.asanyarray(args[0]),
                    y=np.asanyarray(args[1]),
                    z=np.asanyarray(args[2]),  # type: ignore[misc]
                    check_duplicates=check_duplicates,
                )
            elif all([arg0_is_arr, arg1_is_arr]):
                self._from_arrays(
                    x=np.asanyarray(args[0]),
                    y=np.asanyarray(args[1]),
                    z=None,  # type: ignore[arg-type]
                    check_duplicates=check_duplicates,
                )
            else:
                msg = 'Arguments not understood by `RectilinearGrid`.'
                raise TypeError(msg)

    def __repr__(self: Self) -> str:
        """Return the default representation."""
        return DataSet.__repr__(self)

    def __str__(self: Self) -> str:
        """Return the str representation."""
        return DataSet.__str__(self)

    def _update_dimensions(self: Self) -> None:
        """Update the dimensions if coordinates have changed."""
        self.SetDimensions(len(self.x), len(self.y), len(self.z))

    def _from_arrays(
        self: Self,
        *,
        x: NumpyArray[float],
        y: NumpyArray[float],
        z: NumpyArray[float],
        check_duplicates: bool = False,
    ) -> None:
        """Create VTK rectilinear grid directly from numpy arrays.

        Each array gives the uniques coordinates of the mesh along each axial
        direction. To help ensure you are using this correctly, we take the unique
        values of each argument.

        Parameters
        ----------
        x : numpy.ndarray
            Coordinates of the points in x direction.

        y : numpy.ndarray
            Coordinates of the points in y direction.

        z : numpy.ndarray
            Coordinates of the points in z direction.

        check_duplicates : bool, optional
            Check for duplications in any arrays that are passed.

        """
        # Set the coordinates along each axial direction
        # Must at least be an x array
        if check_duplicates:
            raise_has_duplicates(x)

        # edges are shown as triangles if x is not floating point
        if not np.issubdtype(x.dtype, np.floating):
            x = x.astype(float)
        self.SetXCoordinates(convert_array(x.ravel()))
        if y is not None:
            if check_duplicates:
                raise_has_duplicates(y)
            if not np.issubdtype(y.dtype, np.floating):
                y = y.astype(float)
            self.SetYCoordinates(convert_array(y.ravel()))
        if z is not None:
            if check_duplicates:
                raise_has_duplicates(z)
            if not np.issubdtype(z.dtype, np.floating):
                z = z.astype(float)
            self.SetZCoordinates(convert_array(z.ravel()))
        # Ensure dimensions are properly set
        self._update_dimensions()

    @property
    def meshgrid(
        self: Self,
    ) -> tuple[NumpyArray[float], NumpyArray[float], NumpyArray[float]]:
        """Return a meshgrid of numpy arrays for this mesh.

        This simply returns a :func:`numpy.meshgrid` of the
        coordinates for this mesh in ``ij`` indexing. These are a copy
        of the points of this mesh.

        Returns
        -------
        tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray]
            Tuple of numpy arrays representing the points of this mesh.

        """
        # Converting to tuple needed to be consistent type across numpy version
        # Remove when support is dropped for numpy 1.x
        # We also know this is 3-length so make it so in typing
        out = tuple(np.meshgrid(self.x, self.y, self.z, indexing='ij'))
        # Python 3.8 does not allow subscripting tuple, but only used for type checking
        if TYPE_CHECKING:
            out = cast('tuple[NumpyArray[float], NumpyArray[float], NumpyArray[float]]', out)
        return out

    @property  # type: ignore[override]
    def points(self: Self) -> NumpyArray[float]:
        """Return a copy of the points as an ``(n, 3)`` numpy array.

        Returns
        -------
        numpy.ndarray
            Array of points.

        Notes
        -----
        Points of a :class:`pyvista.RectilinearGrid` cannot be
        set. Set point coordinates with :attr:`RectilinearGrid.x`,
        :attr:`RectilinearGrid.y`, or :attr:`RectilinearGrid.z`.

        Examples
        --------
        >>> import numpy as np
        >>> import pyvista as pv
        >>> xrng = np.arange(-10, 10, 10, dtype=float)
        >>> yrng = np.arange(-10, 10, 10, dtype=float)
        >>> zrng = np.arange(-10, 10, 10, dtype=float)
        >>> grid = pv.RectilinearGrid(xrng, yrng, zrng)
        >>> grid.points
        array([[-10., -10., -10.],
               [  0., -10., -10.],
               [-10.,   0., -10.],
               [  0.,   0., -10.],
               [-10., -10.,   0.],
               [  0., -10.,   0.],
               [-10.,   0.,   0.],
               [  0.,   0.,   0.]])

        """
        if pyvista.vtk_version_info >= (9, 4, 0):
            return convert_array(self.GetPoints().GetData())

        xx, yy, zz = self.meshgrid
        return np.c_[xx.ravel(order='F'), yy.ravel(order='F'), zz.ravel(order='F')]

    @points.setter
    def points(
        self: Self,
        points: MatrixLike[float] | _vtk.vtkPoints,  # noqa: ARG002
    ) -> None:  # numpydoc ignore=PR01
        """Raise an AttributeError.

        This setter overrides the base class's setter to ensure a user
        does not attempt to set them.
        """
        msg = (
            'The points cannot be set. The points of '
            '`RectilinearGrid` are defined in each axial direction. Please '
            'use the `x`, `y`, and `z` setters individually.'
        )
        raise AttributeError(msg)

    @property
    def x(self: Self) -> NumpyArray[float]:
        """Return or set the coordinates along the X-direction.

        Returns
        -------
        numpy.ndarray
            Array of points along the X-direction.

        Examples
        --------
        Return the x coordinates of a RectilinearGrid.

        >>> import numpy as np
        >>> import pyvista as pv
        >>> xrng = np.arange(-10, 10, 10, dtype=float)
        >>> yrng = np.arange(-10, 10, 10, dtype=float)
        >>> zrng = np.arange(-10, 10, 10, dtype=float)
        >>> grid = pv.RectilinearGrid(xrng, yrng, zrng)
        >>> grid.x
        array([-10.,   0.])

        Set the x coordinates of a RectilinearGrid.

        >>> grid.x = [-10.0, 0.0, 10.0]
        >>> grid.x
        array([-10.,   0.,  10.])

        """
        return convert_array(self.GetXCoordinates())

    @x.setter
    def x(self: Self, coords: VectorLike[float]) -> None:
        self.SetXCoordinates(convert_array(coords))
        self._update_dimensions()
        self.Modified()

    @property
    def y(self: Self) -> NumpyArray[float]:
        """Return or set the coordinates along the Y-direction.

        Returns
        -------
        numpy.ndarray
            Array of points along the Y-direction.

        Examples
        --------
        Return the y coordinates of a RectilinearGrid.

        >>> import numpy as np
        >>> import pyvista as pv
        >>> xrng = np.arange(-10, 10, 10, dtype=float)
        >>> yrng = np.arange(-10, 10, 10, dtype=float)
        >>> zrng = np.arange(-10, 10, 10, dtype=float)
        >>> grid = pv.RectilinearGrid(xrng, yrng, zrng)
        >>> grid.y
        array([-10.,   0.])

        Set the y coordinates of a RectilinearGrid.

        >>> grid.y = [-10.0, 0.0, 10.0]
        >>> grid.y
        array([-10.,   0.,  10.])

        """
        return convert_array(self.GetYCoordinates())

    @y.setter
    def y(self: Self, coords: VectorLike[float]) -> None:
        self.SetYCoordinates(convert_array(coords))
        self._update_dimensions()
        self.Modified()

    @property
    def z(self: Self) -> NumpyArray[float]:
        """Return or set the coordinates along the Z-direction.

        Returns
        -------
        numpy.ndarray
            Array of points along the Z-direction.

        Examples
        --------
        Return the z coordinates of a RectilinearGrid.

        >>> import numpy as np
        >>> import pyvista as pv
        >>> xrng = np.arange(-10, 10, 10, dtype=float)
        >>> yrng = np.arange(-10, 10, 10, dtype=float)
        >>> zrng = np.arange(-10, 10, 10, dtype=float)
        >>> grid = pv.RectilinearGrid(xrng, yrng, zrng)
        >>> grid.z
        array([-10.,   0.])

        Set the z coordinates of a RectilinearGrid.

        >>> grid.z = [-10.0, 0.0, 10.0]
        >>> grid.z
        array([-10.,   0.,  10.])

        """
        return convert_array(self.GetZCoordinates())

    @z.setter
    def z(self: Self, coords: VectorLike[float]) -> None:
        self.SetZCoordinates(convert_array(coords))
        self._update_dimensions()
        self.Modified()

    @Grid.dimensions.setter  # type: ignore[attr-defined]
    def dimensions(self: Self, _dims: VectorLike[int]) -> None:
        """Set Dimensions.

        Parameters
        ----------
        _dims : sequence
            Ignored dimensions.

        """
        msg = (
            'The dimensions of a `RectilinearGrid` are implicitly defined and thus cannot be set.'
        )
        raise AttributeError(msg)

    def cast_to_structured_grid(self: Self) -> StructuredGrid:
        """Cast this rectilinear grid to a structured grid.

        Returns
        -------
        pyvista.StructuredGrid
            This grid as a structured grid.

        """
        alg = _vtk.vtkRectilinearGridToPointSet()
        alg.SetInputData(self)
        alg.Update()
        return _get_output(alg)


class ImageData(Grid, ImageDataFilters, _vtk.vtkImageData):
    """Models datasets with uniform spacing in the three coordinate directions.

    Can be initialized in one of several ways:

    - Create empty grid
    - Initialize from a :vtk:`vtkImageData` object
    - Initialize based on dimensions, cell spacing, and origin.

    .. versionchanged:: 0.33.0
        First argument must now be either a path or
        :vtk:`vtkImageData`. Use keyword arguments to specify the
        dimensions, spacing, and origin of the uniform grid.

    .. versionchanged:: 0.37.0
        The ``dims`` parameter has been renamed to ``dimensions``.

    Parameters
    ----------
    uinput : str | :vtk:`vtkImageData` | ImageData, optional
        Filename or dataset to initialize the uniform grid from.  If
        set, remainder of arguments are ignored.

    dimensions : sequence[int], optional
        :attr:`dimensions` of the uniform grid.

    spacing : sequence[float], default: (1.0, 1.0, 1.0)
        :attr:`spacing` of the uniform grid in each dimension. Must be positive.

    origin : sequence[float], default: (0.0, 0.0, 0.0)
        :attr:`origin` of the uniform grid.

    deep : bool, default: False
        Whether to deep copy a :vtk:`vtkImageData` object. Keyword only.

    direction_matrix : RotationLike, optional
        The :attr:`direction_matrix` is a 3x3 matrix which controls the orientation of
        the image data.

        .. versionadded:: 0.45

    offset : int | VectorLike[int], default: (0, 0, 0)
        The offset defines the minimum :attr:`extent` of the image. Offset values
        can be positive or negative. In physical space, the offset is relative
        to the image's :attr:`origin`.

        .. versionadded:: 0.45

    See Also
    --------
    :ref:`create_uniform_grid_example`

    Examples
    --------
    Create an empty ImageData.

    >>> import pyvista as pv
    >>> grid = pv.ImageData()

    Initialize from a :vtk:`vtkImageData` object.

    >>> import vtk
    >>> vtkgrid = vtk.vtkImageData()
    >>> grid = pv.ImageData(vtkgrid)

    Initialize using just the grid dimensions and default
    spacing and origin. These must be keyword arguments.

    >>> grid = pv.ImageData(dimensions=(10, 10, 10))

    Initialize using dimensions and spacing.

    >>> grid = pv.ImageData(
    ...     dimensions=(10, 10, 10),
    ...     spacing=(2, 1, 5),
    ... )

    Initialize using dimensions, spacing, and an origin.

    >>> grid = pv.ImageData(
    ...     dimensions=(10, 10, 10),
    ...     spacing=(2, 1, 5),
    ...     origin=(10, 35, 50),
    ... )

    Initialize from another ImageData.

    >>> grid = pv.ImageData(
    ...     dimensions=(10, 10, 10),
    ...     spacing=(2, 1, 5),
    ...     origin=(10, 35, 50),
    ... )
    >>> grid_from_grid = pv.ImageData(grid)
    >>> grid_from_grid == grid
    True

    """

    _WRITERS: ClassVar[dict[str, type[_vtk.vtkDataSetWriter | _vtk.vtkXMLImageDataWriter]]] = {  # type: ignore[assignment]
        '.vtk': _vtk.vtkDataSetWriter,
        '.vti': _vtk.vtkXMLImageDataWriter,
    }

    @_deprecate_positional_args(allowed=['uinput'])
    def __init__(  # noqa: PLR0917
        self: Self,
        uinput: ImageData | str | Path | None = None,
        dimensions: VectorLike[int] | None = None,
        spacing: VectorLike[float] = (1.0, 1.0, 1.0),
        origin: VectorLike[float] = (0.0, 0.0, 0.0),
        deep: bool = False,  # noqa: FBT001, FBT002
        direction_matrix: RotationLike | None = None,
        offset: int | VectorLike[int] | None = None,
    ) -> None:
        """Initialize the uniform grid."""
        super().__init__()

        # first argument must be either vtkImageData or a path
        if uinput is not None:
            if isinstance(uinput, _vtk.vtkImageData):
                if deep:
                    self.deep_copy(uinput)
                else:
                    self.shallow_copy(uinput)
            elif isinstance(uinput, (str, Path)):
                self._from_file(uinput)
            else:
                msg = (  # type: ignore[unreachable]
                    'First argument, ``uinput`` must be either ``vtkImageData`` '
                    f'or a path, not {type(uinput)}.  Use keyword arguments to '
                    'specify dimensions, spacing, and origin. For example:\n\n'
                    '    >>> grid = pv.ImageData(\n'
                    '    ...     dimensions=(10, 10, 10),\n'
                    '    ...     spacing=(2, 1, 5),\n'
                    '    ...     origin=(10, 35, 50),\n'
                    '    ... )\n'
                )
                raise TypeError(msg)
        else:
            if dimensions is not None:
                self.dimensions = dimensions
            self.origin = origin
            self.spacing = spacing
            if direction_matrix is not None:
                self.direction_matrix = direction_matrix
            if offset is not None:
                self.offset = offset

    def __repr__(self: Self) -> str:
        """Return the default representation."""
        return DataSet.__repr__(self)

    def __str__(self: Self) -> str:
        """Return the default str representation."""
        return DataSet.__str__(self)

    def __getitem__(  # type: ignore[override]
        self, key: tuple[str, Literal['cell', 'point', 'field']] | str | tuple[int, int, int]
    ) -> ImageData | pyvista_ndarray:
        """Search for a data array or slice with IJK indexing."""
        # Return point, cell, or field data
        if isinstance(key, str) or (
            isinstance(key, tuple) and len(key) > 0 and isinstance(key[0], str)  # type: ignore[redundant-expr]
        ):
            return super().__getitem__(key)
        return self.extract_subset(self._compute_voi_from_index(key), rebase_coordinates=False)

    def _compute_voi_from_index(
        self,
        indices: tuple[
            int | slice | tuple[int, int],
            int | slice | tuple[int, int],
            int | slice | tuple[int, int],
        ],
        *,
        index_mode: Literal['extent', 'dimensions'] = 'dimensions',
        strict_index: bool = False,
    ) -> NumpyArray[int]:
        """Compute VOI extents from indexing values."""
        _validation.check_contains(
            ['extent', 'dimensions'], must_contain=index_mode, name='index_mode'
        )
        if not (isinstance(indices, tuple) and len(indices) == 3):  # type: ignore[redundant-expr]
            msg = 'Exactly 3 slices must be specified, one for each IJK-coordinate axis.'  # type: ignore[unreachable]
            raise IndexError(msg)

        dims = self.dimensions
        extent = self.extent
        voi = list(extent)

        for axis, slicer in enumerate(indices):
            _validation.check_instance(slicer, (int, tuple, list, slice), name='index')

            offset = extent[axis * 2]
            index_offset = 0 if index_mode == 'extent' else offset

            if isinstance(slicer, (list, tuple)):
                rng = _validation.validate_array(
                    slicer, must_have_dtype=int, must_have_length=2, to_list=True
                )
                slicer = slice(*rng)  # noqa: PLW2901

            if isinstance(slicer, slice):
                start = slicer.start if slicer.start is not None else 0
                stop = slicer.stop if slicer.stop is not None else dims[axis]
                step = slicer.step
                if step not in (None, 1):
                    msg = 'Only contiguous slices with step=1 are supported.'
                    raise ValueError(msg)

                # Handle negative indices
                if start < 0:
                    start += dims[axis]
                if stop < 0:
                    stop += dims[axis]

            else:  # isinstance(slicer, int)
                min_allowed = offset - dims[axis] - index_offset
                max_allowed = min_allowed + dims[axis] * 2 - 1
                if slicer < min_allowed or slicer > max_allowed:
                    msg = (
                        f'index {slicer} is out of bounds for axis {axis} with size {dims[axis]}.'
                        f'\nValid range of valid index values (inclusive) is '
                        f'[{min_allowed}, {max_allowed}].'
                    )
                    raise IndexError(msg)
                if slicer < 0:
                    slicer += dims[axis]  # noqa: PLW2901
                start = slicer
                stop = start + 1

            voi[axis * 2] = index_offset + start
            voi[axis * 2 + 1] = index_offset + stop - 1

        clipped = pyvista.ImageDataFilters._clip_extent(voi, clip_to=self.extent)
        if strict_index and (
            any(min_ < clp for min_, clp in zip(voi[::2], clipped[::2]))
            or any(max_ > clp for max_, clp in zip(voi[1::2], clipped[1::2]))
        ):
            msg = (
                f'The requested volume of interest {tuple(voi)} '
                f"is outside the input's extent {extent}."
            )
            raise IndexError(msg)
        return clipped

    @property  # type: ignore[override]
    def points(self: Self) -> NumpyArray[float]:
        """Build a copy of the implicitly defined points as a numpy array.

        Returns
        -------
        numpy.ndarray
            Array of points representing the image data.

        Notes
        -----
        The ``points`` for a :class:`pyvista.ImageData` cannot be set.

        Examples
        --------
        >>> import pyvista as pv
        >>> grid = pv.ImageData(dimensions=(2, 2, 2))
        >>> grid.points
        array([[0., 0., 0.],
               [1., 0., 0.],
               [0., 1., 0.],
               [1., 1., 0.],
               [0., 0., 1.],
               [1., 0., 1.],
               [0., 1., 1.],
               [1., 1., 1.]])

        """
        if pyvista.vtk_version_info >= (9, 4, 0):
            return convert_array(self.GetPoints().GetData())

        # Handle empty case
        if not all(self.dimensions):
            return np.zeros((0, 3))

        # Get grid dimensions
        nx, ny, nz = self.dimensions
        nx -= 1
        ny -= 1
        nz -= 1
        # get the points and convert to spacings
        dx, dy, dz = self.spacing
        # Now make the cell arrays
        ox, oy, oz = np.array(self.origin) + self.extent[::2] * np.array([dx, dy, dz])
        x = np.insert(np.cumsum(np.full(nx, dx)), 0, 0.0) + ox
        y = np.insert(np.cumsum(np.full(ny, dy)), 0, 0.0) + oy
        z = np.insert(np.cumsum(np.full(nz, dz)), 0, 0.0) + oz
        xx, yy, zz = np.meshgrid(x, y, z, indexing='ij')
        points = np.c_[xx.ravel(order='F'), yy.ravel(order='F'), zz.ravel(order='F')]

        direction = self.direction_matrix
        if not np.array_equal(direction, np.eye(3)):
            return (
                pyvista.Transform().rotate(direction, point=self.origin).apply(points, copy=False)
            )
        return points

    @points.setter
    def points(
        self: Self,
        points: MatrixLike[float] | _vtk.vtkPoints,  # noqa: ARG002
    ) -> None:  # numpydoc ignore=PR01
        """Points cannot be set.

        This setter overrides the base class's setter to ensure a user does not
        attempt to set them. See https://github.com/pyvista/pyvista/issues/713.

        """
        msg = (
            'The points cannot be set. The points of '
            '`ImageData`/`vtkImageData` are implicitly defined by the '
            '`origin`, `spacing`, and `dimensions` of the grid.'
        )
        raise AttributeError(msg)

    @property
    def x(self: Self) -> NumpyArray[float]:  # numpydoc ignore=RT01
        """Return all the X points.

        Examples
        --------
        >>> import pyvista as pv
        >>> grid = pv.ImageData(dimensions=(2, 2, 2))
        >>> grid.x
        array([0., 1., 0., 1., 0., 1., 0., 1.])

        """
        return self.points[:, 0]

    @property
    def y(self: Self) -> NumpyArray[float]:  # numpydoc ignore=RT01
        """Return all the Y points.

        Examples
        --------
        >>> import pyvista as pv
        >>> grid = pv.ImageData(dimensions=(2, 2, 2))
        >>> grid.y
        array([0., 0., 1., 1., 0., 0., 1., 1.])

        """
        return self.points[:, 1]

    @property
    def z(self: Self) -> NumpyArray[float]:  # numpydoc ignore=RT01
        """Return all the Z points.

        Examples
        --------
        >>> import pyvista as pv
        >>> grid = pv.ImageData(dimensions=(2, 2, 2))
        >>> grid.z
        array([0., 0., 0., 0., 1., 1., 1., 1.])

        """
        return self.points[:, 2]

    @property
    def origin(self: Self) -> tuple[float]:  # numpydoc ignore=RT01
        """Return the origin of the grid (bottom southwest corner).

        Examples
        --------
        >>> import pyvista as pv
        >>> grid = pv.ImageData(dimensions=(5, 5, 5))
        >>> grid.origin
        (0.0, 0.0, 0.0)

        Show how the origin is in the bottom "southwest" corner of the
        ImageData.

        >>> pl = pv.Plotter()
        >>> _ = pl.add_mesh(grid, show_edges=True)
        >>> _ = pl.add_axes_at_origin(ylabel=None)
        >>> pl.camera_position = 'xz'
        >>> pl.show()

        Set the origin to ``(1, 1, 1)`` and show how this shifts the
        ImageData.

        >>> grid.origin = (1, 1, 1)
        >>> pl = pv.Plotter()
        >>> _ = pl.add_mesh(grid, show_edges=True)
        >>> _ = pl.add_axes_at_origin(ylabel=None)
        >>> pl.camera_position = 'xz'
        >>> pl.show()

        """
        return self.GetOrigin()  # type: ignore[return-value]

    @origin.setter
    def origin(self: Self, origin: VectorLike[float]) -> None:
        self.SetOrigin(*origin)
        self.Modified()

    @property
    def spacing(self: Self) -> tuple[float, float, float]:  # numpydoc ignore=RT01
        """Return or set the spacing for each axial direction.

        Notes
        -----
        Spacing must be non-negative. While VTK accepts negative
        spacing, this results in unexpected behavior. See:
        https://github.com/pyvista/pyvista/issues/1967

        Examples
        --------
        Create a 5 x 5 x 5 uniform grid.

        >>> import pyvista as pv
        >>> grid = pv.ImageData(dimensions=(5, 5, 5))
        >>> grid.spacing
        (1.0, 1.0, 1.0)
        >>> grid.plot(show_edges=True)

        Modify the spacing to ``(1, 2, 3)``

        >>> grid.spacing = (1, 2, 3)
        >>> grid.plot(show_edges=True)

        """
        return self.GetSpacing()

    @spacing.setter
    def spacing(self: Self, spacing: VectorLike[float]) -> None:
        spacing_ = _validation.validate_array3(
            spacing, must_be_in_range=[0, float('inf')], name='spacing'
        )
        self.SetSpacing(*spacing_)
        self.Modified()

    def _get_attrs(self: Self) -> list[tuple[str, Any, str]]:
        """Return the representation methods (internal helper)."""
        attrs = Grid._get_attrs(self)
        fmt = '{}, {}, {}'.format(*[pyvista.FLOAT_FORMAT] * 3)
        attrs.append(('Spacing', self.spacing, fmt))
        return attrs

    def cast_to_structured_grid(self: Self) -> StructuredGrid:
        """Cast this uniform grid to a structured grid.

        Returns
        -------
        pyvista.StructuredGrid
            This grid as a structured grid.

        """
        alg = _vtk.vtkImageToStructuredGrid()
        alg.SetInputData(self)
        alg.Update()
        return _get_output(alg)

    def cast_to_rectilinear_grid(self: Self) -> RectilinearGrid:
        """Cast this uniform grid to a rectilinear grid.

        Returns
        -------
        pyvista.RectilinearGrid
            This uniform grid as a rectilinear grid.

        """
        rectilinear_coords = self._generate_rectilinear_coords()
        grid = pyvista.RectilinearGrid(*rectilinear_coords)
        grid.point_data.update(self.point_data)
        grid.cell_data.update(self.cell_data)
        grid.field_data.update(self.field_data)
        grid.copy_meta_from(self, deep=True)
        return grid

    def _generate_rectilinear_coords(
        self: Self,
    ) -> list[NumpyArray[float]]:
        """Generate rectilinear coordinates (internal helper).

        Returns
        -------
        list[NumpyArray[float]]
            Rectilinear coordinates over the three dimensions.

        """
        dims = self.dimensions
        spacing = self.spacing
        origin = self.origin
        offset = self.offset
        direction = self.direction_matrix

        # Off-axis rotation is not supported by RectilinearGrid
        if np.allclose(np.abs(direction), np.eye(3)):
            sign = np.diagonal(direction)
        else:
            sign = np.array((1.0, 1.0, 1.0))
            msg = (
                'The direction matrix is not a diagonal matrix and cannot be used when casting to '
                'RectilinearGrid.\nThe direction is ignored. Consider casting to StructuredGrid '
                'instead.'
            )
            warnings.warn(msg, RuntimeWarning)

        # Use linspace to avoid rounding error accumulation
        ijk = [np.linspace(offset[i], offset[i] + dims[i] - 1, dims[i]) for i in range(3)]
        return [ijk[axis] * spacing[axis] * sign[axis] + origin[axis] for axis in range(3)]

    @property
    def extent(
        self: Self,
    ) -> tuple[int, int, int, int, int, int]:  # numpydoc ignore=RT01
        """Return or set the extent of the ImageData.

        The extent is simply the first and last indices for each of the three axes.
        It encodes information about the image's :attr:`offset` and :attr:`dimensions`.

        Examples
        --------
        Create a ``ImageData`` and show its extent.

        >>> import pyvista as pv
        >>> grid = pv.ImageData(dimensions=(10, 10, 10))
        >>> grid.extent
        (0, 9, 0, 9, 0, 9)

        >>> grid.extent = (2, 5, 2, 5, 2, 5)
        >>> grid.extent
        (2, 5, 2, 5, 2, 5)

        Note how this also modifies the grid's :attr:`offset`, :attr:`dimensions`,
        and :attr:`bounds`. Since we use default spacing of 1 here, the bounds
        match the extent exactly.

        >>> grid.offset
        (2, 2, 2)

        >>> grid.dimensions
        (4, 4, 4)

        >>> grid.bounds
        BoundsTuple(x_min = 2.0,
                    x_max = 5.0,
                    y_min = 2.0,
                    y_max = 5.0,
                    z_min = 2.0,
                    z_max = 5.0)

        """
        return self.GetExtent()

    @extent.setter
    def extent(self: Self, new_extent: VectorLike[int]) -> None:
        new_extent_ = _validation.validate_arrayN(
            new_extent,
            must_be_integer=True,
            must_have_length=6,
            to_list=True,
            dtype_out=int,
        )
        self.SetExtent(new_extent_)

    @property
    def offset(self: Self) -> tuple[int, int, int]:  # numpydoc ignore=RT01
        """Return or set the index offset of the ImageData.

        The offset is simply the first indices for each of the three axes
        and defines the minimum :attr:`extent` of the image. Offset values
        can be positive or negative. In physical space, the offset is relative
        to the image's :attr:`origin`.

        .. versionadded:: 0.45

        Examples
        --------
        Create a ``ImageData`` and show that the offset is zeros by default.

        >>> import pyvista as pv
        >>> grid = pv.ImageData(dimensions=(10, 10, 10))
        >>> grid.offset
        (0, 0, 0)

        The offset defines the minimum extent.

        >>> grid.extent
        (0, 9, 0, 9, 0, 9)

        Set the offset to a new value for all axes.

        >>> grid.offset = 2
        >>> grid.offset
        (2, 2, 2)

        Show the extent again. Note how all values have increased by the offset value.

        >>> grid.extent
        (2, 11, 2, 11, 2, 11)

        Set the offset for each axis separately and show the extent again.

        >>> grid.offset = (-1, -2, -3)
        >>> grid.extent
        (-1, 8, -2, 7, -3, 6)

        """
        return self.extent[::2]

    @offset.setter
    def offset(self: Self, offset: int | VectorLike[int]) -> None:
        offset_ = _validation.validate_array3(
            offset, broadcast=True, must_be_integer=True, dtype_out=int
        )
        dims = self.dimensions
        self.extent = (
            offset_[0],
            offset_[0] + dims[0] - 1,
            offset_[1],
            offset_[1] + dims[1] - 1,
            offset_[2],
            offset_[2] + dims[2] - 1,
        )

    @wraps(RectilinearGridFilters.to_tetrahedra)  # type:ignore[has-type]
    def to_tetrahedra(
        self: Self, *args, **kwargs
    ) -> UnstructuredGrid:  # numpydoc ignore=PR01,RT01
        """Cast to a rectangular grid and then convert to tetrahedra."""
        return self.cast_to_rectilinear_grid().to_tetrahedra(*args, **kwargs)

    @property
    def direction_matrix(self: Self) -> NumpyArray[float]:
        """Set or get the direction matrix.

        The direction matrix is a 3x3 matrix which controls the orientation of the
        image data.

        .. versionadded:: 0.45

        Returns
        -------
        np.ndarray
            Direction matrix as a 3x3 NumPy array.

        """
        return array_from_vtkmatrix(self.GetDirectionMatrix())

    @direction_matrix.setter
    def direction_matrix(self: Self, matrix: RotationLike) -> None:
        self.SetDirectionMatrix(vtkmatrix_from_array(_validation.validate_transform3x3(matrix)))

    @property
    def index_to_physical_matrix(self: Self) -> NumpyArray[float]:
        """Return or set 4x4 matrix to transform index space (ijk) to physical space (xyz).

        .. note::
            Setting this property modifies the object's :class:`~pyvista.ImageData.origin`,
            :class:`~pyvista.ImageData.spacing`, and :class:`~pyvista.ImageData.direction_matrix`
            properties.

        .. versionadded:: 0.45

        Returns
        -------
        np.ndarray
            4x4 transformation matrix.

        """
        return array_from_vtkmatrix(self.GetIndexToPhysicalMatrix())

    @index_to_physical_matrix.setter
    def index_to_physical_matrix(
        self: Self, matrix: TransformLike
    ) -> None:  # numpydoc ignore=GL08
        T, R, N, S, K = pyvista.Transform(matrix).decompose()
        if not np.allclose(K, np.eye(3)):
            warnings.warn(
                'The transformation matrix has a shear component which has been removed. \n'
                'Shear is not supported when setting `ImageData` `index_to_physical_matrix`.'
            )

        self.origin = T
        self.direction_matrix = R * N
        self.spacing = S

    @property
    def physical_to_index_matrix(self: Self) -> NumpyArray[float]:
        """Return or set 4x4 matrix to transform from physical space (xyz) to index space (ijk).

        .. note::
            Setting this property modifies the object's :class:`~pyvista.ImageData.origin`,
            :class:`~pyvista.ImageData.spacing`, and :class:`~pyvista.ImageData.direction_matrix`
            properties.

        .. versionadded:: 0.45

        Returns
        -------
        np.ndarray
            4x4 transformation matrix.

        """
        return array_from_vtkmatrix(self.GetPhysicalToIndexMatrix())

    @physical_to_index_matrix.setter
    def physical_to_index_matrix(
        self: Self, matrix: TransformLike
    ) -> None:  # numpydoc ignore=GL08
        self.index_to_physical_matrix = pyvista.Transform(matrix).inverse_matrix