1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
|
"""Wrappers for :vtk:`vtkDataObject`.
The data objects does not have any sort of spatial reference.
"""
from __future__ import annotations
import numpy as np
import pyvista
from . import _vtk_core as _vtk
from .dataobject import DataObject
from .datasetattributes import DataSetAttributes
from .utilities.arrays import FieldAssociation
from .utilities.arrays import FieldLiteral
from .utilities.arrays import RowLiteral
from .utilities.arrays import get_array
from .utilities.arrays import row_array
class Table(DataObject, _vtk.vtkTable):
"""Wrapper for the :vtk:`vtkTable` class.
Create by passing a 2D NumPy array of shape (``n_rows`` by ``n_columns``)
or from a dictionary containing NumPy arrays.
Examples
--------
>>> import pyvista as pv
>>> import numpy as np
>>> arrays = np.random.default_rng().random((100, 3))
>>> table = pv.Table(arrays)
"""
def __init__(self, *args, deep: bool = True, **kwargs): # noqa: ARG002
"""Initialize the table."""
super().__init__()
if len(args) == 1:
if isinstance(args[0], _vtk.vtkTable):
if deep:
self.deep_copy(args[0])
else:
self.shallow_copy(args[0])
elif isinstance(args[0], (np.ndarray, list)):
self._from_arrays(args[0])
elif isinstance(args[0], dict):
self._from_dict(args[0])
elif 'pandas.core.frame.DataFrame' in str(type(args[0])):
self._from_pandas(args[0])
else:
msg = f'Table unable to be made from ({type(args[0])})'
raise TypeError(msg)
@staticmethod
def _prepare_arrays(arrays):
arrays = np.asarray(arrays)
if arrays.ndim == 1:
return np.reshape(arrays, (1, -1))
elif arrays.ndim == 2:
return arrays.T
else:
msg = 'Only 1D or 2D arrays are supported by Tables.'
raise ValueError(msg)
def _from_arrays(self, arrays) -> None:
np_table = self._prepare_arrays(arrays)
for i, array in enumerate(np_table):
self.row_arrays[f'Array {i}'] = array
def _from_dict(self, array_dict):
for array in array_dict.values():
if not isinstance(array, np.ndarray) and array.ndim < 3:
msg = 'Dictionary must contain only NumPy arrays with maximum of 2D.'
raise ValueError(msg)
for name, array in array_dict.items():
self.row_arrays[name] = array
def _from_pandas(self, data_frame) -> None:
for name in data_frame.keys():
self.row_arrays[name] = data_frame[name].values
@property
def n_rows(self):
"""Return the number of rows.
Returns
-------
int
The number of rows.
"""
return self.GetNumberOfRows()
@n_rows.setter
def n_rows(self, n) -> None:
"""Set the number of rows.
Parameters
----------
n : int
The number of rows.
"""
self.SetNumberOfRows(n)
@property
def n_columns(self):
"""Return the number of columns.
Returns
-------
int
The number of columns.
"""
return self.GetNumberOfColumns()
@property
def n_arrays(self):
"""Return the number of columns.
Alias for: ``n_columns``.
Returns
-------
int
The number of columns.
"""
return self.n_columns
def _row_array(self, name=None):
"""Return row scalars of a vtk object.
Parameters
----------
name : str
Name of row scalars to retrieve.
Returns
-------
numpy.ndarray
Numpy array of the row.
"""
return self.row_arrays.get_array(name)
@property
def row_arrays(self):
"""Return the all row arrays.
Returns
-------
int
The all row arrays.
"""
return DataSetAttributes(
vtkobject=self.GetRowData(),
dataset=self, # type: ignore[arg-type]
association=FieldAssociation.ROW,
)
def keys(self):
"""Return the table keys.
Returns
-------
list
List of the array names of this table.
"""
return self.row_arrays.keys()
def items(self):
"""Return the table items.
Returns
-------
list
List containing tuples pairs of the name and array of the table arrays.
"""
return self.row_arrays.items()
def values(self):
"""Return the table values.
Returns
-------
list
List of the table arrays.
"""
return self.row_arrays.values()
def update(self, data) -> None:
"""Set the table data using a dict-like update.
Parameters
----------
data : DataSetAttributes
Other dataset attributes to update from.
"""
if isinstance(data, (np.ndarray, list)):
# Allow table updates using array data
data = self._prepare_arrays(data)
data = {f'Array {i}': array for i, array in enumerate(data)}
self.row_arrays.update(data)
self.Modified()
def pop(self, name):
"""Pop off an array by the specified name.
Parameters
----------
name : int or str
Index or name of the row array.
Returns
-------
pyvista.pyvista_ndarray
PyVista array.
"""
return self.row_arrays.pop(name)
def __getitem__(self, index):
"""Search row data for an array."""
return self._row_array(name=index)
def _ipython_key_completions_(self):
return self.keys()
def get(self, index):
"""Get an array by its name.
Parameters
----------
index : int or str
Index or name of the row.
Returns
-------
pyvista.pyvista_ndarray
PyVista array.
"""
return self[index]
def __setitem__(self, name, scalars) -> None:
"""Add/set an array in the row_arrays."""
self.row_arrays[name] = scalars
def _remove_array(self, _, key) -> None:
"""Remove a single array by name from each field (internal helper)."""
self.row_arrays.remove(key)
def __delitem__(self, name) -> None:
"""Remove an array by the specified name."""
del self.row_arrays[name]
def __iter__(self):
"""Return the iterator across all arrays."""
for array_name in self.row_arrays:
yield self.row_arrays[array_name]
def _get_attrs(self):
"""Return the representation methods."""
attrs = []
attrs.append(('N Rows', self.n_rows, '{}'))
return attrs
def _repr_html_(self):
"""Return a pretty representation for Jupyter notebooks.
It includes header details and information about all arrays.
"""
fmt = ''
if self.n_arrays > 0:
fmt += "<table style='width: 100%;'>"
fmt += '<tr><th>Header</th><th>Data Arrays</th></tr>'
fmt += '<tr><td>'
# Get the header info
fmt += self.head(display=False, html=True)
# Fill out scalars arrays
if self.n_arrays > 0:
fmt += '</td><td>'
fmt += '\n'
fmt += "<table style='width: 100%;'>\n"
titles = ['Name', 'Type', 'N Comp', 'Min', 'Max']
fmt += '<tr>' + ''.join([f'<th>{t}</th>' for t in titles]) + '</tr>\n'
row = '<tr><td>{}</td><td>{}</td><td>{}</td><td>{}</td><td>{}</td></tr>\n'
row = '<tr>' + ''.join(['<td>{}</td>' for i in range(len(titles))]) + '</tr>\n'
def format_array(key):
"""Format array information for printing (internal helper)."""
arr = row_array(self, key)
dl, dh = self.get_data_range(key)
dl = pyvista.FLOAT_FORMAT.format(dl) # type: ignore[assignment]
dh = pyvista.FLOAT_FORMAT.format(dh) # type: ignore[assignment]
ncomp = 0 if arr is None else arr.shape[1] if arr.ndim > 1 else 1
dtype = None if arr is None else arr.dtype
return row.format(key, dtype, ncomp, dl, dh)
for i in range(self.n_arrays):
key = self.GetRowData().GetArrayName(i)
fmt += format_array(key)
fmt += '</table>\n'
fmt += '\n'
fmt += '</td></tr> </table>'
return fmt
def __repr__(self):
"""Return the object representation."""
return self.head(display=False, html=False)
def __str__(self):
"""Return the object string representation."""
return self.head(display=False, html=False)
def to_pandas(self):
"""Create a Pandas DataFrame from this Table.
Returns
-------
pandas.DataFrame
This table represented as a pandas dataframe.
"""
try:
import pandas as pd # noqa: PLC0415
except ImportError: # pragma: no cover
msg = 'Install ``pandas`` to use this feature.'
raise ImportError(msg)
data_frame = pd.DataFrame()
for name, array in self.items():
data_frame[name] = array
return data_frame
def save(self, *args, **kwargs): # pragma: no cover
"""Save the table."""
msg = "Please use the `to_pandas` method and harness Pandas' wonderful file IO methods."
raise NotImplementedError(msg)
def get_data_range( # type: ignore[override]
self,
arr: str | None = None,
preference: FieldLiteral | RowLiteral = 'row',
) -> tuple[float, float]:
"""Get the min and max of a named array.
Parameters
----------
arr : str, numpy.ndarray, optional
The name of the array to get the range. If ``None``, the active scalar
is used.
preference : str, optional
When scalars is specified, this is the preferred array type
to search for in the dataset. Must be either ``'row'`` or
``'field'``.
Returns
-------
tuple
``(min, max)`` of the array.
"""
if arr is None:
# use the first array in the row data
arr = self.GetRowData().GetArrayName(0)
if isinstance(arr, str):
arr = get_array(self, arr, preference=preference) # type: ignore[assignment]
# If array has no tuples return a NaN range
if arr.size == 0 or not np.issubdtype(arr.dtype, np.number): # type: ignore[attr-defined]
return (np.nan, np.nan)
# Use the array range
return np.nanmin(arr), np.nanmax(arr)
@property
def is_empty(self) -> bool: # numpydoc ignore=RT01
"""Return ``True`` if the table has no rows and no columns.
.. versionadded:: 0.45
Examples
--------
>>> import pyvista as pv
>>> import numpy as np
>>> table = pv.Table()
>>> table.is_empty
True
>>> arrays = np.random.default_rng().random((100, 3))
>>> table = pv.Table(arrays)
>>> table.is_empty
False
"""
return self.n_rows == 0 and self.n_columns == 0
|