File: pointset.py

package info (click to toggle)
python-pyvista 0.46.4-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 176,968 kB
  • sloc: python: 94,346; sh: 216; makefile: 70
file content (3830 lines) | stat: -rw-r--r-- 134,045 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
"""Sub-classes and wrappers for :vtk:`vtkPointSet`."""

from __future__ import annotations

from collections.abc import Iterable
from collections.abc import Sequence
import contextlib
from functools import cached_property
from functools import wraps
import numbers
from pathlib import Path
from textwrap import dedent
from typing import TYPE_CHECKING
from typing import ClassVar
from typing import Union
from typing import cast
import warnings

import numpy as np

import pyvista
from pyvista._deprecate_positional_args import _deprecate_positional_args

from . import _vtk_core as _vtk
from .cell import CellArray
from .cell import _get_connectivity_array
from .cell import _get_irregular_cells
from .cell import _get_offset_array
from .cell import _get_regular_cells
from .celltype import CellType
from .dataset import DataSet
from .errors import CellSizeError
from .errors import PointSetCellOperationError
from .errors import PointSetDimensionReductionError
from .errors import PointSetNotSupported
from .errors import PyVistaDeprecationWarning
from .errors import VTKVersionError
from .filters import PolyDataFilters
from .filters import StructuredGridFilters
from .filters import UnstructuredGridFilters
from .filters import _get_output
from .utilities.arrays import convert_array
from .utilities.cells import create_mixed_cells
from .utilities.cells import get_mixed_cells
from .utilities.cells import numpy_to_idarr
from .utilities.fileio import get_ext
from .utilities.misc import abstract_class
from .utilities.points import vtk_points

if TYPE_CHECKING:
    from typing_extensions import Self

    from ._typing_core import ArrayLike
    from ._typing_core import BoundsTuple
    from ._typing_core import CellArrayLike
    from ._typing_core import MatrixLike
    from ._typing_core import NumpyArray
    from ._typing_core import VectorLike

    _PolyDataWriterAlias = Union[
        _vtk.vtkPLYWriter,
        _vtk.vtkXMLPolyDataWriter,
        _vtk.vtkSTLWriter,
        _vtk.vtkPolyDataWriter,
        _vtk.vtkHoudiniPolyDataWriter,
        _vtk.vtkOBJWriter,
        _vtk.vtkIVWriter,
        _vtk.vtkHDFWriter,
    ]

    _UnstructuredGridWriterAlias = Union[
        _vtk.vtkXMLUnstructuredGridWriter, _vtk.vtkUnstructuredGridWriter, _vtk.vtkHDFWriter
    ]


DEFAULT_INPLACE_WARNING = (
    'You did not specify a value for `inplace` and the default value will '
    'be changing to `False` in future versions for point-based meshes (e.g., '
    '`PolyData`). Please make sure you are not assuming this to be an inplace '
    'operation.'
)


@abstract_class
class _PointSet(DataSet):
    """PyVista's equivalent of :vtk:`vtkPointSet`.

    This holds methods common to PolyData and UnstructuredGrid.
    """

    _WRITERS: ClassVar[dict[str, type[_vtk.vtkSimplePointsWriter]]] = {  # type: ignore[assignment]
        '.xyz': _vtk.vtkSimplePointsWriter,
    }

    @_deprecate_positional_args
    def center_of_mass(self, scalars_weight: bool = False) -> NumpyArray[float]:  # noqa: FBT001, FBT002
        """Return the coordinates for the center of mass of the mesh.

        Parameters
        ----------
        scalars_weight : bool, default: False
            Flag for using the mesh scalars as weights.

        Returns
        -------
        numpy.ndarray
            Coordinates for the center of mass.

        Examples
        --------
        >>> import pyvista as pv
        >>> mesh = pv.Sphere(center=(1, 1, 1))
        >>> mesh.center_of_mass()
        array([1., 1., 1.])

        """
        alg = _vtk.vtkCenterOfMass()
        alg.SetInputDataObject(self)
        alg.SetUseScalarsAsWeights(scalars_weight)
        alg.Update()
        return np.array(alg.GetCenter())

    def shallow_copy(self, to_copy: DataSet) -> None:  # type: ignore[override]
        """Create a shallow copy from a different dataset into this one.

        This method mutates this dataset and returns ``None``.

        Parameters
        ----------
        to_copy : pyvista.DataSet
            Data object to perform the shallow copy from.

        """
        # Set default points if needed
        if not to_copy.GetPoints():
            to_copy.SetPoints(_vtk.vtkPoints())
        DataSet.shallow_copy(self, cast('_vtk.vtkDataObject', to_copy))

    @_deprecate_positional_args(allowed=['ind'])
    def remove_cells(
        self,
        ind: VectorLike[bool] | VectorLike[int],
        inplace: bool = False,  # noqa: FBT001, FBT002
    ) -> _PointSet:
        """Remove cells.

        Parameters
        ----------
        ind : VectorLike[int] | VectorLike[bool]
            Cell indices to be removed.  The array can also be a
            boolean array of the same size as the number of cells.

        inplace : bool, default: False
            Whether to update the mesh in-place.

        Returns
        -------
        pyvista.DataSet
            Same type as the input, but with the specified cells
            removed.

        See Also
        --------
        :ref:`ghost_cells_example`

        Examples
        --------
        Remove 20 cells from an unstructured grid.

        >>> from pyvista import examples
        >>> import pyvista as pv
        >>> hex_mesh = pv.read(examples.hexbeamfile)
        >>> removed = hex_mesh.remove_cells(range(10, 20))
        >>> removed.plot(color='lightblue', show_edges=True, line_width=3)

        """
        if isinstance(ind, np.ndarray):
            if ind.dtype == np.bool_ and ind.size != self.n_cells:
                msg = f'Boolean array size must match the number of cells ({self.n_cells})'
                raise ValueError(msg)
        ghost_cells = np.zeros(self.n_cells, np.uint8)
        ghost_cells[ind] = _vtk.vtkDataSetAttributes.DUPLICATECELL

        target = self if inplace else self.copy()

        target.cell_data[_vtk.vtkDataSetAttributes.GhostArrayName()] = ghost_cells
        target.RemoveGhostCells()
        return target

    def points_to_double(self) -> _PointSet:
        """Convert the points datatype to double precision.

        Returns
        -------
        pyvista.PointSet
            Pointset with points in double precision.

        Notes
        -----
        This operates in place.

        Examples
        --------
        Create a mesh that has points of the type ``float32`` and
        convert the points to ``float64``.

        >>> import pyvista as pv
        >>> mesh = pv.Sphere()
        >>> mesh.points.dtype
        dtype('float32')
        >>> _ = mesh.points_to_double()
        >>> mesh.points.dtype
        dtype('float64')

        """
        if self.points.dtype != np.double:
            self.points = self.points.astype(np.double)
        return self

    # todo: `transform_all_input_vectors` is not handled when modifying inplace
    @_deprecate_positional_args(allowed=['xyz'])
    def translate(
        self: Self,
        xyz: VectorLike[float],
        transform_all_input_vectors: bool = False,  # noqa: FBT001, FBT002
        inplace: bool = False,  # noqa: FBT001, FBT002
    ):
        """Translate the mesh.

        Parameters
        ----------
        xyz : VectorLike[float]
            A vector of three floats of cartesian values to translate the mesh with.

        transform_all_input_vectors : bool, default: False
            When ``True``, all input vectors are transformed. Otherwise, only
            the points, normals and active vectors are transformed. This is
            only valid when not updating in place.

        inplace : bool, default: False
            Updates mesh in-place.

        Returns
        -------
        pyvista.PointSet
            Translated pointset.

        Examples
        --------
        Create a sphere and translate it by ``(2, 1, 2)``.

        >>> import pyvista as pv
        >>> mesh = pv.Sphere()
        >>> mesh.center
        (0.0, 0.0, 0.0)
        >>> trans = mesh.translate((2, 1, 2), inplace=True)
        >>> trans.center
        (2.0, 1.0, 2.0)

        """
        if inplace:
            self.points += np.asarray(xyz)
            return self
        return pyvista.DataObjectFilters.translate(
            self,
            xyz,
            transform_all_input_vectors=transform_all_input_vectors,
            inplace=inplace,
        )


class PointSet(_PointSet, _vtk.vtkPointSet):
    """Concrete class for storing a set of points.

    This is a concrete class representing a set of points that specifies the
    interface for datasets that explicitly use "point" arrays to represent
    geometry. This class is useful for improving the performance of filters on
    point clouds, but not plotting.

    For further details see :vtk:`vtkPointSet`.

    Parameters
    ----------
    var_inp : :vtk:`vtkPointSet`, MatrixLike[float], optional
        Flexible input type.  Can be a :vtk:`vtkPointSet`, in which case
        this PointSet object will be copied if ``deep=True`` and will
        be a shallow copy if ``deep=False``.

        List, numpy array, or sequence containing point locations. Must be an
        ``(N, 3)`` array of points.

    deep : bool, default: False
        Whether to copy the input ``points``, or to create a PointSet from them
        without copying them.  Setting ``deep=True`` ensures that the original
        arrays can be modified outside the mesh without affecting the
        mesh.

    force_float : bool, default: True
        Casts the datatype to ``float32`` if points datatype is non-float.  Set
        this to ``False`` to allow non-float types, though this may lead to
        truncation of intermediate floats when transforming datasets.

    Notes
    -----
    This class requires ``vtk>=9.1.0``. This is an abstract class in
    ``vtk<9.1.0`` and cannot be instantiated.

    Examples
    --------
    Create a simple point cloud of 10 points from a numpy array.

    >>> import numpy as np
    >>> import pyvista as pv
    >>> rng = np.random.default_rng(seed=0)
    >>> points = rng.random((10, 3))
    >>> pset = pv.PointSet(points)

    Plot the pointset. Note: this casts to a :class:`pyvista.PolyData`
    internally when plotting.

    >>> pset.plot(point_size=10)

    """

    def __new__(cls, *args, **kwargs):
        """Construct a new PointSet object.

        Wrapping this is necessary for us to show an informative error
        message when the VTK version is too old, causing PointSet to be
        an abstract class. Since we inherit the ``__new__()`` method of
        :vtk:`vtkPointSet`, we would otherwise see a generic error about
        the class being abstract.

        """
        if pyvista.vtk_version_info < (9, 1, 0):
            msg = 'pyvista.PointSet requires VTK >= 9.1.0'
            raise VTKVersionError(msg)
        return super().__new__(cls, *args, **kwargs)

    @_deprecate_positional_args(allowed=['var_inp'])
    def __init__(self, var_inp=None, deep: bool = False, force_float: bool = True) -> None:  # noqa: FBT001, FBT002
        """Initialize the pointset."""
        super().__init__()

        if var_inp is None:
            return
        elif isinstance(var_inp, _vtk.vtkPointSet):
            if deep:
                self.deep_copy(var_inp)
            else:
                self.shallow_copy(var_inp)  # type: ignore[arg-type]
        else:
            self.SetPoints(vtk_points(var_inp, deep=deep, force_float=force_float))

    def __repr__(self):
        """Return the standard representation."""
        return DataSet.__repr__(self)

    def __str__(self):
        """Return the standard str representation."""
        return DataSet.__str__(self)

    @_deprecate_positional_args
    def cast_to_polydata(self, deep: bool = True):  # noqa: FBT001, FBT002
        """Cast this dataset to polydata.

        Parameters
        ----------
        deep : bool, deep: True
            Whether to copy the pointset points, or to create a PolyData
            without copying them.  Setting ``deep=True`` ensures that the
            original arrays can be modified outside the PolyData without
            affecting the PolyData.

        Returns
        -------
        pyvista.PolyData
            PointSet cast to a ``pyvista.PolyData``.

        """
        pdata = PolyData(self.points, deep=deep)
        if deep:
            pdata.point_data.update(self.point_data)  # update performs deep copy
        else:
            for key, value in self.point_data.items():
                pdata.point_data[key] = value
        return pdata

    def cast_to_unstructured_grid(self) -> pyvista.UnstructuredGrid:
        """Cast this dataset to :class:`pyvista.UnstructuredGrid`.

        A deep copy of the points and point data is made.

        Returns
        -------
        pyvista.UnstructuredGrid
            Dataset cast to a :class:`pyvista.UnstructuredGrid`.

        Examples
        --------
        Cast a :class:`pyvista.PointSet` to a
        :class:`pyvista.UnstructuredGrid`.

        >>> import pyvista as pv
        >>> from pyvista import examples
        >>> mesh = examples.download_cloud_dark_matter()
        >>> type(mesh)
        <class 'pyvista.core.pointset.PointSet'>
        >>> grid = mesh.cast_to_unstructured_grid()
        >>> type(grid)
        <class 'pyvista.core.pointset.UnstructuredGrid'>

        """
        return self.cast_to_polydata(deep=False).cast_to_unstructured_grid()

    @wraps(DataSet.plot)  # type: ignore[has-type]
    def plot(self, *args, **kwargs):  # type: ignore[override]  # numpydoc ignore=RT01
        """Cast to PolyData and plot."""
        pdata = self.cast_to_polydata(deep=False)
        kwargs.setdefault('style', 'points')
        return pdata.plot(*args, **kwargs)

    @wraps(PolyDataFilters.threshold)  # type: ignore[has-type]
    def threshold(self, *args, **kwargs):  # type: ignore[override]  # numpydoc ignore=RT01
        """Cast to PolyData and threshold.

        Need this because cell-wise operations fail for PointSets.
        """
        return self.cast_to_polydata(deep=False).threshold(*args, **kwargs).cast_to_pointset()

    @wraps(PolyDataFilters.threshold_percent)  # type:ignore[has-type]
    def threshold_percent(self, *args, **kwargs):  # type: ignore[override]  # numpydoc ignore=RT01
        """Cast to PolyData and threshold.

        Need this because cell-wise operations fail for PointSets.
        """
        return (
            self.cast_to_polydata(deep=False).threshold_percent(*args, **kwargs).cast_to_pointset()
        )

    @wraps(PolyDataFilters.explode)
    def explode(self, *args, **kwargs):  # type: ignore[override]  # numpydoc ignore=RT01
        """Cast to PolyData and explode.

        The explode filter relies on cells.

        """
        return self.cast_to_polydata(deep=False).explode(*args, **kwargs).cast_to_pointset()

    @wraps(PolyDataFilters.delaunay_3d)  # type: ignore[has-type]
    def delaunay_3d(self, *args, **kwargs):  # type: ignore[override]  # numpydoc ignore=RT01
        """Cast to PolyData and run delaunay_3d."""
        return self.cast_to_polydata(deep=False).delaunay_3d(*args, **kwargs)

    @property
    def area(self) -> float:  # numpydoc ignore=RT01
        """Return 0.0 since a PointSet has no area."""
        return 0.0

    @property
    def volume(self) -> float:  # numpydoc ignore=RT01
        """Return 0.0 since a PointSet has no volume."""
        return 0.0

    def contour(self, *args, **kwargs):  # noqa: ARG002
        """Raise dimension reducing operations are not supported."""
        msg = 'Contour and other dimension reducing filters are not supported on PointSets'
        raise PointSetNotSupported(msg)

    def cell_data_to_point_data(self, *args, **kwargs):  # noqa: ARG002
        """Raise PointSets do not have cells."""
        msg = 'PointSets contain no cells or cell data.'
        raise PointSetNotSupported(msg)

    def point_data_to_cell_data(self, *args, **kwargs):  # noqa: ARG002
        """Raise PointSets do not have cells."""
        msg = 'PointSets contain no cells or cell data.'
        raise PointSetNotSupported(msg)

    def triangulate(self, *args, **kwargs):  # noqa: ARG002
        """Raise cell operations are not supported."""
        raise PointSetCellOperationError

    def decimate_boundary(self, *args, **kwargs):  # noqa: ARG002
        """Raise cell operations are not supported."""
        raise PointSetCellOperationError

    def find_cells_along_line(self, *args, **kwargs):  # noqa: ARG002
        """Raise cell operations are not supported."""
        raise PointSetCellOperationError

    def tessellate(self, *args, **kwargs):  # noqa: ARG002
        """Raise cell operations are not supported."""
        raise PointSetCellOperationError

    def slice(self, *args, **kwargs):  # noqa: ARG002
        """Raise dimension reducing operations are not supported."""
        raise PointSetDimensionReductionError

    def slice_along_axis(self, *args, **kwargs):  # noqa: ARG002
        """Raise dimension reducing operations are not supported."""
        raise PointSetDimensionReductionError

    def slice_along_line(self, *args, **kwargs):  # noqa: ARG002
        """Raise dimension reducing operations are not supported."""
        raise PointSetDimensionReductionError

    def slice_implicit(self, *args, **kwargs):  # noqa: ARG002
        """Raise dimension reducing operations are not supported."""
        raise PointSetDimensionReductionError

    def slice_orthogonal(self, *args, **kwargs):  # noqa: ARG002
        """Raise dimension reducing operations are not supported."""
        raise PointSetDimensionReductionError

    def shrink(self, *args, **kwargs):  # noqa: ARG002
        """Raise cell operations are not supported."""
        raise PointSetCellOperationError

    def separate_cells(self, *args, **kwargs):  # noqa: ARG002
        """Raise cell operations are not supported."""
        raise PointSetCellOperationError

    def remove_cells(self, *args, **kwargs):  # noqa: ARG002
        """Raise cell operations are not supported."""
        raise PointSetCellOperationError

    def point_is_inside_cell(self, *args, **kwargs):  # noqa: ARG002
        """Raise cell operations are not supported."""
        raise PointSetCellOperationError

    def extract_surface(self, *args, **kwargs):  # noqa: ARG002
        """Raise extract surface are not supported."""
        raise PointSetCellOperationError

    def extract_geometry(self, *args, **kwargs):  # noqa: ARG002
        """Raise extract geometry are not supported."""
        raise PointSetCellOperationError


class PolyData(_PointSet, PolyDataFilters, _vtk.vtkPolyData):
    """Dataset consisting of surface geometry (e.g. vertices, lines, and polygons).

    Can be initialized in several ways:

    - Create an empty mesh
    - Initialize from a :vtk:`vtkPolyData`
    - Using vertices
    - Using vertices and faces
    - From a file

    .. deprecated:: 0.44.0
       The parameters ``n_faces``, ``n_lines``, ``n_strips``, and
       ``n_verts`` are deprecated and no longer used. They were
       previously used to speed up the construction of the corresponding
       cell arrays but no longer provide any benefit.

    Parameters
    ----------
    var_inp : :vtk:`vtkPolyData`, str, sequence, optional
        Flexible input type.  Can be a :vtk:`vtkPolyData`, in which case
        this PolyData object will be copied if ``deep=True`` and will
        be a shallow copy if ``deep=False``.

        Also accepts a path, which may be local path as in
        ``'my_mesh.stl'`` or global path like ``'/tmp/my_mesh.ply'``
        or ``'C:/Users/user/my_mesh.ply'``.

        Otherwise, this must be a points array or list containing one
        or more points.  Each point must have 3 dimensions.  If
        ``faces``, ``lines``, ``strips``, and ``verts`` are all
        ``None``, then the ``PolyData`` object will be created with
        vertex cells with ``n_verts`` equal to the number of ``points``.

    faces : sequence[int], :vtk:`vtkCellArray`, CellArray, optional
        Polygonal faces of the mesh. Can be either a padded connectivity
        array or an explicit cell array object.

        In the padded array format, faces must contain padding
        indicating the number of points in the face.  For example, the
        two faces ``[10, 11, 12]`` and ``[20, 21, 22, 23]`` will be
        represented as ``[3, 10, 11, 12, 4, 20, 21, 22, 23]``.  This
        lets you have an arbitrary number of points per face.

        When not including the face connectivity array, each point
        will be assigned to a single vertex.  This is used for point
        clouds that have no connectivity.

    n_faces : int, optional
        Deprecated. Not used.

    lines : sequence[int], :vtk:`vtkCellArray`, CellArray, optional
        Line connectivity. Like ``faces``, this can be either a padded
        connectivity array or an explicit cell array object. The padded
        array format requires padding indicating the number of points in
        a line segment.  For example, the two line segments ``[0, 1]``
        and ``[1, 2, 3, 4]`` will be represented as
        ``[2, 0, 1, 4, 1, 2, 3, 4]``.

    n_lines : int, optional
        Deprecated. Not used.

    strips : sequence[int], :vtk:`vtkCellArray`, CellArray, optional
        Triangle strips connectivity.  Triangle strips require an
        initial triangle, and the following points of the strip. Each
        triangle is built with the new point and the two previous
        points.

        Just as in ``lines`` and ``faces``, this connectivity can be
        specified as either a padded array or an explicit cell array
        object. The padded array requires a padding indicating the
        number of points. For example, a single triangle strip of the 10
        point indices ``[0, 1, 2, 3, 6, 7, 4, 5, 0, 1]`` requires
        padding of ``10`` and should be input as
        ``[10, 0, 1, 2, 3, 6, 7, 4, 5, 0, 1]``.

    n_strips : int, optional
        Deprecated. Not used.

    deep : bool, optional
        Whether to copy the inputs, or to create a mesh from them
        without copying them.  Setting ``deep=True`` ensures that the
        original arrays can be modified outside the mesh without
        affecting the mesh. Default is ``False``.

    force_ext : str, optional
        If initializing from a file, force the reader to treat the
        file as if it had this extension as opposed to the one in the
        file.

    force_float : bool, optional
        Casts the datatype to ``float32`` if points datatype is
        non-float.  Default ``True``. Set this to ``False`` to allow
        non-float types, though this may lead to truncation of
        intermediate floats when transforming datasets.

    verts : sequence[int], :vtk:`vtkCellArray`, CellArray, optional
        The verts connectivity.  Like ``faces``, ``lines``, and
        ``strips`` this can be supplied as either a padded array or an
        explicit cell array object. In the padded array format,
        the padding indicates the number of vertices in each cell.  For
        example, ``[1, 0, 1, 1, 1, 2]`` indicates three vertex cells
        each with one point, and ``[2, 0, 1, 2, 2, 3]`` indicates two
        polyvertex cells each with two points.

    n_verts : int, optional
        Deprecated. Not used.

    See Also
    --------
    pyvista.PolyData.from_regular_faces
    pyvista.PolyData.from_irregular_faces

    Examples
    --------
    >>> import vtk
    >>> import numpy as np
    >>> from pyvista import examples
    >>> import pyvista as pv

    Seed random number generator for reproducible plots

    >>> rng = np.random.default_rng(seed=0)

    Create an empty mesh.

    >>> mesh = pv.PolyData()

    Initialize from a :vtk:`vtkPolyData` object.

    >>> vtkobj = vtk.vtkPolyData()
    >>> mesh = pv.PolyData(vtkobj)

    Initialize from just points, creating vertices

    >>> points = np.array([[0, 0, 0], [1, 0, 0], [1, 0.5, 0], [0, 0.5, 0]])
    >>> mesh = pv.PolyData(points)

    Initialize from points and faces, creating polygonal faces.

    >>> faces = np.hstack([[3, 0, 1, 2], [3, 0, 3, 2]])
    >>> mesh = pv.PolyData(points, faces)

    Initialize from points and lines.

    >>> lines = np.hstack([[2, 0, 1], [2, 1, 2]])
    >>> mesh = pv.PolyData(points, lines=lines)

    Initialize from points and triangle strips.

    >>> strips = np.hstack([[4, 0, 1, 3, 2]])
    >>> mesh = pv.PolyData(points, strips=strips)

    It is also possible to create with multiple cell types.

    >>> verts = [1, 0]
    >>> lines = [2, 1, 2]
    >>> mesh = pv.PolyData(points, verts=verts, lines=lines)

    Initialize from a filename.

    >>> mesh = pv.PolyData(examples.antfile)

    Construct a set of random line segments using a ``pv.CellArray`.
    Because every line in this example has the same size, in this case
    two points, we can use ``pv.CellArray.from_regular_cells`` to
    construct the ``lines`` cell array. This is the most efficient
    method to construct a cell array.

    >>> n_points = 20
    >>> n_lines = n_points // 2
    >>> points = rng.random((n_points, 3))
    >>> lines = rng.integers(low=0, high=n_points, size=(n_lines, 2))
    >>> mesh = pv.PolyData(points, lines=pv.CellArray.from_regular_cells(lines))
    >>> mesh.cell_data['line_idx'] = np.arange(n_lines)
    >>> mesh.plot(scalars='line_idx')

    Construct a set of random triangle strips using a ``pv.CellArray``.
    Because each strip in this example can have a different number
    of points, we use ``pv.CellArray.from_irregular_cells`` to construct
    the ``strips`` cell array.

    >>> n_strips = 4
    >>> n_verts_per_strip = rng.integers(low=3, high=7, size=n_strips)
    >>> n_points = 10 * sum(n_verts_per_strip)
    >>> points = rng.random((n_points, 3))
    >>> strips = [
    ...     rng.integers(low=0, high=n_points, size=nv) for nv in n_verts_per_strip
    ... ]
    >>> mesh = pv.PolyData(
    ...     points, strips=pv.CellArray.from_irregular_cells(strips)
    ... )
    >>> mesh.cell_data['strip_idx'] = np.arange(n_strips)
    >>> mesh.plot(show_edges=True, scalars='strip_idx')

    Construct a mesh reusing the ``faces`` ``pv.CellArray`` from another
    mesh. The VTK methods ``GetPolys``, ``GetLines``, ``GetStrips``, and
    ``GetVerts`` return the underlying ``CellArray``s for the ``faces``,
    ``lines``, ``strips``, and ``verts`` properties respectively.
    Reusing cell arrays like this can be a performance optimization for
    large meshes because it avoids allocating new arrays.

    >>> small_sphere = pv.Sphere().compute_normals()
    >>> inflated_points = (
    ...     small_sphere.points + 0.1 * small_sphere.point_data['Normals']
    ... )
    >>> larger_sphere = pv.PolyData(inflated_points, faces=small_sphere.GetPolys())
    >>> plotter = pv.Plotter()
    >>> _ = plotter.add_mesh(small_sphere, color='red', show_edges=True)
    >>> _ = plotter.add_mesh(
    ...     larger_sphere, color='blue', opacity=0.3, show_edges=True
    ... )
    >>> plotter.show()

    See :ref:`create_poly_example` for more examples.

    """

    _USE_STRICT_N_FACES = False

    _WRITERS: ClassVar[
        dict[
            str,
            (type[_PolyDataWriterAlias]),
        ]
    ] = {  # type: ignore[assignment]
        '.ply': _vtk.vtkPLYWriter,
        '.vtp': _vtk.vtkXMLPolyDataWriter,
        '.stl': _vtk.vtkSTLWriter,
        '.vtk': _vtk.vtkPolyDataWriter,
        '.geo': _vtk.vtkHoudiniPolyDataWriter,
        '.obj': _vtk.vtkOBJWriter,
        '.iv': _vtk.vtkIVWriter,
    }
    if _vtk.vtk_version_info >= (9, 4):
        _WRITERS.update({'.vtkhdf': _vtk.vtkHDFWriter})

    @_deprecate_positional_args(allowed=['var_inp', 'faces'])
    def __init__(  # noqa: PLR0917
        self,
        var_inp: _vtk.vtkPolyData | str | Path | MatrixLike[float] | None = None,
        faces: CellArrayLike | None = None,
        n_faces: int | None = None,
        lines: CellArrayLike | None = None,
        n_lines: int | None = None,
        strips: CellArrayLike | None = None,
        n_strips: int | None = None,
        deep: bool = False,  # noqa: FBT001, FBT002
        force_ext: str | None = None,
        force_float: bool = True,  # noqa: FBT001, FBT002
        verts: CellArrayLike | None = None,
        n_verts: int | None = None,
    ) -> None:
        """Initialize the polydata."""
        local_parms = locals()
        super().__init__()

        # allow empty input
        if var_inp is None:
            return

        # filename
        opt_kwarg = ['faces', 'n_faces', 'lines', 'n_lines']
        if isinstance(var_inp, (str, Path)):
            for kwarg in opt_kwarg:
                if local_parms[kwarg]:
                    msg = 'No other arguments should be set when first parameter is a string'
                    raise ValueError(msg)
            self._from_file(var_inp, force_ext=force_ext)  # is filename

            return

        # PolyData-like
        if isinstance(var_inp, _vtk.vtkPolyData):
            for kwarg in opt_kwarg:
                if local_parms[kwarg]:
                    msg = 'No other arguments should be set when first parameter is a PolyData'
                    raise ValueError(msg)
            if deep:
                self.deep_copy(var_inp)
            else:
                self.shallow_copy(var_inp)  # type: ignore[arg-type]
            return

        # First parameter is points
        if isinstance(var_inp, (np.ndarray, list, _vtk.vtkDataArray)):
            self.SetPoints(vtk_points(var_inp, deep=deep, force_float=force_float))

        else:
            msg = f"""
                Invalid Input type:

                Expected first argument to be either a:
                - vtkPolyData
                - pyvista.PolyData
                - numeric numpy.ndarray (1 or 2 dimensions)
                - List (flat or nested with 3 points per vertex)
                - vtkDataArray

                Instead got: {type(var_inp)}"""
            raise TypeError(dedent(msg.strip('\n')))

        # At this point, points have been setup, add faces and/or lines
        if faces is lines is strips is verts is None:
            # one cell per point (point cloud case)
            verts = self._make_vertex_cells(self.n_points)

        for k, v in (('verts', verts), ('strips', strips), ('faces', faces), ('lines', lines)):
            if v is None:
                continue

            # These properties can be supplied as either arrays or pre-constructed `CellArray`s
            if not isinstance(v, _vtk.vtkCellArray):
                try:
                    v = CellArray(v)  # noqa: PLW2901
                except CellSizeError as err:
                    # Raise an additional error so user knows which property triggered the error
                    msg = f'`{k}` cell array size is invalid.'
                    raise CellSizeError(msg) from err

            setattr(self, k, v)

        # deprecated 0.44.0, convert to error in 0.47.0, remove 0.48.0
        for k, v in (  # type: ignore[assignment]
            ('n_verts', n_verts),
            ('n_strips', n_strips),
            ('n_faces', n_faces),
            ('n_lines', n_lines),
        ):
            if v is not None:
                warnings.warn(
                    f'`PolyData` constructor parameter `{k}` is deprecated and no longer used.',
                    PyVistaDeprecationWarning,
                )

    def _post_file_load_processing(self) -> None:
        """Execute after loading a PolyData from file."""
        # When loading files with just point arrays, create and
        # set the polydata vertices
        if self.n_points > 0 and self.n_cells == 0:
            self.verts = self._make_vertex_cells(self.n_points)

    def __repr__(self) -> str:
        """Return the standard representation."""
        return DataSet.__repr__(self)

    def __str__(self) -> str:
        """Return the standard str representation."""
        return DataSet.__str__(self)

    @staticmethod
    def _make_vertex_cells(npoints: int) -> NumpyArray[int]:
        cells = np.empty((npoints, 2), dtype=pyvista.ID_TYPE)
        cells[:, 0] = 1
        cells[:, 1] = np.arange(npoints, dtype=pyvista.ID_TYPE)
        return cells

    @property
    def verts(self) -> NumpyArray[int]:  # numpydoc ignore=RT01
        """Get the vertex cells.

        Returns
        -------
        numpy.ndarray
            Array of vertex cell indices.

        Examples
        --------
        Create a point cloud polydata and return the vertex cells.

        >>> import pyvista as pv
        >>> import numpy as np
        >>> rng = np.random.default_rng(seed=0)
        >>> points = rng.random((5, 3))
        >>> pdata = pv.PolyData(points)
        >>> pdata.verts
        array([1, 0, 1, 1, 1, 2, 1, 3, 1, 4])

        Set vertex cells.  Note how the mesh plots both the surface
        mesh and the additional vertices in a single plot.

        >>> mesh = pv.Plane(i_resolution=3, j_resolution=3)
        >>> mesh.verts = np.vstack(
        ...     (
        ...         np.ones(mesh.n_points, dtype=np.int64),
        ...         np.arange(mesh.n_points),
        ...     )
        ... ).T
        >>> mesh.plot(
        ...     color='lightblue',
        ...     render_points_as_spheres=True,
        ...     point_size=60,
        ... )

        Vertex cells can also be set to a ``CellArray``. The following
        ``verts`` assignment is equivalent to the one above.

        >>> mesh.verts = pv.CellArray.from_regular_cells(
        ...     np.arange(mesh.n_points).reshape((-1, 1))
        ... )

        """
        return _vtk.vtk_to_numpy(self.GetVerts().GetData())

    @verts.setter
    def verts(self, verts: CellArrayLike) -> None:
        if isinstance(verts, _vtk.vtkCellArray):
            self.SetVerts(verts)
        else:
            self.SetVerts(CellArray(verts))

    @property
    def lines(self) -> NumpyArray[int]:  # numpydoc ignore=RT01
        """Return the connectivity array of the lines of this PolyData.

        Lines can also be set by assigning a :class:`~pyvista.CellArray`.

        Examples
        --------
        Return the lines from a spline.

        >>> import pyvista as pv
        >>> import numpy as np
        >>> points = np.random.default_rng().random((3, 3))
        >>> spline = pv.Spline(points, 10)
        >>> spline.lines
        array([10,  0,  1,  2,  3,  4,  5,  6,  7,  8,  9])

        """
        return _vtk.vtk_to_numpy(self.GetLines().GetData()).ravel()

    @lines.setter
    def lines(self, lines: CellArrayLike) -> None:
        if isinstance(lines, _vtk.vtkCellArray):
            self.SetLines(lines)
        else:
            self.SetLines(CellArray(lines))

    @property
    def faces(self) -> NumpyArray[int]:  # numpydoc ignore=RT01
        """Return the connectivity array of the faces of this PolyData.

        The faces array is organized as::

           [n0, p0_0, p0_1, ..., p0_n, n1, p1_0, p1_1, ..., p1_n, ...]

        where ``n0`` is the number of points in face 0, and ``pX_Y`` is the
        Y'th point in face X.

        For example, a triangle and a quadrilateral might be represented as::

           [3, 0, 1, 2, 4, 0, 1, 3, 4]

        Where the two individual faces would be ``[3, 0, 1, 2]`` and ``[4, 0, 1, 3, 4]``.

        Faces can also be set by assigning a :class:`~pyvista.CellArray` object
        instead of an array.

        Returns
        -------
        numpy.ndarray
            Array of face connectivity.

        See Also
        --------
        pyvista.PolyData.regular_faces
        pyvista.PolyData.irregular_faces

        Notes
        -----
        The array returned cannot be modified in place and will raise a
        ``ValueError`` if attempted.

        You can, however, set the faces directly. See the example.

        Examples
        --------
        >>> import pyvista as pv
        >>> plane = pv.Plane(i_resolution=2, j_resolution=2)
        >>> plane.faces
        array([4, 0, 1, 4, 3, 4, 1, 2, 5, 4, 4, 3, 4, 7, 6, 4, 4, 5, 8, 7])

        Note how the faces contain a "padding" indicating the number
        of points per face:

        >>> plane.faces.reshape(-1, 5)
        array([[4, 0, 1, 4, 3],
               [4, 1, 2, 5, 4],
               [4, 3, 4, 7, 6],
               [4, 4, 5, 8, 7]])

        Set the faces directly. The following example creates a simple plane
        with a single square faces and modifies it to have two triangles
        instead.

        >>> mesh = pv.Plane(i_resolution=1, j_resolution=1)
        >>> mesh.faces = [3, 0, 1, 2, 3, 3, 2, 1]
        >>> mesh.faces
        array([3, 0, 1, 2, 3, 3, 2, 1])

        """
        array = _vtk.vtk_to_numpy(self.GetPolys().GetData())
        # Flag this array as read only to ensure users do not attempt to write to it.
        array.flags['WRITEABLE'] = False
        return array

    @faces.setter
    def faces(self, faces: CellArrayLike) -> None:
        if isinstance(faces, _vtk.vtkCellArray):
            self.SetPolys(faces)
        else:
            # TODO: faster to mutate in-place if array is same size?
            self.SetPolys(CellArray(faces))

    @property
    def regular_faces(self) -> NumpyArray[int]:  # numpydoc ignore=RT01
        """Return a face array of point indices when all faces have the same size.

        Returns
        -------
        numpy.ndarray
            Array of face indices with shape (n_faces, face_size).

        See Also
        --------
        pyvista.PolyData.faces

        Notes
        -----
        This property does not validate that the mesh's faces are all
        actually the same size. If they're not, this property may either
        raise a `ValueError` or silently return an incorrect array.

        Examples
        --------
        Get the regular face array of a plane with 2x2 arrangement of cells
        as a 4x4 array.

        >>> import pyvista as pv
        >>> plane = pv.Plane(i_resolution=2, j_resolution=2)
        >>> plane.regular_faces
        array([[0, 1, 4, 3],
               [1, 2, 5, 4],
               [3, 4, 7, 6],
               [4, 5, 8, 7]])

        """
        return _get_regular_cells(self.GetPolys())

    @regular_faces.setter
    def regular_faces(self, faces: MatrixLike[int]) -> None:  # numpydoc ignore=PR01
        """Set the face cells from an (n_faces, face_size) array."""
        self.faces = CellArray.from_regular_cells(faces)

    @classmethod
    @_deprecate_positional_args(allowed=['points', 'faces'])
    def from_regular_faces(
        cls,
        points: MatrixLike[float],
        faces: MatrixLike[int],
        deep: bool = False,  # noqa: FBT001, FBT002
    ):
        """Alternate `pyvista.PolyData` convenience constructor from point and regular face arrays.

        Parameters
        ----------
        points : MatrixLike[float]
            A (n_points, 3) array of points.

        faces : MatrixLike[int]
            A (n_faces, face_size) array of face indices. For a triangle mesh, ``face_size = 3``.

        deep : bool, default: False
            Whether to deep copy the faces array into :vtk:`vtkCellArray` connectivity data.

        Returns
        -------
        pyvista.PolyData
            The newly constructed mesh.

        See Also
        --------
        pyvista.PolyData.from_irregular_faces

        Examples
        --------
        Construct a tetrahedron from four triangles

        >>> import pyvista as pv
        >>> points = [[1.0, 1, 1], [-1, 1, -1], [1, -1, -1], [-1, -1, 1]]
        >>> faces = [[0, 1, 2], [1, 3, 2], [0, 2, 3], [0, 3, 1]]
        >>> tetra = pv.PolyData.from_regular_faces(points, faces)
        >>> tetra.plot()

        """
        return cls(points, faces=CellArray.from_regular_cells(faces, deep=deep))

    @property
    def irregular_faces(self) -> tuple[NumpyArray[int], ...]:  # numpydoc ignore=RT01
        """Return a tuple of face arrays.

        Returns
        -------
        tuple[numpy.ndarray]
            Tuple of length n_faces where each element is an array of point
            indices for points in that face.

        See Also
        --------
        pyvista.PolyData.faces
        pyvista.PolyData.regular_faces

        Examples
        --------
        Get the face arrays of the five faces of a pyramid.

        >>> import pyvista as pv
        >>> pyramid = pv.Pyramid().extract_surface()
        >>> pyramid.irregular_faces  # doctest: +NORMALIZE_WHITESPACE
        (array([0, 1, 2, 3]),
         array([0, 3, 4]),
         array([0, 4, 1]),
         array([3, 2, 4]),
         array([2, 1, 4]))

        """
        return _get_irregular_cells(self.GetPolys())

    @irregular_faces.setter
    def irregular_faces(self, faces: Sequence[VectorLike[int]]) -> None:  # numpydoc ignore=PR01
        """Set the faces from a sequence of face arrays."""
        self.faces = CellArray.from_irregular_cells(faces)

    @classmethod
    def from_irregular_faces(cls, points: MatrixLike[float], faces: Sequence[VectorLike[int]]):
        """Alternate `pyvista.PolyData` convenience constructor from point and ragged face arrays.

        Parameters
        ----------
        points : MatrixLike[float]
            A (n_points, 3) array of points.

        faces : Sequence[VectorLike[int]]
            A sequence of face vectors containing point indices.

        Returns
        -------
        pyvista.PolyData
            The newly constructed mesh.

        See Also
        --------
        pyvista.PolyData.from_regular_faces

        Examples
        --------
        Construct a pyramid from five points and five faces

        >>> import pyvista as pv
        >>> points = [
        ...     (1, 1, 0),
        ...     (-1, 1, 0),
        ...     (-1, -1, 0),
        ...     (1, -1, 0),
        ...     (0, 0, 1.61),
        ... ]
        >>> faces = [
        ...     (0, 1, 2, 3),
        ...     (0, 3, 4),
        ...     (0, 4, 1),
        ...     (3, 2, 4),
        ...     (2, 1, 4),
        ... ]
        >>> pyramid = pv.PolyData.from_irregular_faces(points, faces)
        >>> pyramid.plot()

        """
        return cls(points, faces=CellArray.from_irregular_cells(faces))

    @property
    def strips(self) -> NumpyArray[int]:  # numpydoc ignore=RT01
        """Return a pointer to the strips as a numpy array.

        Returns
        -------
        numpy.ndarray
            Array of strip indices.

        Examples
        --------
        >>> import pyvista as pv
        >>> polygon = pv.Rectangle()
        >>> extruded = polygon.extrude((0, 0, 1), capping=False)
        >>> extruded.strips
        array([4, 0, 1, 4, 5, 4, 1, 2, 5, 6, 4, 2, 3, 6, 7, 4, 3, 0, 7, 4])

        """
        return _vtk.vtk_to_numpy(self.GetStrips().GetData())

    @strips.setter
    def strips(self, strips: CellArrayLike) -> None:
        if isinstance(strips, _vtk.vtkCellArray):
            self.SetStrips(strips)
        else:
            self.SetStrips(CellArray(strips))

    @property
    def is_all_triangles(self) -> bool:  # numpydoc ignore=RT01
        """Return if all the faces of the :class:`pyvista.PolyData` are triangles.

        Returns
        -------
        bool
            ``True`` if all the faces of the :class:`pyvista.PolyData`
            are triangles and does not contain any vertices or lines.

        Examples
        --------
        Show a mesh from :func:`pyvista.Plane` is not composed of all
        triangles.

        >>> import pyvista as pv
        >>> plane = pv.Plane()
        >>> plane.is_all_triangles
        False

        Show that the mesh from :func:`pyvista.Sphere` contains only
        triangles.

        >>> sphere = pv.Sphere()
        >>> sphere.is_all_triangles
        True

        """
        # Need to make sure there are only face cells and no lines/verts
        if not self.n_faces_strict or self.n_lines or self.n_verts:
            return False

        # early return if not all triangular
        if self._connectivity_array.size % 3:
            return False

        # next, check if there are three points per face
        return bool((np.diff(self._offset_array) == 3).all())

    def __sub__(self, cutting_mesh):
        """Compute boolean difference of two meshes."""
        return self.boolean_difference(cutting_mesh)

    def __isub__(self, cutting_mesh):
        """Compute boolean difference of two meshes and update this mesh."""
        return self.boolean_difference(cutting_mesh)

    def __and__(self, other_mesh):
        """Compute boolean intersection of two meshes."""
        return self.boolean_intersection(other_mesh)

    def __or__(self, other_mesh):
        """Compute boolean union of two meshes."""
        return self.boolean_union(other_mesh)

    @property
    def _offset_array(self) -> NumpyArray[int]:
        """Return the array used to store cell offsets."""
        return _get_offset_array(self.GetPolys())

    @property
    def _connectivity_array(self) -> NumpyArray[int]:
        """Return the array with the point ids that define the cells' connectivity."""
        return _get_connectivity_array(self.GetPolys())

    @property
    def n_lines(self) -> int:  # numpydoc ignore=RT01
        """Return the number of lines.

        Examples
        --------
        >>> import pyvista as pv
        >>> mesh = pv.Line()
        >>> mesh.n_lines
        1

        """
        return self.GetNumberOfLines()

    @property
    def n_verts(self) -> int:  # numpydoc ignore=RT01
        """Return the number of vertices.

        A vertex is a 0D cell, which is usually a cell that references one point,
        a :vtk:`vtkVertex`. It can also be a :vtk:`vtkPolyVertex`.
        See `pyvista.PolyData.n_points` for the more common measure.

        Examples
        --------
        Create a simple mesh containing just two points and return the
        number of vertices. By default, when constructing a PolyData with points but no cells,
        vertices are automatically created, one per point.

        >>> import pyvista as pv
        >>> mesh = pv.PolyData([[1.0, 0.0, 0.0], [1.0, 1.0, 1.0]])
        >>> mesh.n_points, mesh.n_verts
        (2, 2)

        If any other cells are specified, these vertices are not created.

        >>> import pyvista as pv
        >>> mesh = pv.PolyData([[1.0, 0.0, 0.0], [1.0, 1.0, 1.0]], lines=[2, 0, 1])
        >>> mesh.n_points, mesh.n_verts
        (2, 0)

        """
        return self.GetNumberOfVerts()

    @property
    def n_strips(self) -> int:  # numpydoc ignore=RT01
        """Return the number of strips.

        Examples
        --------
        Create a simple mesh with one triangle strip and return the
        number of triangles.

        >>> import pyvista as pv
        >>> import numpy as np
        >>> vertices = np.array([[1.0, 0.0, 0.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]])
        >>> strip = np.array([3, 0, 1, 2])
        >>> mesh = pv.PolyData(vertices, strips=strip)
        >>> mesh.n_strips
        1

        """
        return self.GetNumberOfStrips()

    @staticmethod
    def use_strict_n_faces(mode: bool) -> None:  # noqa: FBT001
        """Global opt-in to strict n_faces.

        Parameters
        ----------
        mode : bool
            If true, all future calls to :attr:`n_faces <pyvista.PolyData.n_faces>`
            will return the same thing as :attr:`n_faces_strict <pyvista.PolyData.n_faces_strict>`.

        """
        PolyData._USE_STRICT_N_FACES = mode

    @property
    def n_faces(self) -> int:  # numpydoc ignore=RT01
        """Return the number of cells.

        .. deprecated:: 0.43.0
            The current (deprecated) behavior of this property is to
            return the total number of cells, i.e. the sum of the number of
            vertices, lines, triangle strips, and polygonal faces.
            In the future, this will change to return only the number of
            polygonal faces, i.e. those cells represented in the
            `pv.PolyData.faces` array. If you want the total number of cells,
            use `pv.PolyData.n_cells`. If you want only the number of polygonal faces,
            use `pv.PolyData.n_faces_strict`. Alternatively, you can opt into the
            future behavior globally by calling `pv.PolyData.use_strict_n_faces(True)`,
            in which case `pv.PolyData.n_faces` will return the same thing as
            `pv.PolyData.n_faces_strict`.

        """
        if PolyData._USE_STRICT_N_FACES:
            return self.n_faces_strict

        # deprecated 0.43.0, convert to error in 0.46.0, remove 0.49.0
        msg = (
            'The non-strict behavior of `pv.PolyData.n_faces` has been removed. '
            'Use `pv.PolyData.n_cells` or `pv.PolyData.n_faces_strict` instead. '
            'See the documentation in `pv.PolyData.n_faces` for more information.'
        )
        raise AttributeError(msg)

    @property
    def n_faces_strict(self) -> int:  # numpydoc ignore=RT01
        """Return the number of polygonal faces.

        Returns
        -------
        int :
             Number of faces represented in the :attr:`n_faces <pyvista.PolyData.n_faces>` array.

        Examples
        --------
        Create a mesh with one face and one line

        >>> import pyvista as pv
        >>> mesh = pv.PolyData(
        ...     [(0.0, 0, 0), (1, 0, 0), (0, 1, 0)],
        ...     faces=[3, 0, 1, 2],
        ...     lines=[2, 0, 1],
        ... )
        >>> mesh.n_cells, mesh.n_faces_strict
        (2, 1)

        """
        return self.GetNumberOfPolys()

    @_deprecate_positional_args(allowed=['filename'])
    def save(  # noqa: PLR0917
        self,
        filename,
        binary: bool = True,  # noqa: FBT001, FBT002
        texture=None,
        recompute_normals: bool = True,  # noqa: FBT001, FBT002
    ):
        """Write a surface mesh to disk.

        Written file may be an ASCII or binary ply, stl, or vtk mesh
        file.

        Parameters
        ----------
        filename : str, Path
            Filename of mesh to be written.  File type is inferred from
            the extension of the filename unless overridden with
            ftype.  Can be one of many of the supported  the following
            types (``'.ply'``, ``'.vtp'``, ``'.stl'``, ``'.vtk``, ``'.geo'``,
            ``'.obj'``, ``'.iv'``).

        binary : bool, default: True
            Writes the file as binary when ``True`` and ASCII when ``False``.

        texture : str, numpy.ndarray, optional
            Write a single texture array to file when using a PLY
            file.  Texture array must be a 3 or 4 component array with
            the datatype ``np.uint8``.  Array may be a cell array or a
            point array, and may also be a string if the array already
            exists in the PolyData.

            If a string is provided, the texture array will be saved
            to disk as that name.  If an array is provided, the
            texture array will be saved as ``'RGBA'`` if the array
            contains an alpha channel (i.e. 4 component array), or
            as ``'RGB'`` if the array is just a 3 component array.

            .. note::
               This feature is only available when saving PLY files.

        recompute_normals : bool, default: True
            When ``True``, if ply or stl format is chosen, the face normals
            are computed in place to ensure the mesh is properly saved.
            Set this to ``False`` to save instead the already existing normal
            array in the PolyData.

        Notes
        -----
        Binary files write much faster than ASCII and have a smaller
        file size.

        Examples
        --------
        Save a mesh as a STL.

        >>> import pyvista as pv
        >>> sphere = pv.Sphere()
        >>> sphere.save('my_mesh.stl')  # doctest:+SKIP

        Save a mesh as a PLY.

        >>> sphere = pv.Sphere()
        >>> sphere.save('my_mesh.ply')  # doctest:+SKIP

        Save a mesh as a PLY with a texture array.  Here we also
        create a simple RGB array representing the texture.

        >>> import numpy as np
        >>> sphere = pv.Sphere()
        >>> texture = np.zeros((sphere.n_points, 3), np.uint8)
        >>> # Just the green channel is set as a repeatedly
        >>> # decreasing value
        >>> texture[:, 1] = np.arange(sphere.n_points)[::-1]
        >>> sphere.point_data['my_texture'] = texture
        >>> sphere.save('my_mesh.ply', texture='my_texture')  # doctest:+SKIP

        Alternatively, provide just the texture array.  This will be
        written to the file as ``'RGB'`` since it does not contain an
        alpha channel.

        >>> sphere.save('my_mesh.ply', texture=texture)  # doctest:+SKIP

        Save a mesh as a VTK file.

        >>> sphere = pv.Sphere()
        >>> sphere.save('my_mesh.vtk')  # doctest:+SKIP

        """
        filename = Path(filename).expanduser().resolve()
        ftype = get_ext(filename)
        # Recompute normals prior to save.  Corrects a bug were some
        # triangular meshes are not saved correctly
        if ftype in ['.stl', '.ply'] and recompute_normals:
            with contextlib.suppress(TypeError):
                self.compute_normals(inplace=True)

        # validate texture
        if ftype == '.ply' and texture is not None:
            if isinstance(texture, str):
                if self[texture].dtype != np.uint8:
                    msg = f'Invalid datatype {self[texture].dtype} of texture array "{texture}"'
                    raise ValueError(msg)
            elif isinstance(texture, np.ndarray):
                if texture.dtype != np.uint8:
                    msg = f'Invalid datatype {texture.dtype} of texture array'
                    raise ValueError(msg)
            else:
                msg = (
                    f'Invalid type {type(texture)} for texture.  '
                    'Should be either a string representing a point or '
                    'cell array, or a numpy array.'
                )
                raise TypeError(msg)

        super().save(filename, binary=binary, texture=texture)

    @property
    def volume(self) -> float:  # numpydoc ignore=RT01
        """Return the approximate volume of the dataset.

        This will throw a VTK error/warning if not a closed surface.

        Returns
        -------
        float
            Total volume of the mesh.

        Examples
        --------
        >>> import pyvista as pv
        >>> sphere = pv.Sphere()
        >>> sphere.volume
        0.5183

        """
        mprop = _vtk.vtkMassProperties()
        mprop.SetInputData(self.triangulate())
        return mprop.GetVolume()

    @property
    def point_normals(self) -> pyvista.pyvista_ndarray:  # numpydoc ignore=RT01
        """Return the point normals.

        The active point normals are returned if they exist. Otherwise, they
        are computed with :func:`~pyvista.PolyDataFilters.compute_normals`
        using the default options.

        Returns
        -------
        pyvista.pyvista_ndarray
            Array of point normals.

        Examples
        --------
        >>> import pyvista as pv
        >>> sphere = pv.Sphere()
        >>> sphere.point_normals
        pyvista_ndarray([[ 0.        ,  0.        ,  1.        ],
                         [ 0.        ,  0.        , -1.        ],
                         [ 0.10811902,  0.        ,  0.99413794],
                         ...,
                         [ 0.31232402, -0.06638652, -0.9476532 ],
                         [ 0.21027282, -0.04469487, -0.97662055],
                         [ 0.10575636, -0.02247921, -0.99413794]],
                        shape=(842, 3), dtype=float32)

        """
        if self.point_data.active_normals is not None:
            normals = self.point_data.active_normals
        else:
            normals = self.compute_normals(cell_normals=False, inplace=False).point_data['Normals']
        return normals

    @property
    def cell_normals(self) -> pyvista.pyvista_ndarray:  # numpydoc ignore=RT01
        """Return the cell normals.

        The active cell normals are returned if they exist. Otherwise, they
        are computed with :func:`~pyvista.PolyDataFilters.compute_normals`
        using the default options.

        Returns
        -------
        pyvista.pyvista_ndarray
            Array of cell normals.

        Examples
        --------
        >>> import pyvista as pv
        >>> sphere = pv.Sphere()
        >>> sphere.cell_normals
        pyvista_ndarray([[ 0.05413816,  0.00569015,  0.9985172 ],
                         [ 0.05177207,  0.01682176,  0.9985172 ],
                         [ 0.04714328,  0.02721819,  0.9985172 ],
                         ...,
                         [ 0.26742265, -0.02810723, -0.96316934],
                         [ 0.1617585 , -0.01700151, -0.9866839 ],
                         [ 0.1617585 , -0.01700151, -0.9866839 ]],
                        shape=(1680, 3), dtype=float32)

        """
        if self.cell_data.active_normals is not None:
            normals = self.cell_data.active_normals
        else:
            normals = self.compute_normals(point_normals=False, inplace=False).cell_data['Normals']
        return normals

    @property
    def face_normals(self) -> pyvista.pyvista_ndarray:  # numpydoc ignore=RT01
        """Return the cell normals.

        Alias to :func:`PolyData.cell_normals`.

        Returns
        -------
        pyvista.pyvista_ndarray
            Array of face normals.

        Examples
        --------
        >>> import pyvista as pv
        >>> sphere = pv.Sphere()
        >>> sphere.face_normals
        pyvista_ndarray([[ 0.05413816,  0.00569015,  0.9985172 ],
                         [ 0.05177207,  0.01682176,  0.9985172 ],
                         [ 0.04714328,  0.02721819,  0.9985172 ],
                         ...,
                         [ 0.26742265, -0.02810723, -0.96316934],
                         [ 0.1617585 , -0.01700151, -0.9866839 ],
                         [ 0.1617585 , -0.01700151, -0.9866839 ]],
                        shape=(1680, 3), dtype=float32)

        """
        return self.cell_normals

    @cached_property
    def obbTree(self) -> _vtk.vtkOBBTree:  # noqa: N802  # numpydoc ignore=RT01
        """Return the obbTree of the polydata.

        An obbTree is an object to generate oriented bounding box (OBB)
        trees. An oriented bounding box is a bounding box that does not
        necessarily line up along coordinate axes. The OBB tree is a
        hierarchical tree structure of such boxes, where deeper levels of OBB
        confine smaller regions of space.

        .. warning::

            This property is expensive to compute and is therefore cached. If the mesh's
            geometry is modified, the obb tree will no longer be valid.

        """
        obb_tree = _vtk.vtkOBBTree()
        obb_tree.SetDataSet(self)
        obb_tree.BuildLocator()
        return obb_tree

    @property
    def n_open_edges(self) -> int:  # numpydoc ignore=RT01
        """Return the number of open edges on this mesh.

        Examples
        --------
        Return the number of open edges on a sphere.

        >>> import pyvista as pv
        >>> sphere = pv.Sphere()
        >>> sphere.n_open_edges
        0

        Return the number of open edges on a plane.

        >>> plane = pv.Plane(i_resolution=1, j_resolution=1)
        >>> plane.n_open_edges
        4

        """
        alg = _vtk.vtkFeatureEdges()
        alg.FeatureEdgesOff()
        alg.BoundaryEdgesOn()
        alg.NonManifoldEdgesOn()
        alg.SetInputDataObject(self)
        alg.Update()
        return alg.GetOutput().GetNumberOfCells()

    @property
    def is_manifold(self) -> bool:  # numpydoc ignore=RT01
        """Return if the mesh is manifold (no open edges).

        Examples
        --------
        Show a sphere is manifold.

        >>> import pyvista as pv
        >>> pv.Sphere().is_manifold
        True

        Show a plane is not manifold.

        >>> pv.Plane().is_manifold
        False

        """
        return self.n_open_edges == 0

    def __del__(self) -> None:
        """Delete the object."""
        # avoid a reference cycle that can't be resolved with vtkPolyData
        self._glyph_geom = None
        self.obbTree = None  # type: ignore[assignment]


@abstract_class
class PointGrid(_PointSet):
    """Class in common with structured and unstructured grids."""

    def __init__(self, *args, **kwargs) -> None:  # noqa: ARG002
        """Initialize the point grid."""
        super().__init__()

    def plot_curvature(self: Self, curv_type='mean', **kwargs):
        """Plot the curvature of the external surface of the grid.

        Parameters
        ----------
        curv_type : str, default: "mean"
            One of the following strings indicating curvature types.
            - ``'mean'``
            - ``'gaussian'``
            - ``'maximum'``
            - ``'minimum'``

        **kwargs : dict, optional
            Optional keyword arguments.  See :func:`pyvista.plot`.

        Returns
        -------
        list
            Camera position, focal point, and view up.  Returned when
            ``return_cpos`` is ``True``.

        """
        trisurf = self.extract_surface().triangulate()
        return trisurf.plot_curvature(curv_type, **kwargs)


class UnstructuredGrid(PointGrid, UnstructuredGridFilters, _vtk.vtkUnstructuredGrid):
    """Dataset used for arbitrary combinations of all possible cell types.

    Can be initialized by the following:

    - Creating an empty grid
    - From a :vtk:`vtkPolyData` or :vtk:`vtkStructuredGrid` object
    - From cell, cell types, and point arrays
    - From a file

    Parameters
    ----------
    args : str, :vtk:`vtkUnstructuredGrid`, iterable
        See examples below.
    deep : bool, default: False
        Whether to deep copy a :vtk:`vtkUnstructuredGrid` object.
        Default is ``False``.  Keyword only.

    Examples
    --------
    >>> import pyvista as pv
    >>> from pyvista import examples
    >>> import vtk

    Create an empty grid

    >>> grid = pv.UnstructuredGrid()

    Copy a :vtk:`vtkUnstructuredGrid`

    >>> vtkgrid = vtk.vtkUnstructuredGrid()
    >>> grid = pv.UnstructuredGrid(vtkgrid)

    From a filename.

    >>> grid = pv.UnstructuredGrid(examples.hexbeamfile)
    >>> grid.plot(show_edges=True)

    From arrays. Here we create a single tetrahedron.

    >>> cells = [4, 0, 1, 2, 3]
    >>> celltypes = [pv.CellType.TETRA]
    >>> points = [
    ...     [1.0, 1.0, 1.0],
    ...     [1.0, -1.0, -1.0],
    ...     [-1.0, 1.0, -1.0],
    ...     [-1.0, -1.0, 1.0],
    ... ]
    >>> grid = pv.UnstructuredGrid(cells, celltypes, points)
    >>> grid.plot(show_edges=True)

    See the :ref:`create_unstructured_surface_example` example for more details
    on creating unstructured grids within PyVista.

    """

    _WRITERS: ClassVar[
        dict[
            str,
            type[_UnstructuredGridWriterAlias],
        ]
    ] = {  # type: ignore[assignment]
        '.vtu': _vtk.vtkXMLUnstructuredGridWriter,
        '.vtk': _vtk.vtkUnstructuredGridWriter,
    }
    if _vtk.vtk_version_info >= (9, 4):
        _WRITERS['.vtkhdf'] = _vtk.vtkHDFWriter

    def __init__(self, *args, deep: bool = False, **kwargs) -> None:
        """Initialize the unstructured grid."""
        super().__init__()

        if not args:
            return
        if len(args) == 1:
            if isinstance(args[0], _vtk.vtkUnstructuredGrid):
                if deep:
                    self.deep_copy(args[0])
                else:
                    self.shallow_copy(args[0])  # type: ignore[arg-type]

            elif isinstance(args[0], (str, Path)):
                self._from_file(args[0], **kwargs)

            elif isinstance(args[0], (_vtk.vtkStructuredGrid, _vtk.vtkPolyData)):
                vtkappend = _vtk.vtkAppendFilter()
                vtkappend.AddInputData(args[0])
                vtkappend.Update()
                self.shallow_copy(vtkappend.GetOutput())

            else:
                itype = type(args[0])
                msg = f'Cannot work with input type {itype}'
                raise TypeError(msg)

        # Cell dictionary creation
        elif len(args) == 2 and isinstance(args[0], dict) and isinstance(args[1], np.ndarray):
            self._from_cells_dict(args[0], args[1], deep=deep)
            self._check_for_consistency()

        elif len(args) == 3:
            arg0_is_seq = isinstance(args[0], (np.ndarray, Sequence))
            arg1_is_seq = isinstance(args[1], (np.ndarray, Sequence))
            arg2_is_seq = isinstance(args[2], (np.ndarray, Sequence))

            if all([arg0_is_seq, arg1_is_seq, arg2_is_seq]):
                self._from_arrays(args[0], args[1], args[2], deep=deep, **kwargs)
                self._check_for_consistency()
            else:
                msg = 'All input types must be sequences.'
                raise TypeError(msg)
        else:
            msg = (
                'Invalid parameters.  Initialization with arrays requires the '
                'following arrays:\n`cells`, `cell_type`, `points`'
            )
            raise TypeError(msg)

    def __repr__(self):
        """Return the standard representation."""
        return DataSet.__repr__(self)

    def __str__(self):
        """Return the standard str representation."""
        return DataSet.__str__(self)

    def _from_cells_dict(self, cells_dict, points, *, deep: bool = True):
        if points.ndim != 2 or points.shape[-1] != 3:
            msg = 'Points array must be a [M, 3] array'
            raise ValueError(msg)

        nr_points = points.shape[0]
        cell_types, cells = create_mixed_cells(cells_dict, nr_points)
        self._from_arrays(cells, cell_types, points, deep=deep)

    def _from_arrays(
        self,
        cells,
        cell_type,
        points,
        *,
        deep: bool = True,
        force_float: bool = True,
    ) -> None:
        """Create VTK unstructured grid from numpy arrays.

        Parameters
        ----------
        cells : sequence[int]
            Array of cells.  Each cell contains the number of points in the
            cell and the node numbers of the cell.

        cell_type : sequence[int]
            Cell types of each cell.  Each cell type numbers can be found from
            vtk documentation.  More efficient if using ``np.uint8``. See
            example below.

        points : sequence[float]
            Numpy array containing point locations.

        deep : bool, default: True
            When ``True``, makes a copy of the points array.  Default
            ``False``.  Cells and cell types are always copied.

        force_float : bool, default: True
            Casts the datatype to ``float32`` if points datatype is
            non-float.  Set this to ``False`` to allow non-float types,
            though this may lead to truncation of intermediate floats when
            transforming datasets.

        Examples
        --------
        >>> import numpy as np
        >>> from pyvista import CellType
        >>> import pyvista as pv
        >>> cell0_ids = [8, 0, 1, 2, 3, 4, 5, 6, 7]
        >>> cell1_ids = [8, 8, 9, 10, 11, 12, 13, 14, 15]
        >>> cells = np.hstack((cell0_ids, cell1_ids))
        >>> cell_type = np.array([CellType.HEXAHEDRON, CellType.HEXAHEDRON], np.int8)

        >>> cell1 = np.array(
        ...     [
        ...         [0, 0, 0],
        ...         [1, 0, 0],
        ...         [1, 1, 0],
        ...         [0, 1, 0],
        ...         [0, 0, 1],
        ...         [1, 0, 1],
        ...         [1, 1, 1],
        ...         [0, 1, 1],
        ...     ],
        ...     dtype=np.float32,
        ... )

        >>> cell2 = np.array(
        ...     [
        ...         [0, 0, 2],
        ...         [1, 0, 2],
        ...         [1, 1, 2],
        ...         [0, 1, 2],
        ...         [0, 0, 3],
        ...         [1, 0, 3],
        ...         [1, 1, 3],
        ...         [0, 1, 3],
        ...     ],
        ...     dtype=np.float32,
        ... )

        >>> points = np.vstack((cell1, cell2))

        >>> grid = pv.UnstructuredGrid(cells, cell_type, points)

        """
        # convert to arrays upfront
        cells = np.asarray(cells)
        cell_type = np.asarray(cell_type)
        points = np.asarray(points)

        # Convert to vtk arrays
        vtkcells = CellArray(cells)
        if cell_type.dtype != np.uint8:
            cell_type = cell_type.astype(np.uint8)
        cell_type = _vtk.numpy_to_vtk(cell_type, deep=deep)

        points = vtk_points(points, deep=deep, force_float=force_float)
        self.SetPoints(points)

        self.SetCells(cell_type, vtkcells)

    def _check_for_consistency(self):
        """Check if size of offsets and celltypes match the number of cells.

        Checks if the number of offsets and celltypes correspond to
        the number of cells.  Called after initialization of the self
        from arrays.
        """
        if self.n_cells != self.celltypes.size:
            msg = (
                f'Number of cell types ({self.celltypes.size}) '
                f'must match the number of cells {self.n_cells})'
            )
            raise ValueError(msg)

        if self.n_cells != self.offset.size - 1:  # pragma: no cover
            msg = (
                f'Size of the offset ({self.offset.size}) '
                f'must be one greater than the number of cells ({self.n_cells})'
            )
            raise ValueError(msg)

    @property
    def cells(self) -> NumpyArray[int]:  # numpydoc ignore=RT01
        """Return the cell data as a numpy object.

        This is the old style VTK data layout::

           [n0, p0_0, p0_1, ..., p0_n, n1, p1_0, p1_1, ..., p1_n, ...]

        where ``n0`` is the number of points in cell 0, and ``pX_Y`` is the
        Y'th point in cell X.

        For example, a triangle and a line might be represented as::

           [3, 0, 1, 2, 2, 0, 1]

        Where the two individual cells would be ``[3, 0, 1, 2]`` and ``[2, 0, 1]``.

        See Also
        --------
        pyvista.DataSet.get_cell
        pyvista.UnstructuredGrid.cell_connectivity
        pyvista.UnstructuredGrid.offset

        Notes
        -----
        The array returned cannot be modified in place and will raise a
        ``ValueError`` if attempted.

        You can, however, set the cells directly. See the example.

        Examples
        --------
        Return the indices of the first two cells from the example hex
        beam.  Note how the cells have "padding" indicating the number
        of points per cell.

        >>> import pyvista as pv
        >>> from pyvista import examples
        >>> grid = examples.load_hexbeam()
        >>> grid.cells[:18]
        array([ 8,  0,  2,  8,  7, 27, 36, 90, 81,  8,  2,  1,  4,  8, 36, 18, 54,
               90])

        While you cannot change the array inplace, you can overwrite it. For example:

        >>> grid.cells = [8, 0, 1, 2, 3, 4, 5, 6, 7]

        """
        # Flag this array as read only to ensure users do not attempt to write to it.
        array = _vtk.vtk_to_numpy(self._get_cells().GetData())
        array.flags['WRITEABLE'] = False
        return array

    @cells.setter
    def cells(self, cells) -> None:
        vtk_idarr = numpy_to_idarr(cells, deep=False, return_ind=False)
        self._get_cells().ImportLegacyFormat(vtk_idarr)

    def _get_cells(self):
        cells = self.GetCells()
        return _vtk.vtkCellArray() if cells is None else cells  # type: ignore[redundant-expr]

    @property
    def faces(self) -> NumpyArray[int]:
        """Return the polyhedron faces.

        .. deprecated:: 0.45.0
            This property is deprecated and will be removed in a future release.
            VTK has deprecated `GetFaces` and `GetFaceLocations` in VTK 9.4 and
            may be removed in a future release of VTK. Please use
            `polyhedral_faces` instead.

        Returns
        -------
        numpy.ndarray
            Array of faces.

        """
        return convert_array(self.GetFaces())

    @property
    def polyhedron_faces(self) -> NumpyArray[int]:
        """Return the polyhedron faces.

        Returns
        -------
        numpy.ndarray
            Array of faces.

        """
        if pyvista.vtk_version_info < (9, 4):
            polyhedron_faces = pyvista.convert_array(self.GetFaces())

            if polyhedron_faces is None:
                return np.array([], dtype=int)  # type: ignore[unreachable]

            cell_faces = []
            i = 0

            while i < len(polyhedron_faces):
                faces_: list[VectorLike[int]] = []
                n_faces = polyhedron_faces[i]
                i += 1

                while len(faces_) < n_faces:
                    n_vertices = polyhedron_faces[i]
                    faces_.append([n_vertices, *polyhedron_faces[i + 1 : i + 1 + n_vertices]])
                    i += n_vertices + 1

                cell_faces.append(np.concatenate(faces_))

            return np.concatenate(cell_faces)

        else:
            faces = self.GetPolyhedronFaces()  # vtkCellArray
            if faces is None:
                return np.array([], dtype=int)  # type: ignore[unreachable]
            return convert_array(faces.GetData())

    @property
    def face_locations(self) -> NumpyArray[int]:
        """Return polyhedron face locations.

        .. deprecated:: 0.45.0
            This property is deprecated and will be removed in a future release.
            VTK has deprecated `GetFaces` and `GetFaceLocations` in VTK 9.4 and
            may be removed in a future release of VTK. Please use
            `polyhedral_face_locations` instead.

        Returns
        -------
        numpy.ndarray
            Array of face locations.

        """
        return convert_array(self.GetFaceLocations())

    @property
    def polyhedron_face_locations(self) -> NumpyArray[int]:
        """Return the polyhedron face locations.

        Returns
        -------
        numpy.ndarray
            Array of faces.

        """
        if pyvista.vtk_version_info < (9, 4):
            polyhedron_faces = pyvista.convert_array(self.GetFaces())

            if polyhedron_faces is None:
                return np.array([], dtype=int)  # type: ignore[unreachable]

            i, face_counts = 0, []

            while i < len(polyhedron_faces):
                n_faces = polyhedron_faces[i]
                face_counts.append(n_faces)
                face_count = 0
                i += 1

                while face_count < n_faces:
                    i += polyhedron_faces[i] + 1
                    face_count += 1

            locations = [[0]] * self.n_cells
            face_count = 0

            for i, n_faces in zip(
                np.flatnonzero(self.celltypes == pyvista.CellType.POLYHEDRON), face_counts
            ):
                locations[i] = [n_faces, *(np.arange(n_faces) + face_count)]
                face_count += n_faces

            return np.concatenate(locations)

        else:
            faces = self.GetPolyhedronFaceLocations()  # vtkCellArray
            if faces is None:
                return np.array([], dtype=int)  # type: ignore[unreachable]
            return convert_array(faces.GetData())

    @property
    def cells_dict(self) -> dict[np.uint8, NumpyArray[int]]:  # numpydoc ignore=RT01
        """Return a dictionary that contains all cells mapped from cell types.

        This function returns a :class:`numpy.ndarray` for each cell
        type in an ordered fashion.  Note that this function only
        works with element types of fixed sizes.

        .. versionchanged:: 0.46

            An empty dict ``{}`` is returned instead of ``None`` if
            the input is empty.

        Returns
        -------
        dict
            A dictionary mapping containing all cells of this unstructured grid.
            Structure: vtk_enum_type (int) -> cells (:class:`numpy.ndarray`).

        See Also
        --------
        pyvista.DataSet.get_cell

        Examples
        --------
        Return the cells dictionary of the sample hex beam.  Note how
        there is only one key/value pair as the hex beam example is
        composed of only all hexahedral cells, which is
        ``CellType.HEXAHEDRON``, which evaluates to 12.

        Also note how there is no padding for the cell array.  This
        approach may be more helpful than the ``cells`` property when
        extracting cells.

        >>> import pyvista as pv
        >>> from pyvista import examples
        >>> hex_beam = pv.read(examples.hexbeamfile)
        >>> hex_beam.cells_dict  # doctest:+SKIP
        {12: array([[ 0,  2,  8,  7, 27, 36, 90, 81],
                [ 2,  1,  4,  8, 36, 18, 54, 90],
                [ 7,  8,  6,  5, 81, 90, 72, 63],
                ...
                [44, 26, 62, 98, 11, 10, 13, 17],
                [89, 98, 80, 71, 16, 17, 15, 14],
                [98, 62, 53, 80, 17, 13, 12, 15]])}

        """
        return get_mixed_cells(self)

    @property
    def cell_connectivity(self) -> NumpyArray[int]:  # numpydoc ignore=RT01
        """Return the cell connectivity as a numpy array.

        This is effectively :attr:`UnstructuredGrid.cells` without the
        padding.

        Returns
        -------
        numpy.ndarray
            Connectivity array.

        See Also
        --------
        pyvista.DataSet.get_cell

        Examples
        --------
        Return the cell connectivity for the first two cells.

        >>> import pyvista as pv
        >>> from pyvista import examples
        >>> hex_beam = pv.read(examples.hexbeamfile)
        >>> hex_beam.cell_connectivity[:16]
        array([ 0,  2,  8,  7, 27, 36, 90, 81,  2,  1,  4,  8, 36, 18, 54, 90])

        """
        carr = self._get_cells()
        return _vtk.vtk_to_numpy(carr.GetConnectivityArray())

    @_deprecate_positional_args
    def linear_copy(self, deep: bool = False):  # noqa: FBT001, FBT002
        """Return a copy of the unstructured grid containing only linear cells.

        Converts the following cell types to their linear equivalents.

        - :attr:`~pyvista.CellType.QUADRATIC_TRIANGLE`   --> :attr:`~pyvista.CellType.TRIANGLE`
        - :attr:`~pyvista.CellType.QUADRATIC_QUAD`       --> :attr:`~pyvista.CellType.QUAD`
        - :attr:`~pyvista.CellType.QUADRATIC_TETRA`      --> :attr:`~pyvista.CellType.TETRA`
        - :attr:`~pyvista.CellType.QUADRATIC_PYRAMID`    --> :attr:`~pyvista.CellType.PYRAMID`
        - :attr:`~pyvista.CellType.QUADRATIC_WEDGE`      --> :attr:`~pyvista.CellType.WEDGE`
        - :attr:`~pyvista.CellType.QUADRATIC_HEXAHEDRON` --> :attr:`~pyvista.CellType.HEXAHEDRON`

        Parameters
        ----------
        deep : bool, default: False
            When ``True``, makes a copy of the points array.
            Cells and cell types are always copied.

        Returns
        -------
        pyvista.UnstructuredGrid
            UnstructuredGrid containing only linear cells when
            ``deep=False``.

        """
        lgrid = self.copy(deep=deep)

        # grab the vtk object
        vtk_cell_type = _vtk.numpy_to_vtk(self._get_cell_types_array(), deep=True)
        celltype = _vtk.vtk_to_numpy(vtk_cell_type)
        celltype[celltype == CellType.QUADRATIC_TETRA] = CellType.TETRA
        celltype[celltype == CellType.QUADRATIC_PYRAMID] = CellType.PYRAMID
        celltype[celltype == CellType.QUADRATIC_WEDGE] = CellType.WEDGE
        celltype[celltype == CellType.QUADRATIC_HEXAHEDRON] = CellType.HEXAHEDRON

        # track quad mask for later
        quad_quad_mask = celltype == CellType.QUADRATIC_QUAD
        celltype[quad_quad_mask] = CellType.QUAD

        quad_tri_mask = celltype == CellType.QUADRATIC_TRIANGLE
        celltype[quad_tri_mask] = CellType.TRIANGLE

        cells = _vtk.vtkCellArray()
        cells.DeepCopy(self._get_cells())
        if pyvista.vtk_version_info >= (9, 5):
            face_locations = self.GetPolyhedronFaceLocations()
            faces = self.GetPolyhedronFaces()
            lgrid.SetPolyhedralCells(vtk_cell_type, cells, face_locations, faces)
        else:
            vtk_offset = self.GetCellLocationsArray()
            lgrid.SetCells(vtk_cell_type, vtk_offset, cells)

        # fixing bug with display of quad cells
        if np.any(quad_quad_mask):
            quad_offset = lgrid.offset[:-1][quad_quad_mask]
            base_point = lgrid.cell_connectivity[quad_offset]
            lgrid.cell_connectivity[quad_offset + 4] = base_point
            lgrid.cell_connectivity[quad_offset + 5] = base_point
            lgrid.cell_connectivity[quad_offset + 6] = base_point
            lgrid.cell_connectivity[quad_offset + 7] = base_point

        if np.any(quad_tri_mask):
            tri_offset = lgrid.offset[:-1][quad_tri_mask]
            base_point = lgrid.cell_connectivity[tri_offset]
            lgrid.cell_connectivity[tri_offset + 3] = base_point
            lgrid.cell_connectivity[tri_offset + 4] = base_point
            lgrid.cell_connectivity[tri_offset + 5] = base_point

        return lgrid

    @property
    def celltypes(self) -> NumpyArray[np.uint8]:  # numpydoc ignore=RT01
        """Return the cell types array.

        The array contains integer values corresponding to the :attr:`pyvista.Cell.type`
        of each cell in the dataset. See the :class:`pyvista.CellType` enum for more
        information about cell type.

        Returns
        -------
        numpy.ndarray
            Array of cell types.

        Examples
        --------
        This mesh contains only linear hexahedral cells, type
        :attr:`pyvista.CellType.HEXAHEDRON`, which evaluates to 12.

        >>> import pyvista as pv
        >>> from pyvista import examples
        >>> hex_beam = examples.load_hexbeam()
        >>> hex_beam.celltypes
        array([12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
               12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
               12, 12, 12, 12, 12, 12], dtype=uint8)

        """
        return _vtk.vtk_to_numpy(self._get_cell_types_array())

    def _get_cell_types_array(self):
        array = self.GetCellTypesArray()
        if array is None:
            array = _vtk.vtkUnsignedCharArray()
        return array

    @property
    def offset(self) -> NumpyArray[float]:  # numpydoc ignore=RT01
        """Return the cell locations array.

        This is the location of the start of each cell in
        :attr:`cell_connectivity`.

        Returns
        -------
        numpy.ndarray
            Array of cell offsets indicating the start of each cell.

        Notes
        -----
        The array returned is immutable and cannot be written to. If you
        need to modify this array, create a copy of it using
        :func:`numpy.copy`.

        Examples
        --------
        Return the cell offset array.  Since this mesh is composed of
        all hexahedral cells, note how each cell starts at 8 greater
        than the prior cell.

        >>> import pyvista as pv
        >>> from pyvista import examples
        >>> hex_beam = pv.read(examples.hexbeamfile)
        >>> hex_beam.offset
        array([  0,   8,  16,  24,  32,  40,  48,  56,  64,  72,  80,  88,  96,
               104, 112, 120, 128, 136, 144, 152, 160, 168, 176, 184, 192, 200,
               208, 216, 224, 232, 240, 248, 256, 264, 272, 280, 288, 296, 304,
               312, 320])

        """
        carr = self._get_cells()
        # This will be the number of cells + 1.
        array = _vtk.vtk_to_numpy(carr.GetOffsetsArray())
        array.flags['WRITEABLE'] = False
        return array

    def cast_to_explicit_structured_grid(self):
        """Cast to an explicit structured grid.

        Returns
        -------
        pyvista.ExplicitStructuredGrid
            An explicit structured grid.

        Raises
        ------
        TypeError
            If the unstructured grid doesn't have the ``'BLOCK_I'``,
            ``'BLOCK_J'`` and ``'BLOCK_K'`` cells arrays.

        See Also
        --------
        pyvista.ExplicitStructuredGrid.cast_to_unstructured_grid

        Examples
        --------
        >>> from pyvista import examples
        >>> grid = examples.load_explicit_structured()
        >>> grid.plot(color='w', show_edges=True, show_bounds=True)

        >>> grid = grid.hide_cells(range(80, 120))
        >>> grid.plot(color='w', show_edges=True, show_bounds=True)

        >>> grid = grid.cast_to_unstructured_grid()
        >>> grid.plot(color='w', show_edges=True, show_bounds=True)

        >>> grid = grid.cast_to_explicit_structured_grid()
        >>> grid.plot(color='w', show_edges=True, show_bounds=True)

        """
        s1 = {'BLOCK_I', 'BLOCK_J', 'BLOCK_K'}
        s2 = self.cell_data.keys()
        if not s1.issubset(s2):
            msg = "'BLOCK_I', 'BLOCK_J' and 'BLOCK_K' cell arrays are required"
            raise TypeError(msg)
        alg = _vtk.vtkUnstructuredGridToExplicitStructuredGrid()
        alg.SetInputData(self)
        alg.SetInputArrayToProcess(0, 0, 0, 1, 'BLOCK_I')
        alg.SetInputArrayToProcess(1, 0, 0, 1, 'BLOCK_J')
        alg.SetInputArrayToProcess(2, 0, 0, 1, 'BLOCK_K')
        alg.Update()
        grid = _get_output(alg)
        grid.cell_data.remove('ConnectivityFlags')  # unrequired
        return grid


class StructuredGrid(PointGrid, StructuredGridFilters, _vtk.vtkStructuredGrid):
    """Dataset used for topologically regular arrays of data.

    Can be initialized in one of the following several ways:

    * Create empty grid.
    * Initialize from a filename.
    * Initialize from a :vtk:`vtkStructuredGrid` object.
    * Initialize directly from one or more :class:`numpy.ndarray`. See the
      example or the documentation of ``uinput``.

    Parameters
    ----------
    uinput : str, Path, :vtk:`vtkStructuredGrid`, numpy.ndarray, optional
        Filename, dataset, or array to initialize the structured grid from. If
        a filename is passed, pyvista will attempt to load it as a
        :class:`StructuredGrid`. If passed a :vtk:`vtkStructuredGrid`, it will
        be wrapped as a deep copy.

        If a :class:`numpy.ndarray` is provided and ``y`` and ``z`` are empty,
        this array will define the points of this :class:`StructuredGrid`.
        Set the dimensions with :attr:`StructuredGrid.dimensions`.

        Otherwise, this parameter will be loaded as the ``x`` points, and ``y``
        and ``z`` points must be set. The shape of this array defines the shape
        of the structured data and the shape should be ``(dimx, dimy,
        dimz)``. Missing trailing dimensions are assumed to be ``1``.

    y : numpy.ndarray, optional
        Coordinates of the points in y direction. If this is passed, ``uinput``
        must be a :class:`numpy.ndarray` and match the shape of ``y``.

    z : numpy.ndarray, optional
        Coordinates of the points in z direction. If this is passed, ``uinput``
        and ``y`` must be a :class:`numpy.ndarray` and match the shape of ``z``.

    deep : optional
        Whether to deep copy a StructuredGrid object.
        Default is ``False``.  Keyword only.

    **kwargs : dict, optional
        Additional keyword arguments passed when reading from a file or loading
        from arrays.

    See Also
    --------
    :ref:`create_structured_surface_example`

    Examples
    --------
    >>> import pyvista as pv
    >>> import vtk
    >>> import numpy as np

    Create an empty structured grid.

    >>> grid = pv.StructuredGrid()

    Initialize from a :vtk:`vtkStructuredGrid` object

    >>> vtkgrid = vtk.vtkStructuredGrid()
    >>> grid = pv.StructuredGrid(vtkgrid)

    Create from NumPy arrays using :func:`numpy.meshgrid`.

    >>> xrng = np.linspace(-5, 5, 10)
    >>> yrng = np.linspace(-8, 8, 4)
    >>> zrng = np.linspace(-7, 4, 20)
    >>> x, y, z = np.meshgrid(xrng, yrng, zrng, indexing='ij')
    >>> grid = pv.StructuredGrid(x, y, z)
    >>> grid
    StructuredGrid (...)
      N Cells:      513
      N Points:     800
      X Bounds:     -5.000e+00, 5.000e+00
      Y Bounds:     -8.000e+00, 8.000e+00
      Z Bounds:     -7.000e+00, 4.000e+00
      Dimensions:   10, 4, 20
      N Arrays:     0

    Note how the grid dimensions match the shape of the input arrays.

    >>> (xrng.size, yrng.size, zrng.size)
    (10, 4, 20)

    """

    _WRITERS: ClassVar[
        dict[str, type[_vtk.vtkStructuredGridWriter | _vtk.vtkXMLStructuredGridWriter]]
    ] = {'.vtk': _vtk.vtkStructuredGridWriter, '.vts': _vtk.vtkXMLStructuredGridWriter}  # type: ignore[assignment]

    def __init__(self, uinput=None, y=None, z=None, *args, deep: bool = False, **kwargs) -> None:
        """Initialize the structured grid."""
        super().__init__()

        if args:
            msg = 'Too many args to create StructuredGrid.'
            raise ValueError(msg)

        if isinstance(uinput, _vtk.vtkStructuredGrid):
            if deep:
                self.deep_copy(uinput)
            else:
                self.shallow_copy(uinput)  # type: ignore[arg-type]
        elif isinstance(uinput, (str, Path)):
            self._from_file(uinput, **kwargs)
        elif (
            isinstance(uinput, np.ndarray)
            and isinstance(y, np.ndarray)
            and isinstance(z, np.ndarray)
        ):
            self._from_arrays(uinput, y, z, **kwargs)
        elif isinstance(uinput, np.ndarray) and y is None and z is None:
            self.points = uinput
        elif uinput is None:
            # do nothing, initialize as empty structured grid
            pass
        else:
            msg = (
                'Invalid parameters. Expecting one of the following:\n'
                ' - No arguments\n'
                ' - Filename as the only argument\n'
                ' - StructuredGrid as the only argument\n'
                ' - Single `numpy.ndarray` as the only argument'
                ' - Three `numpy.ndarray` as the first three arguments'
            )
            raise TypeError(msg)

    def __repr__(self):
        """Return the standard representation."""
        return DataSet.__repr__(self)

    def __str__(self):
        """Return the standard str representation."""
        return DataSet.__str__(self)

    def _from_arrays(self, x, y, z, *, force_float: bool = True):
        """Create VTK structured grid directly from numpy arrays.

        Parameters
        ----------
        x : numpy.ndarray
            Position of the points in x direction.

        y : numpy.ndarray
            Position of the points in y direction.

        z : numpy.ndarray
            Position of the points in z direction.

        force_float : bool, optional
            Casts the datatype to ``float32`` if points datatype is
            non-float.  Default ``True``. Set this to ``False`` to allow
            non-float types, though this may lead to truncation of
            intermediate floats when transforming datasets.

        """
        if not (x.shape == y.shape == z.shape):
            msg = 'Input point array shapes must match exactly'
            raise ValueError(msg)

        # make the output points the same precision as the input arrays
        points = np.empty((x.size, 3), x.dtype)
        points[:, 0] = x.ravel('F')
        points[:, 1] = y.ravel('F')
        points[:, 2] = z.ravel('F')

        # ensure that the inputs are 3D
        dim = list(x.shape)
        while len(dim) < 3:
            dim.append(1)

        # Create structured grid
        self.SetDimensions(dim)
        self.SetPoints(vtk_points(points, force_float=force_float))

    @property
    def dimensions(self):  # numpydoc ignore=RT01
        """Return a length 3 tuple of the grid's dimensions.

        Returns
        -------
        tuple
            Grid dimensions.

        Examples
        --------
        >>> import pyvista as pv
        >>> import numpy as np
        >>> xrng = np.arange(-10, 10, 1, dtype=np.float32)
        >>> yrng = np.arange(-10, 10, 2, dtype=np.float32)
        >>> zrng = np.arange(-10, 10, 5, dtype=np.float32)
        >>> x, y, z = np.meshgrid(xrng, yrng, zrng, indexing='ij')
        >>> grid = pv.StructuredGrid(x, y, z)
        >>> grid.dimensions
        (20, 10, 4)

        """
        dims = [0, 0, 0]
        self.GetDimensions(dims)
        return tuple(dims)

    @dimensions.setter
    def dimensions(self, dims) -> None:
        nx, ny, nz = dims[0], dims[1], dims[2]
        self.SetDimensions(nx, ny, nz)
        self.Modified()

    @property
    def dimensionality(self) -> int:
        """Return the dimensionality of the grid.

        Returns
        -------
        int
            The grid dimensionality.

        Examples
        --------
        >>> import pyvista as pv
        >>> import numpy as np
        >>> xrng = np.arange(-10, 10, 1, dtype=np.float32)
        >>> yrng = np.arange(-10, 10, 2, dtype=np.float32)
        >>> zrng = np.arange(-10, 10, 5, dtype=np.float32)
        >>> x, y, z = np.meshgrid(xrng, yrng, zrng, indexing='ij')
        >>> grid = pv.StructuredGrid(x, y, z)
        >>> grid.dimensionality
        3

        """
        dims = np.asarray(self.dimensions)
        return int(3 - (dims == 1).sum())

    @property
    def x(self):  # numpydoc ignore=RT01
        """Return the X coordinates of all points.

        Returns
        -------
        numpy.ndarray
            Numpy array of all X coordinates.

        Examples
        --------
        >>> import pyvista as pv
        >>> import numpy as np
        >>> xrng = np.arange(-10, 10, 1, dtype=np.float32)
        >>> yrng = np.arange(-10, 10, 2, dtype=np.float32)
        >>> zrng = np.arange(-10, 10, 5, dtype=np.float32)
        >>> x, y, z = np.meshgrid(xrng, yrng, zrng, indexing='ij')
        >>> grid = pv.StructuredGrid(x, y, z)
        >>> grid.x.shape
        (20, 10, 4)

        """
        return self._reshape_point_array(self.points[:, 0])

    @property
    def y(self):  # numpydoc ignore=RT01
        """Return the Y coordinates of all points."""
        return self._reshape_point_array(self.points[:, 1])

    @property
    def z(self):  # numpydoc ignore=RT01
        """Return the Z coordinates of all points."""
        return self._reshape_point_array(self.points[:, 2])

    @property
    def points_matrix(self):  # numpydoc ignore=RT01
        """Points as a 4-D matrix, with x/y/z along the last dimension."""
        return self.points.reshape((*self.dimensions, 3), order='F')

    def _get_attrs(self):
        """Return the representation methods (internal helper)."""
        attrs = PointGrid._get_attrs(self)
        attrs.append(('Dimensions', self.dimensions, '{:d}, {:d}, {:d}'))
        return attrs

    def __getitem__(self, key):
        """Slice subsets of the StructuredGrid, or extract an array field."""
        # legacy behavior which looks for a point or cell array
        if not isinstance(key, tuple):
            return super().__getitem__(key)

        # convert slice to VOI specification - only "basic indexing" is supported
        voi = []  # type: ignore[var-annotated]
        rate = []
        if len(key) != 3:
            msg = 'Slices must have exactly 3 dimensions.'
            raise RuntimeError(msg)
        for i, k in enumerate(key):
            if isinstance(k, Iterable):
                msg = 'Fancy indexing with iterable is not supported.'
                raise TypeError(msg)
            if isinstance(k, numbers.Integral):
                start = stop = k
                step = 1
            elif isinstance(k, slice):
                start = k.start if k.start is not None else 0  # type: ignore[assignment]
                stop = k.stop - 1 if k.stop is not None else self.dimensions[i]
                step = k.step if k.step is not None else 1
            voi.extend((start, stop))
            rate.append(step)

        return self.extract_subset(voi, rate, boundary=False)

    @_deprecate_positional_args(allowed=['ind'])
    def hide_cells(self, ind, inplace: bool = False):  # noqa: FBT001, FBT002
        """Hide cells without deleting them.

        Hides cells by setting the ghost_cells array to ``HIDDEN_CELL``.

        Parameters
        ----------
        ind : sequence[int]
            List or array of cell indices to be hidden.  The array can
            also be a boolean array of the same size as the number of
            cells.

        inplace : bool, default: False
            Updates mesh in-place.

        Returns
        -------
        pyvista.StructuredGrid
            Structured grid with hidden cells.

        Examples
        --------
        Hide part of the middle of a structured surface.

        >>> import pyvista as pv
        >>> import numpy as np
        >>> x = np.arange(-10, 10, 0.25)
        >>> y = np.arange(-10, 10, 0.25)
        >>> z = 0
        >>> x, y, z = np.meshgrid(x, y, z)
        >>> grid = pv.StructuredGrid(x, y, z)
        >>> grid = grid.hide_cells(range(79 * 30, 79 * 50))
        >>> grid.plot(color=True, show_edges=True)

        """
        if not inplace:
            return self.copy().hide_cells(ind, inplace=True)
        if isinstance(ind, np.ndarray):
            if ind.dtype == np.bool_ and ind.size != self.n_cells:
                msg = f'Boolean array size must match the number of cells ({self.n_cells})'
                raise ValueError(msg)
        ghost_cells = np.zeros(self.n_cells, np.uint8)
        ghost_cells[ind] = _vtk.vtkDataSetAttributes.HIDDENCELL

        # NOTE: cells cannot be removed from a structured grid, only
        # hidden setting ghost_cells to a value besides
        # vtk.vtkDataSetAttributes.HIDDENCELL will not hide them
        # properly, additionally, calling self.RemoveGhostCells will
        # have no effect

        # add but do not make active
        self.cell_data.set_array(ghost_cells, _vtk.vtkDataSetAttributes.GhostArrayName())  # type: ignore[arg-type]
        return self

    def hide_points(self, ind: VectorLike[bool] | VectorLike[int]) -> None:
        """Hide points without deleting them.

        Hides points by setting the ghost_points array to ``HIDDEN_CELL``.

        Parameters
        ----------
        ind : VectorLike[bool] | VectorLike[int]
            Vector of point indices to be hidden. The vector can also be a
            boolean array of the same size as the number of points.

        Examples
        --------
        Hide part of the middle of a structured surface.

        >>> import pyvista as pv
        >>> import numpy as np
        >>> x = np.arange(-10, 10, 0.25)
        >>> y = np.arange(-10, 10, 0.25)
        >>> z = 0
        >>> x, y, z = np.meshgrid(x, y, z)
        >>> grid = pv.StructuredGrid(x, y, z)
        >>> grid.hide_points(range(80 * 30, 80 * 50))
        >>> grid.plot(color=True, show_edges=True)

        """
        if isinstance(ind, np.ndarray):
            if ind.dtype == np.bool_ and ind.size != self.n_points:
                msg = f'Boolean array size must match the number of points ({self.n_points})'
                raise ValueError(msg)
        ghost_points = np.zeros(self.n_points, np.uint8)
        ghost_points[ind] = _vtk.vtkDataSetAttributes.HIDDENPOINT

        # add but do not make active
        self.point_data.set_array(ghost_points, _vtk.vtkDataSetAttributes.GhostArrayName())  # type: ignore[arg-type]

    def cast_to_explicit_structured_grid(self) -> ExplicitStructuredGrid:
        """Cast to an explicit structured grid.

        Returns
        -------
        pyvista.ExplicitStructuredGrid
            An explicit structured grid.

        Raises
        ------
        TypeError
            If the structured grid is not 3D (i.e., any dimension is 1).

        """
        if any(n == 1 for n in self.dimensions):
            msg = 'Only 3D structured grid can be casted to an explicit structured grid.'
            raise TypeError(msg)

        ni, nj, nk = self.dimensions
        grid = self.cast_to_unstructured_grid()

        s1 = {'BLOCK_I', 'BLOCK_J', 'BLOCK_K'}
        if not s1.issubset(self.cell_data):
            i, j, k = np.unravel_index(
                np.arange(self.n_cells),
                shape=(ni - 1, nj - 1, nk - 1),
                order='F',
            )
            grid.cell_data['BLOCK_I'] = i
            grid.cell_data['BLOCK_J'] = j
            grid.cell_data['BLOCK_K'] = k

        grid = grid.cast_to_explicit_structured_grid()

        if not s1.issubset(self.cell_data):
            for key in s1:
                grid.cell_data.pop(key, None)

        return grid

    def _reshape_point_array(self, array: NumpyArray[float]) -> NumpyArray[float]:
        """Reshape point data to a 3-D matrix."""
        return array.reshape(self.dimensions, order='F')

    def _reshape_cell_array(self, array: NumpyArray[float]) -> NumpyArray[float]:
        """Reshape cell data to a 3-D matrix."""
        cell_dims = np.array(self.dimensions) - 1
        cell_dims[cell_dims == 0] = 1
        return array.reshape(cell_dims, order='F')


class ExplicitStructuredGrid(PointGrid, _vtk.vtkExplicitStructuredGrid):
    """Extend the functionality of the :vtk:`vtkExplicitStructuredGrid` class.

    Can be initialized by the following:

    - Creating an empty grid
    - From a :vtk:`vtkStructuredGrid`, :vtk:`vtkExplicitStructuredGrid` or
      :vtk:`vtkUnstructuredGrid` object
    - From a VTU or VTK file
    - From ``dims`` and ``corners`` arrays
    - From ``dims``, ``cells`` and ``points`` arrays

    Parameters
    ----------
    args : :vtk:`vtkExplicitStructuredGrid`, :vtk:`vtkUnstructuredGrid`, str, Sequence
        See examples below.
    deep : bool, default: False
        Whether to deep copy a :vtk:`vtkUnstructuredGrid` object.

    See Also
    --------
    :ref:`create_explicit_structured_grid_example`

    Examples
    --------
    >>> import numpy as np
    >>> import pyvista as pv
    >>>
    >>> # grid size: ni*nj*nk cells; si, sj, sk steps
    >>> ni, nj, nk = 4, 5, 6
    >>> si, sj, sk = 20, 10, 1
    >>>
    >>> # create raw coordinate grid
    >>> grid_ijk = np.mgrid[
    ...     : (ni + 1) * si : si,
    ...     : (nj + 1) * sj : sj,
    ...     : (nk + 1) * sk : sk,
    ... ]
    >>>
    >>> # repeat array along each Cartesian axis for connectivity
    >>> for axis in range(1, 4):
    ...     grid_ijk = grid_ijk.repeat(2, axis=axis)
    >>>
    >>> # slice off unnecessarily doubled edge coordinates
    >>> grid_ijk = grid_ijk[:, 1:-1, 1:-1, 1:-1]
    >>>
    >>> # reorder and reshape to VTK order
    >>> corners = grid_ijk.transpose().reshape(-1, 3)
    >>>
    >>> dims = np.array([ni, nj, nk]) + 1
    >>> grid = pv.ExplicitStructuredGrid(dims, corners)
    >>> grid = grid.compute_connectivity()
    >>> grid.plot(show_edges=True)

    """

    _WRITERS: ClassVar[
        dict[
            str,
            type[_vtk.vtkXMLUnstructuredGridWriter | _vtk.vtkUnstructuredGridWriter],
        ]
    ] = {'.vtu': _vtk.vtkXMLUnstructuredGridWriter, '.vtk': _vtk.vtkUnstructuredGridWriter}  # type: ignore[assignment]

    def __init__(self, *args, deep: bool = False, **kwargs):  # noqa: ARG002
        """Initialize the explicit structured grid."""
        super().__init__()
        n = len(args)
        if n > 3:
            msg = 'Too many args to create ExplicitStructuredGrid.'
            raise ValueError(msg)
        if n == 1:
            arg0 = args[0]
            if isinstance(arg0, _vtk.vtkExplicitStructuredGrid):
                if deep:
                    self.deep_copy(arg0)
                else:
                    self.shallow_copy(arg0)  # type: ignore[arg-type]
            elif isinstance(arg0, (_vtk.vtkStructuredGrid, _vtk.vtkUnstructuredGrid)):
                grid = arg0.cast_to_explicit_structured_grid()  # type: ignore[union-attr]
                self.shallow_copy(grid)
            elif isinstance(arg0, (str, Path)):
                grid = UnstructuredGrid(arg0)
                grid = grid.cast_to_explicit_structured_grid()
                self.shallow_copy(grid)
        elif n == 2:
            arg0, arg1 = args
            if isinstance(arg0, tuple):
                arg0 = np.asarray(arg0)
            if isinstance(arg1, list):
                arg1 = np.asarray(arg1)
            arg0_is_arr = isinstance(arg0, np.ndarray)
            arg1_is_arr = isinstance(arg1, np.ndarray)
            if all([arg0_is_arr, arg1_is_arr]):
                self._from_arrays(arg0, arg1)
        elif n == 3:
            arg0, arg1, arg2 = args
            arg0 = np.asarray(arg0)
            arg1 = np.asarray(arg1) if not isinstance(arg1, dict) else arg1
            arg2 = np.asarray(arg2)
            self._from_cells_points(arg0, arg1, arg2)

    def __repr__(self) -> str:
        """Return the standard representation."""
        return DataSet.__repr__(self)

    def __str__(self) -> str:
        """Return the standard ``str`` representation."""
        return DataSet.__str__(self)

    def _from_arrays(self, dims: VectorLike[int], corners: MatrixLike[float]) -> None:
        """Create a VTK explicit structured grid from NumPy arrays.

        Parameters
        ----------
        dims : VectorLike[int]
            A sequence of integers with shape (3,) containing the
            topological dimensions of the grid.

        corners : MatrixLike[float]
            A sequence of numbers with shape ``(number of corners, 3)``
            containing the coordinates of the corner points.

        """
        if len(dims) != 3:
            msg = 'Expected dimensions to be length 3.'
            raise ValueError(msg)

        ni, nj, nk = np.asanyarray(dims) - 1
        corners = np.reshape(corners, (2 * ni, 2 * nj, 2 * nk, 3), order='F')
        points = np.column_stack(
            [
                np.column_stack(
                    (
                        corners_[::2, ::2, ::2].ravel(order='F'),
                        corners_[1::2, ::2, ::2].ravel(order='F'),
                        corners_[1::2, 1::2, ::2].ravel(order='F'),
                        corners_[::2, 1::2, ::2].ravel(order='F'),
                        corners_[::2, ::2, 1::2].ravel(order='F'),
                        corners_[1::2, ::2, 1::2].ravel(order='F'),
                        corners_[1::2, 1::2, 1::2].ravel(order='F'),
                        corners_[::2, 1::2, 1::2].ravel(order='F'),
                    )
                ).ravel()
                for corners_ in corners.transpose((3, 0, 1, 2))
            ]
        )
        cells = np.arange(8 * ni * nj * nk).reshape((ni * nj * nk, 8))
        self._from_cells_points(dims, {CellType.HEXAHEDRON: cells}, points)

    def _from_cells_points(
        self,
        dims: VectorLike[int],
        cells: VectorLike[int] | dict[int, MatrixLike[int]],
        points: MatrixLike[float],
    ) -> None:
        """Create a VTK explicit structured grid from cells and points arrays.

        Parameters
        ----------
        dims : VectorLike[int]
            A sequence of integers with shape (3,) containing the
            topological dimensions of the grid.

        cells : VectorLike[int] | dict[int, MatrixLike[int]]
            Array of cells.  Each cell contains the number of points in the
            cell and the node numbers of the cell.

        points : MatrixLike[float]
            Numpy array containing point locations.

        """
        if len(dims) != 3:
            msg = 'Expected dimensions to be length 3.'
            raise ValueError(msg)

        else:
            n_cells = np.prod([n - 1 for n in dims])  # type: ignore[arg-type]

        if isinstance(cells, dict):
            celltypes = list(cells)

            if not (len(celltypes) == 1 and celltypes[0] == CellType.HEXAHEDRON):
                msg = f'Expected cells to be a single cell of type {CellType.HEXAHEDRON}.'
                raise ValueError(msg)

            cells = np.asarray(cells[celltypes[0]])
            if cells.shape != (n_cells, 8):
                msg = f'Expected cells to be of shape ({n_cells}, 8)'
                raise ValueError(msg)

            cells = np.column_stack((np.full(n_cells, 8), cells)).flatten()

        elif len(cells) != 9 * n_cells:
            msg = f'Expected cells to be length {9 * n_cells}'
            raise ValueError(msg)

        self.SetDimensions(dims[0], dims[1], dims[2])  # type: ignore[arg-type]
        self.SetCells(CellArray(cells))
        self.SetPoints(vtk_points(points))

    def cast_to_unstructured_grid(self) -> UnstructuredGrid:
        """Cast to an unstructured grid.

        Returns
        -------
        UnstructuredGrid
            An unstructured grid. VTK adds the ``'BLOCK_I'``,
            ``'BLOCK_J'`` and ``'BLOCK_K'`` cell arrays. These arrays
            are required to restore the explicit structured grid.

        See Also
        --------
        pyvista.DataSetFilters.extract_cells : Extract a subset of a dataset.
        pyvista.UnstructuredGrid.cast_to_explicit_structured_grid
            Cast an unstructured grid to an explicit structured grid.

        Notes
        -----
        The ghost cell array is disabled before casting the
        unstructured grid in order to allow the original structure
        and attributes data of the explicit structured grid to be
        restored. If you don't need to restore the explicit
        structured grid later or want to extract an unstructured
        grid from the visible subgrid, use the ``extract_cells``
        filter and the cell indices where the ghost cell array is
        ``0``.

        Examples
        --------
        >>> from pyvista import examples
        >>> grid = examples.load_explicit_structured()
        >>> grid.plot(color='w', show_edges=True, show_bounds=True)

        >>> grid = grid.hide_cells(range(80, 120))
        >>> grid.plot(color='w', show_edges=True, show_bounds=True)

        >>> grid = grid.cast_to_unstructured_grid()
        >>> grid.plot(color='w', show_edges=True, show_bounds=True)

        >>> grid = grid.cast_to_explicit_structured_grid()
        >>> grid.plot(color='w', show_edges=True, show_bounds=True)

        """
        grid = ExplicitStructuredGrid()
        grid.copy_structure(self)
        alg = _vtk.vtkExplicitStructuredGridToUnstructuredGrid()
        alg.SetInputDataObject(grid)
        alg.Update()
        ugrid = _get_output(alg)
        ugrid.cell_data.remove('vtkOriginalCellIds')  # unrequired
        ugrid.copy_attributes(self)  # copy ghost cell array and other arrays
        return ugrid

    @_deprecate_positional_args
    def clean(  # noqa: PLR0917
        self,
        tolerance=0,
        remove_unused_points: bool = True,  # noqa: FBT001, FBT002
        produce_merge_map: bool = True,  # noqa: FBT001, FBT002
        average_point_data: bool = True,  # noqa: FBT001, FBT002
        merging_array_name=None,
        progress_bar: bool = False,  # noqa: FBT001, FBT002
    ) -> ExplicitStructuredGrid:
        """Merge duplicate points and remove unused points in an ExplicitStructuredGrid.

        This filter, merging coincident points as defined by a merging
        tolerance and optionally removes unused points. The filter does not
        modify the topology of the input dataset, nor change the types of
        cells. It may however, renumber the cell connectivity ids.

        This filter casts the grid to an UnstructuredGrid to clean it, then
        casts the cleaned unstructured grid to an explicit structured grid.

        Parameters
        ----------
        tolerance : float, default: 0.0
            The absolute point merging tolerance.

        remove_unused_points : bool, default: True
            Indicate whether points unused by any cell are removed from the
            output. Note that when this is off, the filter can successfully
            process datasets with no cells (and just points). If on in this
            case, and there are no cells, the output will be empty.

        produce_merge_map : bool, default: False
            Indicate whether a merge map should be produced on output.
            The merge map, if requested, maps each input point to its
            output point id, or provides a value of -1 if the input point
            is not used in the output. The merge map is associated with
            the filter's output field data and is named ``"PointMergeMap"``.

        average_point_data : bool, default: True
            Indicate whether point coordinates and point data of merged points
            are averaged. When ``True``, the data coordinates and attribute
            values of all merged points are averaged. When ``False``, the point
            coordinate and data of the single remaining merged point is
            retained.

        merging_array_name : str, optional
            If a ``merging_array_name`` is specified and exists in the
            ``point_data``, then point merging will switch into a mode where
            merged points must be both geometrically coincident and have
            matching point data. When set, ``tolerance`` has no effect.

        progress_bar : bool, default: False
            Display a progress bar to indicate progress.

        Returns
        -------
        ExplicitStructuredGrid
            Cleaned explicit structured grid.

        """
        grid = (
            self.cast_to_unstructured_grid()
            .clean(
                tolerance=tolerance,
                remove_unused_points=remove_unused_points,
                produce_merge_map=produce_merge_map,
                average_point_data=average_point_data,
                merging_array_name=merging_array_name,
                progress_bar=progress_bar,
            )
            .cast_to_explicit_structured_grid()
        )

        s1 = {'BLOCK_I', 'BLOCK_J', 'BLOCK_K'}
        if not s1.issubset(self.cell_data):
            for key in s1:
                grid.cell_data.pop(key, None)

        return grid

    @_deprecate_positional_args(allowed=['filename'])
    def save(
        self,
        filename: Path | str,
        binary: bool = True,  # noqa: FBT001, FBT002
        texture: NumpyArray[np.uint8] | str | None = None,
    ) -> None:
        """Save this VTK object to file.

        Parameters
        ----------
        filename : Path, str
            Output file name. VTU and VTK extensions are supported.

        binary : bool, default: True
            If ``True``, write as binary, else ASCII.

        texture : np.ndarray, str, None
            Ignored argument. Kept to maintain compatibility with supertype.

        Notes
        -----
        VTK adds the ``'BLOCK_I'``, ``'BLOCK_J'`` and ``'BLOCK_K'``
        cell arrays. These arrays are required to restore the explicit
        structured grid.

        Examples
        --------
        >>> import pyvista as pv
        >>> from pyvista import examples
        >>> grid = examples.load_explicit_structured()  # doctest:+SKIP
        >>> grid = grid.hide_cells(range(80, 120))  # doctest:+SKIP
        >>> grid.save('grid.vtu')  # doctest:+SKIP

        >>> grid = pv.ExplicitStructuredGrid('grid.vtu')  # doctest:+SKIP
        >>> grid.plot(color='w', show_edges=True, show_bounds=True)  # doctest:+SKIP

        >>> grid.show_cells()  # doctest:+SKIP
        >>> grid.plot(color='w', show_edges=True, show_bounds=True)  # doctest:+SKIP

        """
        if texture is not None:
            msg = 'Cannot save texture of a pointset.'
            raise ValueError(msg)
        grid = self.cast_to_unstructured_grid()
        grid.save(filename, binary=binary)

    @_deprecate_positional_args(allowed=['ind'])
    def hide_cells(self, ind: VectorLike[int], inplace: bool = False) -> ExplicitStructuredGrid:  # noqa: FBT001, FBT002
        """Hide specific cells.

        Hides cells by setting the ghost cell array to ``HIDDENCELL``.

        Parameters
        ----------
        ind : sequence[int]
            Cell indices to be hidden. A boolean array of the same
            size as the number of cells also is acceptable.

        inplace : bool, default: False
            This method is applied to this grid if ``True``
            or to a copy otherwise.

        Returns
        -------
        ExplicitStructuredGrid or None
            A deep copy of this grid if ``inplace=False`` with the
            hidden cells, or this grid with the hidden cells if
            otherwise.

        Examples
        --------
        >>> from pyvista import examples
        >>> grid = examples.load_explicit_structured()
        >>> grid = grid.hide_cells(range(80, 120))
        >>> grid.plot(color='w', show_edges=True, show_bounds=True)

        """
        ind_arr = np.asanyarray(ind)

        if inplace:
            array = np.zeros(self.n_cells, dtype=np.uint8)
            array[ind_arr] = _vtk.vtkDataSetAttributes.HIDDENCELL
            name = _vtk.vtkDataSetAttributes.GhostArrayName()
            self.cell_data[name] = array
            return self

        grid = self.copy()
        grid.hide_cells(ind, inplace=True)
        return grid

    @_deprecate_positional_args
    def show_cells(self, inplace: bool = False) -> ExplicitStructuredGrid:  # noqa: FBT001, FBT002
        """Show hidden cells.

        Shows hidden cells by setting the ghost cell array to ``0``
        where ``HIDDENCELL``.

        Parameters
        ----------
        inplace : bool, default: False
            This method is applied to this grid if ``True``
            or to a copy otherwise.

        Returns
        -------
        ExplicitStructuredGrid
            A deep copy of this grid if ``inplace=False`` with the
            hidden cells shown.  Otherwise, this dataset with the
            shown cells.

        Examples
        --------
        >>> from pyvista import examples
        >>> grid = examples.load_explicit_structured()
        >>> grid = grid.hide_cells(range(80, 120))
        >>> grid.plot(color='w', show_edges=True, show_bounds=True)

        >>> grid = grid.show_cells()
        >>> grid.plot(color='w', show_edges=True, show_bounds=True)

        """
        if inplace:
            name = _vtk.vtkDataSetAttributes.GhostArrayName()
            if name in self.cell_data.keys():
                array = self.cell_data[name]
                ind = np.argwhere(array == _vtk.vtkDataSetAttributes.HIDDENCELL)
                array[ind] = 0
            return self
        else:
            grid = self.copy()
            grid.show_cells(inplace=True)
            return grid

    def _dimensions(self) -> tuple[int, int, int]:
        # This method is required to avoid conflict if a developer extends `ExplicitStructuredGrid`
        # and reimplements `dimensions` to return, for example, the number of cells in the I, J and
        dims = np.reshape(self.GetExtent(), (3, 2))  # K directions.
        dims = np.diff(dims, axis=1)
        dims = dims.flatten() + 1  # type: ignore[assignment]
        return int(dims[0]), int(dims[1]), int(dims[2])

    @property
    def dimensions(self) -> tuple[int, int, int]:  # numpydoc ignore=RT01
        """Return the topological dimensions of the grid.

        Returns
        -------
        tuple[int, int, int]
            Number of sampling points in the I, J and Z directions respectively.

        Examples
        --------
        >>> from pyvista import examples
        >>> grid = examples.load_explicit_structured()
        >>> grid.dimensions
        (5, 6, 7)

        """
        return self._dimensions()

    @property
    def dimensionality(self) -> int:
        """Return the dimensionality of the grid.

        Returns
        -------
        int
            The grid dimensionality.

        Examples
        --------
        >>> from pyvista import examples
        >>> grid = examples.load_explicit_structured()
        >>> grid.dimensionality
        3

        """
        dims = np.asarray(self.dimensions)
        return int(3 - (dims == 1).sum())

    @property
    def visible_bounds(self) -> BoundsTuple:  # numpydoc ignore=RT01
        """Return the bounding box of the visible cells.

        Different from `bounds`, which returns the bounding box of the
        complete grid, this method returns the bounding box of the
        visible cells, where the ghost cell array is not
        ``HIDDENCELL``.

        Returns
        -------
        tuple[float, float, float]
            The limits of the visible grid in the X, Y and Z
            directions respectively.

        Examples
        --------
        >>> from pyvista import examples
        >>> grid = examples.load_explicit_structured()
        >>> grid = grid.hide_cells(range(80, 120))
        >>> grid.bounds
        BoundsTuple(x_min =  0.0,
                    x_max = 80.0,
                    y_min =  0.0,
                    y_max = 50.0,
                    z_min =  0.0,
                    z_max =  6.0)

        >>> grid.visible_bounds
        BoundsTuple(x_min =  0.0,
                    x_max = 80.0,
                    y_min =  0.0,
                    y_max = 50.0,
                    z_min =  0.0,
                    z_max =  4.0)

        """
        name = _vtk.vtkDataSetAttributes.GhostArrayName()
        if name in self.cell_data:
            array = self.cell_data[name]
            grid = self.extract_cells(array == 0)
            return grid.bounds
        else:
            return self.bounds

    def cell_id(self, coords: ArrayLike[int]) -> int | NumpyArray[int] | None:
        """Return the cell ID.

        Parameters
        ----------
        coords : ArrayLike[int]
            Cell structured coordinates.

        Returns
        -------
        int | numpy.ndarray | None
            Cell IDs. ``None`` if ``coords`` is outside the grid extent.

        See Also
        --------
        pyvista.ExplicitStructuredGrid.cell_coords : Return the cell structured coordinates.

        Examples
        --------
        >>> from pyvista import examples
        >>> grid = examples.load_explicit_structured()
        >>> grid.cell_id((3, 4, 0))
        np.int64(19)

        >>> coords = [(3, 4, 0), (3, 2, 1), (1, 0, 2), (2, 3, 2)]
        >>> grid.cell_id(coords)
        array([19, 31, 41, 54])

        """
        # `vtk.vtkExplicitStructuredGrid.ComputeCellId` is not used
        # here because this method returns invalid cell IDs when
        # `coords` is outside the grid extent.
        if isinstance(coords, Sequence):
            coords = np.asarray(coords)

        if coords.ndim == 2:
            ncol = coords.shape[1]
            coords = [coords[:, c] for c in range(ncol)]
            coords = tuple(coords)
        dims = self._dimensions()
        try:
            ind = np.ravel_multi_index(coords, np.array(dims) - 1, order='F')
        except ValueError:
            return None
        else:
            return ind

    def cell_coords(
        self,
        ind: int | VectorLike[int],
    ) -> None | MatrixLike[int]:
        """Return the cell structured coordinates.

        Parameters
        ----------
        ind : int | VectorLike[int]
            Cell IDs.

        Returns
        -------
        numpy.ndarray | None
            Cell structured coordinates. ``None`` if ``ind`` is
            outside the grid extent.

        See Also
        --------
        pyvista.ExplicitStructuredGrid.cell_id : Return the cell ID.

        Examples
        --------
        >>> from pyvista import examples
        >>> grid = examples.load_explicit_structured()
        >>> grid.cell_coords(19)
        array([3, 4, 0])

        >>> grid.cell_coords((19, 31, 41, 54))
        array([[3, 4, 0],
               [3, 2, 1],
               [1, 0, 2],
               [2, 3, 2]])

        """
        dims = self._dimensions()
        try:
            coords = np.unravel_index(ind, np.array(dims) - 1, order='F')
        except ValueError:
            return None
        else:
            if isinstance(coords[0], np.ndarray):
                return np.stack(coords, axis=1)
            return np.asanyarray(coords)  # type: ignore[unreachable]

    def neighbors(self, ind: int | VectorLike[int], rel: str = 'connectivity') -> list[int]:
        """Return the indices of neighboring cells.

        Parameters
        ----------
        ind : int | VectorLike[int]
            Cell IDs.

        rel : str, default: "connectivity"
            Defines the neighborhood relationship. If
            ``'topological'``, returns the ``(i-1, j, k)``, ``(i+1, j,
            k)``, ``(i, j-1, k)``, ``(i, j+1, k)``, ``(i, j, k-1)``
            and ``(i, j, k+1)`` cells. If ``'connectivity'``
            (default), returns only the topological neighbors
            considering faces connectivity. If ``'geometric'``,
            returns the cells in the ``(i-1, j)``, ``(i+1, j)``,
            ``(i,j-1)`` and ``(i, j+1)`` vertical cell groups whose
            faces intersect.

        Returns
        -------
        list[int]
            Indices of neighboring cells.

        Examples
        --------
        >>> import pyvista as pv
        >>> from pyvista import examples
        >>> grid = examples.load_explicit_structured()
        >>> cell = grid.extract_cells(31)
        >>> ind = grid.neighbors(31)
        >>> neighbors = grid.extract_cells(ind)
        >>> plotter = pv.Plotter()
        >>> _ = plotter.add_axes()
        >>> _ = plotter.add_mesh(cell, color='r', show_edges=True)
        >>> _ = plotter.add_mesh(neighbors, color='w', show_edges=True)
        >>> plotter.show()

        """

        def connectivity(ind):
            indices = []
            cell_coords = self.cell_coords(ind)
            cell_points = self.get_cell(ind).points
            if cell_points.shape[0] == 8:
                faces = [
                    [(-1, 0, 0), (0, 4, 7, 3), (1, 5, 6, 2)],
                    [(+1, 0, 0), (1, 2, 6, 5), (0, 3, 7, 4)],
                    [(0, -1, 0), (0, 1, 5, 4), (3, 2, 6, 7)],
                    [(0, +1, 0), (3, 7, 6, 2), (0, 4, 5, 1)],
                    [(0, 0, -1), (0, 3, 2, 1), (4, 7, 6, 5)],
                    [(0, 0, +1), (4, 5, 6, 7), (0, 1, 2, 3)],
                ]
                for f in faces:
                    coords = np.sum([cell_coords, f[0]], axis=0)  # type: ignore[arg-type]
                    ind = self.cell_id(coords)
                    if ind:
                        points = self.get_cell(ind).points
                        if points.shape[0] == 8:
                            a1 = cell_points[f[1], :]
                            a2 = points[f[2], :]
                            if np.array_equal(a1, a2):
                                indices.append(ind)
            return indices

        def topological(ind):
            indices = []
            cell_coords = self.cell_coords(ind)
            cell_neighbors = [(-1, 0, 0), (1, 0, 0), (0, -1, 0), (0, 1, 0), (0, 0, -1), (0, 0, 1)]
            for n in cell_neighbors:
                coords = np.sum([cell_coords, n], axis=0)  # type: ignore[arg-type]
                ind = self.cell_id(coords)
                if ind:
                    indices.append(ind)
            return indices

        def geometric(ind):
            indices = []
            cell_coords = self.cell_coords(ind)
            cell_points = self.get_cell(ind).points
            if cell_points.shape[0] == 8:
                for k in [-1, 1]:
                    coords = np.sum([cell_coords, (0, 0, k)], axis=0)  # type: ignore[arg-type]
                    ind = self.cell_id(coords)
                    if ind:
                        indices.append(ind)
                faces = [
                    [(-1, 0, 0), (0, 4, 3, 7), (1, 5, 2, 6)],
                    [(+1, 0, 0), (2, 6, 1, 5), (3, 7, 0, 4)],
                    [(0, -1, 0), (1, 5, 0, 4), (2, 6, 3, 7)],
                    [(0, +1, 0), (3, 7, 2, 6), (0, 4, 1, 5)],
                ]
                nk = self.dimensions[2]
                for f in faces:
                    cell_z = cell_points[f[1], 2]
                    cell_z = np.abs(cell_z)
                    cell_z = cell_z.reshape((2, 2))
                    cell_zmin = cell_z.min(axis=1)
                    cell_zmax = cell_z.max(axis=1)
                    coords = np.sum([cell_coords, f[0]], axis=0)  # type: ignore[arg-type]
                    for k in range(nk):
                        coords[2] = k
                        ind = self.cell_id(coords)
                        if ind:
                            points = self.get_cell(ind).points
                            if points.shape[0] == 8:
                                z = points[f[2], 2]
                                z = np.abs(z)
                                z = z.reshape((2, 2))
                                zmin = z.min(axis=1)
                                zmax = z.max(axis=1)
                                if (
                                    (zmax[0] > cell_zmin[0] and zmin[0] < cell_zmax[0])
                                    or (zmax[1] > cell_zmin[1] and zmin[1] < cell_zmax[1])
                                    or (zmin[0] > cell_zmax[0] and zmax[1] < cell_zmin[1])
                                    or (zmin[1] > cell_zmax[1] and zmax[0] < cell_zmin[0])
                                ):
                                    indices.append(ind)
            return indices

        if isinstance(ind, int):
            ind = [ind]

        rel_map = {
            'connectivity': connectivity,
            'geometric': geometric,
            'topological': topological,
        }

        if rel not in rel_map:
            msg = (
                f'Invalid value for `rel` of {rel}. Should be one of the '
                f'following\n{rel_map.keys()}'
            )
            raise ValueError(msg)
        rel_func = rel_map[rel]

        indices = set()
        for i in ind:
            indices.update(rel_func(i))
        return sorted(indices)

    @_deprecate_positional_args
    def compute_connectivity(self, inplace: bool = False) -> ExplicitStructuredGrid:  # noqa: FBT001, FBT002
        """Compute the faces connectivity flags array.

        This method checks the faces connectivity of the cells with
        their topological neighbors.  The result is stored in the
        array of integers ``'ConnectivityFlags'``. Each value in this
        array must be interpreted as a binary number, where the digits
        shows the faces connectivity of a cell with its topological
        neighbors -Z, +Z, -Y, +Y, -X and +X respectively. For example,
        a cell with ``'ConnectivityFlags'`` equal to ``27``
        (``011011``) indicates that this cell is connected by faces
        with their neighbors ``(0, 0, 1)``, ``(0, -1, 0)``,
        ``(-1, 0, 0)`` and ``(1, 0, 0)``.

        Parameters
        ----------
        inplace : bool, default: False
            This method is applied to this grid if ``True``
            or to a copy otherwise.

        Returns
        -------
        ExplicitStructuredGrid
            A deep copy of this grid if ``inplace=False``, or this
            DataSet if otherwise.

        See Also
        --------
        ExplicitStructuredGrid.compute_connections
            Compute an array with the number of connected cell faces.

        Examples
        --------
        >>> from pyvista import examples
        >>>
        >>> grid = examples.load_explicit_structured()
        >>> grid = grid.compute_connectivity()
        >>> grid.plot(show_edges=True)

        """
        if inplace:
            self.ComputeFacesConnectivityFlagsArray()
            return self
        else:
            grid = self.copy()
            grid.compute_connectivity(inplace=True)
            return grid

    @_deprecate_positional_args
    def compute_connections(self, inplace: bool = False):  # noqa: FBT001, FBT002
        """Compute an array with the number of connected cell faces.

        This method calculates the number of topological cell
        neighbors connected by faces. The results are stored in the
        ``'number_of_connections'`` cell array.

        Parameters
        ----------
        inplace : bool, default: False
            This method is applied to this grid if ``True`` or to a copy
            otherwise.

        Returns
        -------
        ExplicitStructuredGrid
            A deep copy of this grid if ``inplace=False`` or this
            DataSet if otherwise.

        See Also
        --------
        ExplicitStructuredGrid.compute_connectivity : Compute the faces connectivity flags array.

        Examples
        --------
        >>> from pyvista import examples
        >>> grid = examples.load_explicit_structured()
        >>> grid = grid.compute_connections()
        >>> grid.plot(show_edges=True)

        """
        if inplace:
            if 'ConnectivityFlags' in self.cell_data:
                array = self.cell_data['ConnectivityFlags']
            else:
                grid = self.compute_connectivity(inplace=False)
                array = grid.cell_data['ConnectivityFlags']
            array = array.reshape((-1, 1))  # type: ignore[assignment]
            array = array.astype(np.uint8)  # type: ignore[assignment]
            array = np.unpackbits(array, axis=1)  # type: ignore[assignment]
            array = array.sum(axis=1)
            self.cell_data['number_of_connections'] = array
            return self
        else:
            return self.copy().compute_connections(inplace=True)