1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
|
"""Internal array utilities."""
from __future__ import annotations
from collections import UserDict
from collections.abc import Sequence
import enum
from itertools import product
import json
from typing import TYPE_CHECKING
from typing import Any
from typing import Literal
from typing import TypeVar
from typing import Union
from typing import cast
from typing import overload
import numpy as np
import numpy.typing as npt
import pyvista
from pyvista._deprecate_positional_args import _deprecate_positional_args
from pyvista.core import _vtk_core as _vtk
from pyvista.core.errors import AmbiguousDataError
from pyvista.core.errors import MissingDataError
if TYPE_CHECKING:
from pyvista import DataSet
from pyvista import Table
from pyvista import pyvista_ndarray
from pyvista.core._typing_core import MatrixLike
from pyvista.core._typing_core import NumpyArray
from pyvista.core._typing_core import VectorLike
from pyvista.core.dataset import _ActiveArrayExistsInfoTuple
# Mapping from types in `vtkType.h` to the corresponding array class
VTK_ARRAY_TYPES = {
_vtk.VTK_BIT: _vtk.vtkBitArray,
_vtk.VTK_CHAR: _vtk.vtkCharArray,
_vtk.VTK_SIGNED_CHAR: _vtk.vtkSignedCharArray,
_vtk.VTK_UNSIGNED_CHAR: _vtk.vtkUnsignedCharArray,
_vtk.VTK_SHORT: _vtk.vtkShortArray,
_vtk.VTK_UNSIGNED_SHORT: _vtk.vtkUnsignedShortArray,
_vtk.VTK_INT: _vtk.vtkIntArray,
_vtk.VTK_UNSIGNED_INT: _vtk.vtkUnsignedIntArray,
_vtk.VTK_LONG: _vtk.vtkLongArray,
_vtk.VTK_UNSIGNED_LONG: _vtk.vtkUnsignedLongArray,
_vtk.VTK_FLOAT: _vtk.vtkFloatArray,
_vtk.VTK_DOUBLE: _vtk.vtkDoubleArray,
_vtk.VTK_ID_TYPE: _vtk.vtkIdTypeArray,
_vtk.VTK_STRING: _vtk.vtkStringArray,
_vtk.VTK_LONG_LONG: _vtk.vtkLongLongArray,
_vtk.VTK_UNSIGNED_LONG_LONG: _vtk.vtkUnsignedLongLongArray,
}
class FieldAssociation(enum.Enum):
"""Represents which type of vtk field a scalar or vector array is associated with."""
POINT = int(_vtk.vtkDataObject.FIELD_ASSOCIATION_POINTS)
CELL = int(_vtk.vtkDataObject.FIELD_ASSOCIATION_CELLS)
NONE = int(_vtk.vtkDataObject.FIELD_ASSOCIATION_NONE)
ROW = int(_vtk.vtkDataObject.FIELD_ASSOCIATION_ROWS)
PointLiteral = Literal[
FieldAssociation.POINT,
'point',
]
CellLiteral = Literal[FieldAssociation.CELL, 'cell']
FieldLiteral = Literal[FieldAssociation.NONE, 'field']
RowLiteral = Literal[FieldAssociation.ROW, 'row']
@overload
def parse_field_choice(
field: PointLiteral | Literal['p', 'points'],
) -> Literal[FieldAssociation.POINT]: ...
@overload
def parse_field_choice(
field: CellLiteral | Literal['c', 'cells'],
) -> Literal[FieldAssociation.CELL]: ...
@overload
def parse_field_choice(
field: FieldLiteral | Literal['f', 'fields'],
) -> Literal[FieldAssociation.NONE]: ...
@overload
def parse_field_choice(field: RowLiteral | Literal['r']) -> Literal[FieldAssociation.ROW]: ...
@overload
def parse_field_choice(field: FieldAssociation) -> FieldAssociation: ...
def parse_field_choice(
field: FieldAssociation
| PointLiteral
| CellLiteral
| FieldLiteral
| RowLiteral
| Literal['p', 'c', 'f', 'r', 'points', 'cells', 'fields'],
) -> FieldAssociation:
"""Return a field association object for a given field type string.
Parameters
----------
field : str, FieldAssociation
Name of the field (e.g, ``'cell'``, ``'field'``, ``'point'``,
``'row'``).
Returns
-------
pyvista.FieldAssociation
Field association.
"""
if isinstance(field, str):
field_ = field.strip().lower()
if field_ in ['cell', 'c', 'cells']:
return FieldAssociation.CELL
elif field_ in ['point', 'p', 'points']:
return FieldAssociation.POINT
elif field_ in ['field', 'f', 'fields']:
return FieldAssociation.NONE
elif field_ in ['row', 'r']:
return FieldAssociation.ROW
else:
msg = f'Data field ({field}) not supported.'
raise ValueError(msg)
elif isinstance(field, FieldAssociation):
return field
else:
msg = f'Data field ({field}) not supported.' # type: ignore[unreachable]
raise TypeError(msg)
def _coerce_pointslike_arg(
points: MatrixLike[float] | VectorLike[float],
*,
copy: bool = False,
) -> tuple[NumpyArray[float], bool]:
"""Check and coerce arg to (n, 3) np.ndarray.
Parameters
----------
points : MatrixLike[float] | VectorLike[float]
Argument to coerce into (n, 3) :class:`numpy.ndarray`.
copy : bool, default: False
Whether to copy the ``points`` array. Copying always occurs if ``points``
is not :class:`numpy.ndarray`.
Returns
-------
numpy.ndarray
Size ``(n, 3)`` array.
bool
Whether the input was a single point in an array-like with shape ``(3,)``.
"""
if isinstance(points, Sequence):
points = np.asarray(points)
if not isinstance(points, np.ndarray):
msg = 'Given points must be convertible to a numerical array.' # type: ignore[unreachable]
raise TypeError(msg)
if points.ndim > 2:
msg = 'Array of points must be 1D or 2D'
raise ValueError(msg)
if points.ndim == 2:
if points.shape[1] != 3:
msg = 'Array of points must have three values per point (shape (n, 3))'
raise ValueError(msg)
singular = False
else:
if points.size != 3:
msg = 'Given point must have three values'
raise ValueError(msg)
singular = True
points = np.reshape(points, [1, 3])
if copy:
return points.copy(), singular
return points, singular
_vtkArrayType = TypeVar('_vtkArrayType', bound=_vtk.vtkAbstractArray) # noqa: N816
@_deprecate_positional_args(allowed=['array'])
def copy_vtk_array(array: _vtkArrayType, deep: bool = True) -> _vtkArrayType: # noqa: FBT001, FBT002
"""Create a deep or shallow copy of a VTK array.
Parameters
----------
array : :vtk:`vtkDataArray` | :vtk:`vtkAbstractArray`
VTK array.
deep : bool, optional
When ``True``, create a deep copy of the array. When ``False``, returns
a shallow copy.
Returns
-------
:vtk:`vtkDataArray` | :vtk:`vtkAbstractArray`
Copy of the original VTK array.
Examples
--------
Perform a deep copy of a vtk array.
>>> import vtk
>>> import pyvista as pv
>>> arr = vtk.vtkFloatArray()
>>> _ = arr.SetNumberOfValues(10)
>>> arr.SetValue(0, 1)
>>> arr_copy = pv.core.utilities.arrays.copy_vtk_array(arr)
>>> arr_copy.GetValue(0)
1.0
"""
if not isinstance(array, (_vtk.vtkDataArray, _vtk.vtkAbstractArray)):
msg = f'Invalid type {type(array)}.' # type: ignore[unreachable]
raise TypeError(msg)
try:
new_array = type(array)()
except TypeError:
# Array appears abstract and is likely implicit
# Init array from the array type instead
array_type = array.GetArrayType()
vtk_array_class = VTK_ARRAY_TYPES.get(array_type)
if vtk_array_class is None: # pragma: no cover
msg = f'Array could not be copied, unsupported array type code: {array_type}'
raise TypeError(msg)
new_array = vtk_array_class() # type: ignore[assignment]
if deep:
new_array.DeepCopy(array)
else:
new_array.ShallowCopy(array) # type: ignore[attr-defined]
return new_array
def has_duplicates(arr: NumpyArray[Any]) -> bool:
"""Return if an array has any duplicates.
Parameters
----------
arr : numpy.ndarray
Array to be checked for duplicates.
Returns
-------
bool
``True`` if the array has any duplicates, otherwise ``False``.
"""
s = np.sort(arr, axis=None)
return (s[1:] == s[:-1]).any()
def raise_has_duplicates(arr: NumpyArray[Any]) -> None:
"""Raise a ValueError if an array is not unique.
Parameters
----------
arr : numpy.ndarray
Array to be checked for duplicates.
Raises
------
ValueError
If the array contains duplicate values.
"""
if has_duplicates(arr):
msg = 'Array contains duplicate values.'
raise ValueError(msg)
@overload
def convert_array(
arr: _vtk.vtkAbstractArray,
name: str | None = ...,
deep: bool = ..., # noqa: FBT001
array_type: int | None = None,
) -> npt.NDArray[Any]: ...
@overload
def convert_array(
arr: npt.ArrayLike,
name: str | None = ...,
deep: bool = ..., # noqa: FBT001
array_type: int | None = None,
) -> _vtk.vtkAbstractArray: ...
@overload
def convert_array(
arr: None,
name: str | None = ...,
deep: bool = ..., # noqa: FBT001
array_type: int | None = ...,
) -> None: ...
@_deprecate_positional_args(allowed=['arr', 'name'])
def convert_array( # noqa: PLR0917
arr: npt.ArrayLike | _vtk.vtkAbstractArray | None,
name: str | None = None,
deep: bool = False, # noqa: FBT001, FBT002
array_type: int | None = None,
) -> npt.NDArray[Any] | _vtk.vtkAbstractArray | None:
"""Convert a NumPy array to a :vtk:`vtkDataArray` or vice versa.
Parameters
----------
arr : np.ndarray | :vtk:`vtkDataArray`
A numpy array or :vtk:`vtkDataArray` to convert.
name : str, optional
The name of the data array for VTK.
deep : bool, default: False
If input is numpy array then deep copy values.
array_type : int, optional
VTK array type ID as specified in ``vtkType.h``.
Returns
-------
:vtk:`vtkDataArray` | numpy.ndarray
The converted array. If input is a :class:`numpy.ndarray` then
returns :vtk:`vtkDataArray` or if input is :vtk:`vtkDataArray` then
returns NumPy ``ndarray``.
"""
if arr is None:
return None
if isinstance(arr, (list, tuple, str)):
arr = np.array(arr)
if isinstance(arr, np.ndarray):
if arr.dtype == np.dtype('O'):
arr = arr.astype('|S')
if arr.dtype.type in (np.str_, np.bytes_):
# This handles strings
if arr.ndim > 0:
# Do not call ascontiguousarray for scalar strings since this will reshape to 1D
# and scalars are already contiguous anyway
arr = np.ascontiguousarray(arr)
vtk_data = convert_string_array(arr)
else:
# This will handle numerical data
arr = np.ascontiguousarray(arr)
vtk_data = _vtk.numpy_to_vtk(num_array=arr, deep=deep, array_type=array_type)
if isinstance(name, str):
vtk_data.SetName(name)
return vtk_data
# Otherwise input must be a vtkDataArray
if not isinstance(arr, (_vtk.vtkDataArray, _vtk.vtkBitArray, _vtk.vtkStringArray)):
msg = f'Invalid input array type ({type(arr)}).'
raise TypeError(msg)
# Handle booleans
if isinstance(arr, _vtk.vtkBitArray):
arr = vtk_bit_array_to_char(arr)
# Handle string arrays
if isinstance(arr, _vtk.vtkStringArray):
return convert_string_array(arr)
# Convert from vtkDataArry to NumPy
return _vtk.vtk_to_numpy(arr)
@_deprecate_positional_args(allowed=['mesh', 'name'])
def get_array( # noqa: PLR0917
mesh: DataSet | _vtk.vtkDataSet | _vtk.vtkTable,
name: str,
preference: PointLiteral | CellLiteral | FieldLiteral | RowLiteral = 'cell',
err: bool = False, # noqa: FBT001, FBT002
) -> pyvista_ndarray | None:
"""Search point, cell and field data for an array.
Parameters
----------
mesh : pyvista.DataSet
Dataset to get the array from.
name : str
The name of the array to get the range.
preference : str, default: "cell"
When scalars is specified, this is the preferred array type to
search for in the dataset. Must be either ``'point'``,
``'cell'``, or ``'field'``.
err : bool, default: False
Whether to throw an error if array is not present.
Returns
-------
pyvista.pyvista_ndarray or None
Requested array. Return ``None`` if there is no array
matching the ``name`` and ``err=False``.
"""
if isinstance(mesh, _vtk.vtkTable):
arr = row_array(mesh, name)
if arr is None and err:
msg = f'Data array ({name}) not present in this dataset.'
raise KeyError(msg)
return arr
else:
preference_ = parse_field_choice(preference)
if preference_ not in [
FieldAssociation.CELL,
FieldAssociation.POINT,
FieldAssociation.NONE,
]:
msg = (
f'`preference` must be either "cell", "point", "field" for a '
f'{type(mesh)}, not "{preference}".'
)
raise ValueError(msg)
parr = point_array(mesh, name)
carr = cell_array(mesh, name)
farr = field_array(mesh, name)
if sum(array is not None for array in (parr, carr, farr)) > 1:
if preference_ == FieldAssociation.CELL:
out = carr
elif preference_ == FieldAssociation.POINT:
out = parr
else: # must be field
out = farr
elif parr is not None:
out = parr
elif carr is not None:
out = carr
elif farr is not None:
out = farr
elif err:
msg = f'Data array ({name}) not present in this dataset.'
raise KeyError(msg)
else:
out = None
return out
@_deprecate_positional_args(allowed=['mesh', 'name'])
def get_array_association( # noqa: PLR0917
mesh: DataSet | _vtk.vtkDataSet | _vtk.vtkTable,
name: str,
preference: PointLiteral | CellLiteral | FieldLiteral | RowLiteral = 'cell',
err: bool = False, # noqa: FBT001, FBT002
) -> FieldAssociation:
"""Return the array association.
Parameters
----------
mesh : Dataset
Dataset to get the array association from.
name : str
The name of the array.
preference : str, default: "cell"
When scalars is specified, this is the preferred array type to
search for in the dataset. Must be either ``'point'``,
``'cell'``, or ``'field'``.
err : bool, default: False
Boolean to control whether to throw an error if array is not
present.
Returns
-------
pyvista.core.utilities.arrays.FieldAssociation
Association of the array. If array is not present and ``err`` is
``False``, ``FieldAssociation.NONE`` is returned.
"""
if isinstance(mesh, _vtk.vtkTable):
arr = row_array(mesh, name)
if arr is None and err:
msg = f'Data array ({name}) not present in this dataset.'
raise KeyError(msg)
return FieldAssociation.ROW
# with multiple arrays, return the array preference if possible
parr = point_array(mesh, name)
carr = cell_array(mesh, name)
farr = field_array(mesh, name)
arrays = [parr, carr, farr]
preferences = [FieldAssociation.POINT, FieldAssociation.CELL, FieldAssociation.NONE]
preference_field = parse_field_choice(preference)
if preference_field not in preferences:
msg = f'Data field ({preference}) not supported.'
raise ValueError(msg)
matches = [pref for pref, array in zip(preferences, arrays) if array is not None]
# optionally raise if no match
if not matches:
if err:
msg = f'Data array ({name}) not present in this dataset.'
raise KeyError(msg)
return FieldAssociation.NONE
# use preference if it applies
if preference_field in matches:
return preference_field
# otherwise return first in order of point -> cell -> field
return matches[0]
def raise_not_matching(scalars: npt.NDArray[Any], dataset: DataSet | Table) -> None:
"""Raise exception about inconsistencies.
Parameters
----------
scalars : numpy.ndarray
Array of scalars.
dataset : pyvista.DataSet | pyvista.Table
Dataset to check against.
Raises
------
ValueError
Raises a ValueError if the size of scalars does not the dataset.
"""
if isinstance(dataset, _vtk.vtkTable):
msg = (
f'Number of scalars ({scalars.shape[0]}) must match number of rows ({dataset.n_rows}).'
)
raise ValueError(msg) # noqa: TRY004
msg = (
f'Number of scalars ({scalars.shape[0]}) '
f'must match either the number of points ({dataset.n_points}) '
f'or the number of cells ({dataset.n_cells}).'
)
raise ValueError(msg)
def _assoc_array(
obj: DataSet | _vtk.vtkDataSet, name: str, association: str = 'point'
) -> pyvista_ndarray | None:
"""Return a point, cell, or field array from a pyvista.DataSet or VTK object.
If the array or index doesn't exist, return nothing. This matches VTK's
behavior when using ``GetAbstractArray`` with an invalid key or index.
"""
vtk_attr = f'Get{association.title()}Data'
python_attr = f'{association.lower()}_data'
if isinstance(obj, pyvista.DataSet):
try:
return getattr(obj, python_attr).get_array(name)
except KeyError: # pragma: no cover
return None
abstract_array = getattr(obj, vtk_attr)().GetAbstractArray(name)
if abstract_array is not None:
return pyvista.pyvista_ndarray(abstract_array)
return None
def point_array(obj: DataSet | _vtk.vtkDataSet, name: str) -> pyvista_ndarray | None:
"""Return point array of a pyvista or vtk object.
Parameters
----------
obj : DataSet | :vtk:`vtkDataSet`
PyVista or VTK dataset.
name : str | int
Name or index of the array.
Returns
-------
pyvista.pyvista_ndarray or None
Wrapped array if the index or name is valid. Otherwise, ``None``.
"""
return _assoc_array(obj, name, 'point')
def field_array(obj: DataSet | _vtk.vtkDataSet, name: str) -> pyvista_ndarray | None:
"""Return field data of a pyvista or vtk object.
Parameters
----------
obj : DataSet | :vtk:`vtkDataSet`
PyVista or VTK dataset.
name : str | int
Name or index of the array.
Returns
-------
pyvista.pyvista_ndarray or None
Wrapped array if the index or name is valid. Otherwise, ``None``.
"""
return _assoc_array(obj, name, 'field')
def cell_array(obj: DataSet | _vtk.vtkDataSet, name: str) -> pyvista_ndarray | None:
"""Return cell array of a pyvista or vtk object.
Parameters
----------
obj : DataSet | :vtk:`vtkDataSet`
PyVista or VTK dataset.
name : str | int
Name or index of the array.
Returns
-------
pyvista.pyvista_ndarray or None
Wrapped array if the index or name is valid. Otherwise, ``None``.
"""
return _assoc_array(obj, name, 'cell')
def row_array(obj: _vtk.vtkTable, name: str) -> pyvista_ndarray | None:
"""Return row array of a vtk object.
Parameters
----------
obj : :vtk:`vtkTable`
PyVista or VTK table.
name : str
Name of the array.
Returns
-------
numpy.ndarray
Wrapped array.
"""
vtkarr = obj.GetRowData().GetAbstractArray(name)
if vtkarr is not None:
return pyvista.pyvista_ndarray(convert_array(vtkarr))
else:
return None
def get_vtk_type(typ: npt.DTypeLike) -> int:
"""Look up the VTK type for a given numpy data type.
Corrects for string type mapping issues.
Parameters
----------
typ : numpy.dtype
Numpy data type.
Returns
-------
int
Integer type id specified in ``vtkType.h``.
"""
typ_ = _vtk.get_vtk_array_type(typ)
# This handles a silly string type bug
if typ_ == 3:
return 13
return typ_
def vtk_bit_array_to_char(vtkarr_bint: _vtk.vtkBitArray) -> _vtk.vtkCharArray:
"""Cast vtk bit array to a char array.
Parameters
----------
vtkarr_bint : :vtk:`vtkBitArray`
VTK binary array.
Returns
-------
:vtk:`vtkCharArray`
VTK char array.
Notes
-----
This performs a copy.
"""
vtkarr = _vtk.vtkCharArray()
vtkarr.DeepCopy(vtkarr_bint)
return vtkarr
def vtk_id_list_to_array(vtk_id_list: _vtk.vtkIdList) -> NumpyArray[int]:
"""Convert a :vtk:`vtkIdList` to a NumPy array.
Parameters
----------
vtk_id_list : :vtk:`vtkIdList`
VTK ID list.
Returns
-------
numpy.ndarray
Array of IDs.
"""
return np.array([vtk_id_list.GetId(i) for i in range(vtk_id_list.GetNumberOfIds())])
def _set_string_scalar_object_name(vtkarr: _vtk.vtkStringArray) -> None:
"""Set object name for scalar string arrays."""
# This is used as a flag so that scalar arrays can be reshaped later.
try:
vtkarr.SetObjectName('scalar')
except AttributeError:
vtkarr.GetObjectName = lambda: 'scalar' # type: ignore[method-assign]
@overload
def convert_string_array(
arr: _vtk.vtkStringArray, name: str | None = ...
) -> npt.NDArray[np.str_]: ...
@overload
def convert_string_array(
arr: str | npt.NDArray[np.str_], name: str | None = ...
) -> _vtk.vtkStringArray: ...
def convert_string_array(
arr: str | npt.NDArray[np.str_] | _vtk.vtkStringArray, name: str | None = None
) -> npt.NDArray[np.str_] | _vtk.vtkStringArray:
"""Convert a numpy array of strings to a :vtk:`vtkStringArray` or vice versa.
If a scalar string is provided, it is converted to a :vtk:`vtkCharArray`
Parameters
----------
arr : numpy.ndarray | str
Numpy string array to convert.
name : str, optional
Name to set the :vtk:`vtkStringArray` to.
Returns
-------
:vtk:`vtkStringArray`
VTK string array.
Notes
-----
Note that this is terribly inefficient. If you have ideas on how
to make this faster, please consider opening a pull request.
"""
arr = np.array(arr) if isinstance(arr, str) else arr
if isinstance(arr, np.ndarray):
# VTK default fonts only support ASCII. See https://gitlab.kitware.com/vtk/vtk/-/issues/16904
if (
np.issubdtype(arr.dtype, np.str_) and not ''.join(arr.tolist()).isascii()
): # avoids segfault
msg = 'String array contains non-ASCII characters that are not supported by VTK.'
raise ValueError(msg)
vtkarr = _vtk.vtkStringArray()
if arr.ndim == 0:
arr = arr.reshape((1,))
# distinguish scalar inputs from array inputs by
# setting the object name
_set_string_scalar_object_name(vtkarr)
# OPTIMIZE ###########
for val in arr:
vtkarr.InsertNextValue(val)
################################
if isinstance(name, str):
vtkarr.SetName(name)
return vtkarr
# Otherwise it is a vtk array and needs to be converted back to numpy
# OPTIMIZE ###############
nvalues = arr.GetNumberOfValues()
arr_out = np.array([arr.GetValue(i) for i in range(nvalues)], dtype='|U')
try:
if arr.GetObjectName() == 'scalar':
return np.array(''.join(arr_out))
except AttributeError:
pass
return arr_out
########################################
def array_from_vtkmatrix(matrix: _vtk.vtkMatrix3x3 | _vtk.vtkMatrix4x4) -> NumpyArray[float]:
"""Convert a vtk matrix to an array.
Parameters
----------
matrix : :vtk:`vtkMatrix3x3` | :vtk:`vtkMatrix4x4`
The vtk matrix to be converted to a ``numpy.ndarray``.
Returned ndarray has shape (3, 3) or (4, 4) as appropriate.
Returns
-------
numpy.ndarray
Numpy array containing the data from ``matrix``.
"""
if isinstance(matrix, _vtk.vtkMatrix3x3):
shape = (3, 3)
elif isinstance(matrix, _vtk.vtkMatrix4x4):
shape = (4, 4)
else:
msg = ( # type: ignore[unreachable]
'Expected vtk.vtkMatrix3x3 or vtk.vtkMatrix4x4 input,'
f' got {type(matrix).__name__} instead.'
)
raise TypeError(msg)
array = np.zeros(shape)
for i, j in product(range(shape[0]), range(shape[1])):
array[i, j] = matrix.GetElement(i, j)
return array
def vtkmatrix_from_array(array: NumpyArray[float]) -> _vtk.vtkMatrix3x3 | _vtk.vtkMatrix4x4:
"""Convert a ``numpy.ndarray`` or array-like to a vtk matrix.
Parameters
----------
array : array_like[float]
The array or array-like to be converted to a vtk matrix.
Shape (3, 3) gets converted to a :vtk:`vtkMatrix3x3`, shape (4, 4)
gets converted to a :vtk:`vtkMatrix4x4`. No other shapes are valid.
Returns
-------
:vtk:`vtkMatrix3x3` | :vtk:`vtkMatrix4x4`
VTK matrix.
"""
array = np.asarray(array)
if array.shape == (3, 3):
matrix = _vtk.vtkMatrix3x3()
elif array.shape == (4, 4):
matrix = _vtk.vtkMatrix4x4() # type: ignore[assignment]
else:
msg = f'Invalid shape {array.shape}, must be (3, 3) or (4, 4).'
raise ValueError(msg)
m, n = array.shape
for i, j in product(range(m), range(n)):
matrix.SetElement(i, j, array[i, j])
return matrix
def set_default_active_vectors(mesh: pyvista.DataSet) -> _ActiveArrayExistsInfoTuple:
"""Set a default vectors array on mesh, if not already set.
If an active vector already exists, no changes are made.
If an active vectors does not exist, it checks for possibly cell
or point arrays with shape ``(n, 3)``. If only one exists, then
it is set as the active vectors. Otherwise, an error is raised.
.. versionchanged:: 0.45
The field and name of the active array is now returned.
Previously, ``None`` was returned.
Parameters
----------
mesh : pyvista.DataSet
Dataset to set default active vectors.
Raises
------
MissingDataError
If no vector-like arrays exist.
AmbiguousDataError
If more than one vector-like arrays exist.
Returns
-------
tuple[FieldAssociation, str]
The field and name of the active array.
"""
from pyvista.core.dataset import _ActiveArrayExistsInfoTuple # noqa: PLC0415
if mesh.active_vectors_name is None:
point_data = mesh.point_data
cell_data = mesh.cell_data
possible_vectors_point = [
name for name, value in point_data.items() if value.ndim == 2 and value.shape[1] == 3
]
possible_vectors_cell = [
name for name, value in cell_data.items() if value.ndim == 2 and value.shape[1] == 3
]
possible_vectors = possible_vectors_point + possible_vectors_cell
n_possible_vectors = len(possible_vectors)
if n_possible_vectors == 1:
preference: Literal['point', 'cell'] = (
'point' if len(possible_vectors_point) == 1 else 'cell'
)
mesh.set_active_vectors(possible_vectors[0], preference=preference)
elif n_possible_vectors < 1:
msg = 'No vector-like data available.'
raise MissingDataError(msg)
else: # n_possible_vectors > 1:
msg = (
'Multiple vector-like data available\n'
f'cell data: {possible_vectors_cell}.\n'
f'point data: {possible_vectors_point}.\n'
'Set one as active using DataSet.set_active_vectors(name, preference=type)'
)
raise AmbiguousDataError(msg)
field, name = mesh.active_vectors_info
return _ActiveArrayExistsInfoTuple(field, cast('str', name))
def set_default_active_scalars(mesh: pyvista.DataSet) -> _ActiveArrayExistsInfoTuple:
"""Set a default scalars array on mesh, if not already set.
If an active scalars already exists, no changes are made.
If an active scalars does not exist, it checks for point or cell
arrays. If only one exists, then it is set as the active scalars.
Otherwise, an error is raised.
.. versionchanged:: 0.45
The field and name of the active array is now returned.
Previously, ``None`` was returned.
Parameters
----------
mesh : pyvista.DataSet
Dataset to set default active scalars.
Raises
------
MissingDataError
If no arrays exist.
AmbiguousDataError
If more than one array exists.
Returns
-------
tuple[FieldAssociation, str]
The field and name of the active array.
"""
from pyvista.core.dataset import _ActiveArrayExistsInfoTuple # noqa: PLC0415
if mesh.active_scalars_name is None:
point_data = mesh.point_data
cell_data = mesh.cell_data
possible_scalars_point = point_data.keys()
possible_scalars_cell = cell_data.keys()
possible_scalars = possible_scalars_point + possible_scalars_cell
n_possible_scalars = len(possible_scalars)
if n_possible_scalars == 1:
preference: Literal['point', 'cell'] = (
'point' if len(possible_scalars_point) == 1 else 'cell'
)
mesh.set_active_scalars(possible_scalars[0], preference=preference)
elif n_possible_scalars < 1:
msg = 'No data available.'
raise MissingDataError(msg)
else: # n_possible_scalars > 1:
msg = (
'Multiple data available\n'
f'cell data: {possible_scalars_cell}.\n'
f'point data: {possible_scalars_point}.\n'
'Set one as active using DataSet.set_active_scalars(name, preference=type)'
)
raise AmbiguousDataError(msg)
field, name = mesh.active_scalars_info
return _ActiveArrayExistsInfoTuple(field, cast('str', name))
_JSONValueType = Union[
dict[str, '_JSONValueType'],
list['_JSONValueType'],
tuple['_JSONValueType'],
str,
int,
float,
bool,
None,
]
class _SerializedDictArray(_vtk.DisableVtkSnakeCase, UserDict, _vtk.vtkStringArray): # type: ignore[type-arg]
"""Dict-like object with a JSON-serialized string array representation.
This class behaves just like a regular dict, except its contents
are represented internally as a JSON-formatted :vtk:`vtkStringArray`.
The string array is updated dynamically any time the dict is
modified, such that modifying the dict will also implicitly modify
its JSON string representation.
Notes
-----
This class is intended for use as a dict with a small number of keys and
relatively small values, e.g. for storing metadata. It should not be
used to store frequently accessed array data with hundreds of entries.
"""
@property
def _string(self: _SerializedDictArray) -> str:
"""Get the :vtk:`vtkStringArray` string."""
return ''.join([self.GetValue(i) for i in range(self.GetNumberOfValues())])
@_string.setter
def _string(self: _SerializedDictArray, str_: str) -> None:
"""Set the :vtk:`vtkStringArray` to a specified string."""
self.SetNumberOfValues(0) # Clear string
for char in str_: # Populate string
self.InsertNextValue(char)
def _update_string(self: _SerializedDictArray) -> None:
"""Format dict data as JSON and update the :vtk:`vtkStringArray`."""
data_str = json.dumps(self.data)
if data_str != self._string:
self._string = data_str
def __repr__(self: _SerializedDictArray) -> str:
"""Return JSON-formatted dict representation."""
return self._string
def __init__(
self: _SerializedDictArray,
dict_: str | dict[str, _JSONValueType] | UserDict[str, _JSONValueType] | None = None,
/,
**kwargs,
) -> None:
# Init from JSON string
if isinstance(dict_, str):
dict_ = json.loads(dict_)
# Init UserDict
super().__init__(dict_, **kwargs) # type: ignore[arg-type]
self._update_string()
# Flag self as a scalar string
# This is only needed so that the Field DatasetAttributes repr
# shows this array as `str`
_set_string_scalar_object_name(self)
def __getstate__(self: _SerializedDictArray) -> None:
"""Support pickling.
This method does nothing. It only exists to make the pickle library happy.
Classes that store an instance of this class must pickle this array directly.
E.g. DataObjects can support this by storing this array as field data
"""
def __setstate__(self: _SerializedDictArray, state: Any) -> None:
"""Support pickling.
This method does nothing. It only exists to make the pickle library happy.
Classes that store an instance of this class must pickle this array directly.
E.g. DataObjects can support this by storing this array as field data
"""
# Override any/all `UserDict` or `MutableMapping` methods which mutate
# the dictionary. This ensures the serialized string is also updated
# and synced with the dict
def __setitem__(self: _SerializedDictArray, key: Any, item: Any) -> None:
super().__setitem__(key, item)
self._update_string()
def __delitem__(self: _SerializedDictArray, key: Any) -> None:
super().__delitem__(key)
self._update_string()
def __setattr__(self: _SerializedDictArray, key: Any, value: Any) -> None:
object.__setattr__(self, key, value)
self._update_string() if key != '_string' else None
def update(self: _SerializedDictArray, *args, **kwargs) -> None:
super().update(*args, **kwargs)
self._update_string()
def popitem(self: _SerializedDictArray) -> Any:
item = super().popitem()
self._update_string()
return item
def pop(self: _SerializedDictArray, __key: Any) -> Any: # type: ignore[override] # noqa: PYI063
item = super().pop(__key)
self._update_string()
return item
def clear(self: _SerializedDictArray) -> None:
super().clear()
self._update_string()
def setdefault(self: _SerializedDictArray, *args, **kwargs) -> None:
super().setdefault(*args, **kwargs)
self._update_string()
|