1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
|
"""Contains the PartitionedDataSet class."""
from __future__ import annotations
from collections.abc import MutableSequence
from typing import TYPE_CHECKING
from typing import overload
from pyvista._deprecate_positional_args import _deprecate_positional_args
from . import _vtk_core as _vtk
from .dataobject import DataObject
from .errors import PartitionedDataSetsNotSupported
from .utilities.helpers import is_pyvista_dataset
from .utilities.helpers import wrap
if TYPE_CHECKING:
from collections.abc import Iterable
from typing_extensions import Self
from .dataset import DataSet
from .utilities.arrays import FieldAssociation
class PartitionedDataSet(DataObject, MutableSequence, _vtk.vtkPartitionedDataSet): # type: ignore[type-arg]
"""Wrapper for the :vtk:`vtkPartitionedDataSet` class.
DataSet which composite dataset to encapsulates a dataset consisting of partitions.
Examples
--------
>>> import pyvista as pv
>>> data = [
... pv.Sphere(center=(2, 0, 0)),
... pv.Cube(center=(0, 2, 0)),
... pv.Cone(),
... ]
>>> partitions = pv.PartitionedDataSet(data)
>>> len(partitions)
3
"""
if _vtk.vtk_version_info >= (9, 1):
_WRITERS = {'.vtpd': _vtk.vtkXMLPartitionedDataSetWriter}
if _vtk.vtk_version_info >= (9, 4):
_WRITERS['.vtkhdf'] = _vtk.vtkHDFWriter
def __init__(self, *args, **kwargs):
"""Initialize the PartitionedDataSet."""
super().__init__()
if len(args) == 1:
if isinstance(args[0], _vtk.vtkPartitionedDataSet):
deep = kwargs.get('deep', True)
if deep:
self.deep_copy(args[0])
else:
raise PartitionedDataSetsNotSupported
elif isinstance(args[0], (list, tuple)):
for partition in args[0]:
self.append(partition)
self.wrap_nested()
def wrap_nested(self) -> None:
"""Ensure that all nested data structures are wrapped as PyVista datasets.
This is performed in place.
"""
for i in range(self.n_partitions):
partition = self.GetPartition(i)
if not is_pyvista_dataset(partition):
self.SetPartition(i, wrap(partition))
@overload
def __getitem__(self, index: int) -> DataSet | None: ... # pragma: no cover
@overload
def __getitem__(self, index: slice) -> PartitionedDataSet: ... # pragma: no cover
def __getitem__(self, index):
"""Get a partition by its index."""
if isinstance(index, slice):
return PartitionedDataSet([self[i] for i in range(self.n_partitions)[index]])
else:
if index < -self.n_partitions or index >= self.n_partitions:
msg = f'index ({index}) out of range for this dataset.'
raise IndexError(msg)
if index < 0:
index = self.n_partitions + index
return wrap(self.GetPartition(index))
@overload
def __setitem__(self, index: int, data: DataSet | None) -> None: ... # pragma: no cover
@overload
def __setitem__(
self, index: slice, data: Iterable[DataSet | None]
) -> None: ... # pragma: no cover
def __setitem__(
self,
index: int | slice,
data,
):
"""Set a partition with a VTK data object."""
if isinstance(index, slice):
for i, d in zip(range(self.n_partitions)[index], data):
self.SetPartition(i, d)
else:
if index < -self.n_partitions or index >= self.n_partitions:
msg = f'index ({index}) out of range for this dataset.'
raise IndexError(msg)
if index < 0:
index = self.n_partitions + index
self.SetPartition(index, data)
def __delitem__(self, index: int | slice) -> None:
"""Remove a partition at the specified index are not supported."""
raise PartitionedDataSetsNotSupported
def insert(self, index: int, dataset: DataSet) -> None: # numpydoc ignore=PR01
"""Insert data before index."""
index = range(self.n_partitions)[index]
self.n_partitions += 1
for i in reversed(range(index, self.n_partitions - 1)):
self[i + 1] = self[i]
self[index] = dataset
def pop(self, index: int = -1) -> None: # numpydoc ignore=PR01 # noqa: ARG002
"""Pop off a partition at the specified index are not supported."""
raise PartitionedDataSetsNotSupported
def _get_attrs(self):
"""Return the representation methods (internal helper)."""
attrs = []
attrs.append(('N Partitions', self.n_partitions, '{}'))
return attrs
def _repr_html_(self) -> str:
"""Define a pretty representation for Jupyter notebooks."""
fmt = ''
fmt += "<table style='width: 100%;'>"
fmt += '<tr><th>Information</th><th>Partitions</th></tr>'
fmt += '<tr><td>'
fmt += '\n'
fmt += '<table>\n'
fmt += f'<tr><th>{type(self).__name__}</th><th>Values</th></tr>\n'
row = '<tr><td>{}</td><td>{}</td></tr>\n'
for attr in self._get_attrs():
try:
fmt += row.format(attr[0], attr[2].format(*attr[1]))
except TypeError:
fmt += row.format(attr[0], attr[2].format(attr[1]))
fmt += '</table>\n'
fmt += '\n'
fmt += '</td><td>'
fmt += '\n'
fmt += '<table>\n'
row = '<tr><th>{}</th><th>{}</th></tr>\n'
fmt += row.format('Index', 'Type')
for i in range(self.n_partitions):
data = self[i]
fmt += row.format(i, type(data).__name__)
fmt += '</table>\n'
fmt += '\n'
fmt += '</td></tr> </table>'
return fmt
def __repr__(self) -> str:
"""Define an adequate representation."""
fmt = f'{type(self).__name__} ({hex(id(self))})\n'
max_len = max(len(attr[0]) for attr in self._get_attrs()) + 4
row = f' {{:{max_len}s}}' + '{}\n'
for attr in self._get_attrs():
try:
fmt += row.format(attr[0], attr[2].format(*attr[1]))
except TypeError:
fmt += row.format(attr[0], attr[2].format(attr[1]))
return fmt.strip()
def __str__(self) -> str:
"""Return the str representation of the multi partition."""
return PartitionedDataSet.__repr__(self)
def __len__(self) -> int:
"""Return the number of partitions."""
return self.n_partitions
def copy_meta_from(self, ido, deep) -> None: # numpydoc ignore=PR01
"""Copy pyvista meta data onto this object from another object."""
@_deprecate_positional_args
def copy(self, deep: bool = True): # noqa: FBT001, FBT002
"""Return a copy of the PartitionedDataSet.
Parameters
----------
deep : bool, default: True
When ``True``, make a full copy of the object.
Returns
-------
pyvista.PartitionedDataSet
Deep or shallow copy of the ``PartitionedDataSet``.
Examples
--------
>>> import pyvista as pv
>>> data = [
... pv.Sphere(center=(2, 0, 0)),
... pv.Cube(center=(0, 2, 0)),
... pv.Cone(),
... ]
>>> partitions = pv.PartitionedDataSet(data)
>>> new_partitions = partitions.copy()
>>> len(new_partitions)
3
"""
thistype = type(self)
newobject = thistype()
if deep:
newobject.deep_copy(self)
else:
raise PartitionedDataSetsNotSupported
newobject.copy_meta_from(self, deep)
newobject.wrap_nested()
return newobject
@property
def n_partitions(self) -> int:
"""Return the number of partitions.
Returns
-------
int
The number of partitions.
"""
return self.GetNumberOfPartitions()
@n_partitions.setter
def n_partitions(self, n) -> None:
self.SetNumberOfPartitions(n)
self.Modified()
@property
def is_empty(self) -> bool: # numpydoc ignore=RT01
"""Return ``True`` if there are no partitions.
.. versionadded:: 0.46
Examples
--------
>>> import pyvista as pv
>>> mesh = pv.PartitionedDataSet()
>>> mesh.is_empty
True
>>> mesh.append(pv.Sphere())
>>> mesh.is_empty
False
"""
return self.n_partitions == 0
def append(self, dataset) -> None:
"""Add a data set to the next partition index.
Parameters
----------
dataset : pyvista.DataSet
Dataset to append to this partitioned dataset.
"""
index = self.n_partitions
self.n_partitions += 1
self[index] = dataset
def get_data_range( # numpydoc ignore=RT01
self: Self, name: str | None, preference: FieldAssociation | str
) -> tuple[float, float]: # pragma: no cover
"""Get the non-NaN min and max of a named array."""
return DataObject.get_data_range(self, name=name, preference=preference)
|