1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
|
"""Points related utilities."""
from __future__ import annotations
from typing import TYPE_CHECKING
from typing import Literal
from typing import overload
import warnings
import numpy as np
import pyvista
from pyvista._deprecate_positional_args import _deprecate_positional_args
from pyvista.core import _validation
from pyvista.core import _vtk_core as _vtk
if TYPE_CHECKING:
from pyvista import PolyData
from pyvista.core._typing_core import MatrixLike
from pyvista.core._typing_core import NumpyArray
from pyvista.core._typing_core import VectorLike
@_deprecate_positional_args(allowed=['points'])
def vtk_points( # noqa: PLR0917
points: VectorLike[float] | MatrixLike[float],
deep: bool = True, # noqa: FBT001, FBT002
force_float: bool = False, # noqa: FBT001, FBT002
allow_empty: bool = True, # noqa: FBT001, FBT002
) -> _vtk.vtkPoints:
"""Convert numpy array or array-like to a :vtk:`vtkPoints` object.
Parameters
----------
points : numpy.ndarray or sequence
Points to convert. Should be 1 or 2 dimensional. Accepts a
single point or several points.
deep : bool, default: True
Perform a deep copy of the array. Only applicable if
``points`` is a :class:`numpy.ndarray`.
force_float : bool, default: False
Casts the datatype to ``float32`` if points datatype is
non-float. Set this to ``False`` to allow non-float types,
though this may lead to truncation of intermediate floats
when transforming datasets.
allow_empty : bool, default: True
Allow ``points`` to be an empty array. If ``False``, points
must be strictly one- or two-dimensional.
.. versionadded:: 0.45
Returns
-------
:vtk:`vtkPoints`
The :vtk:`vtkPoints` object.
Examples
--------
>>> import pyvista as pv
>>> import numpy as np
>>> points = np.random.default_rng().random((10, 3))
>>> vpoints = pv.vtk_points(points)
>>> vpoints # doctest:+SKIP
(vtkmodules.vtkCommonCore.vtkPoints)0x7f0c2e26af40
"""
try:
points_ = _validation.validate_arrayNx3(points, name='points')
except ValueError as e:
if 'points has shape (0,)' in repr(e) and allow_empty:
points_ = np.empty(shape=(0, 3), dtype=np.array(points).dtype)
else:
raise
if force_float and not np.issubdtype(points_.dtype, np.floating):
warnings.warn(
'Points is not a float type. This can cause issues when '
'transforming or applying filters. Casting to '
'``np.float32``. Disable this by passing '
'``force_float=False``.',
)
points_ = points_.astype(np.float32)
# use the underlying vtk data if present to avoid memory leaks
if not deep and isinstance(points_, pyvista.pyvista_ndarray) and points_.VTKObject is not None:
vtk_object = points_.VTKObject
# we can only use the underlying data if `points` is not a slice of
# the VTK data object
if vtk_object.GetSize() == points_.size:
vtkpts = _vtk.vtkPoints()
vtkpts.SetData(points_.VTKObject)
return vtkpts
else:
deep = True
# points must be contiguous
points_ = np.require(points_, requirements=['C'])
vtkpts = _vtk.vtkPoints()
vtk_arr = _vtk.numpy_to_vtk(points_, deep=deep)
vtkpts.SetData(vtk_arr)
return vtkpts
def line_segments_from_points(points: VectorLike[float] | MatrixLike[float]) -> PolyData:
"""Generate non-connected line segments from points.
Assumes points are ordered as line segments and an even number of
points.
Parameters
----------
points : array_like[float]
Points representing line segments. An even number must be
given as every two vertices represent a single line
segment. For example, two line segments would be represented
as ``np.array([[0, 0, 0], [1, 0, 0], [1, 0, 0], [1, 1, 0]])``.
Returns
-------
pyvista.PolyData
PolyData with lines and cells.
Examples
--------
This example plots two line segments at right angles to each other.
>>> import pyvista as pv
>>> import numpy as np
>>> points = np.array([[0, 0, 0], [1, 0, 0], [1, 0, 0], [1, 1, 0]])
>>> lines = pv.line_segments_from_points(points)
>>> lines.plot()
"""
if len(points) % 2 != 0:
msg = 'An even number of points must be given to define each segment.'
raise ValueError(msg)
# Assuming ordered points, create array defining line order
n_points = len(points)
n_lines = n_points // 2
lines = np.c_[
2 * np.ones(n_lines, np.int_),
np.arange(0, n_points - 1, step=2),
np.arange(1, n_points + 1, step=2),
]
poly = pyvista.PolyData()
poly.points = points
poly.lines = lines
return poly
@_deprecate_positional_args(allowed=['points'])
def lines_from_points(
points: VectorLike[float] | MatrixLike[float],
close: bool = False, # noqa: FBT001, FBT002
) -> PolyData:
"""Make a connected line set given an array of points.
Parameters
----------
points : array_like[float]
Points representing the vertices of the connected
segments. For example, two line segments would be represented
as ``np.array([[0, 0, 0], [1, 0, 0], [1, 1, 0]])``.
close : bool, default: False
If ``True``, close the line segments into a loop.
Returns
-------
pyvista.PolyData
PolyData with lines and cells.
Examples
--------
>>> import numpy as np
>>> import pyvista as pv
>>> points = np.array([[0, 0, 0], [1, 0, 0], [1, 1, 0]])
>>> poly = pv.lines_from_points(points)
>>> poly.plot(line_width=5)
"""
poly = pyvista.PolyData()
poly.points = points
cells = np.full((len(points) - 1, 3), 2, dtype=np.int_)
cells[:, 1] = np.arange(0, len(points) - 1, dtype=np.int_)
cells[:, 2] = np.arange(1, len(points), dtype=np.int_)
if close:
cells = np.append(cells, [[2, len(points) - 1, 0]], axis=0)
poly.lines = cells
return poly
@_deprecate_positional_args(allowed=['points'])
def fit_plane_to_points( # noqa: PLR0917
points: MatrixLike[float],
return_meta: bool = False, # noqa: FBT001, FBT002
resolution: int = 10,
init_normal: VectorLike[float] | None = None,
) -> PolyData | tuple[PolyData, float, NumpyArray[float]]:
"""Fit a plane to points using its :func:`principal_axes`.
The plane is automatically sized and oriented to fit the extents of
the points.
.. versionchanged:: 0.42.0
The generated plane is now sized and oriented to match the points.
.. versionchanged:: 0.42.0
The center of the plane (returned if ``return_meta=True``) is now
computed as the center of the generated plane mesh. In previous
versions, the center of the input points was returned.
.. versionchanged:: 0.45.0
The internal method used for fitting the plane has changed. Previously, singular
value decomposition (SVD) was used, but eigenvectors are now used instead.
See warning below.
.. warning::
The sign of the plane's normal vector prior to version 0.45 may differ
from the latest version. This may impact methods which rely on the plane's
direction. Use ``init_normal`` to control the sign explicitly.
Parameters
----------
points : array_like[float]
Size ``[N x 3]`` sequence of points to fit a plane through.
return_meta : bool, default: False
If ``True``, also returns the center and normal of the
generated plane.
resolution : int, default: 10
Number of points on the plane mesh along its edges. Specify two numbers to
set the resolution along the plane's long and short edge (respectively) or
a single number to set both edges to have the same resolution.
.. versionadded:: 0.45.0
init_normal : VectorLike[float] | str, optional
Flip the normal of the plane such that it best aligns with this vector. Can be
a vector or string specifying the axis by name (e.g. ``'x'`` or ``'-x'``, etc.).
.. versionadded:: 0.45.0
Returns
-------
pyvista.PolyData
Plane mesh.
pyvista.pyvista_ndarray
Plane center if ``return_meta=True``.
pyvista.pyvista_ndarray
Plane normal if ``return_meta=True``.
See Also
--------
fit_line_to_points
Fit a line using the first principal axis of the points.
principal_axes
Compute axes vectors which best fit a set of points.
Examples
--------
Fit a plane to a random point cloud.
>>> import pyvista as pv
>>> import numpy as np
>>> from pyvista import examples
>>>
>>> rng = np.random.default_rng(seed=0)
>>> cloud = rng.random((10, 3))
>>> cloud[:, 2] *= 0.1
>>>
>>> plane = pv.fit_plane_to_points(cloud)
Plot the point cloud and fitted plane.
>>> pl = pv.Plotter()
>>> _ = pl.add_mesh(plane, style='wireframe', line_width=4)
>>> _ = pl.add_points(
... cloud,
... render_points_as_spheres=True,
... color='r',
... point_size=30,
... )
>>> pl.show()
Fit a plane to a mesh and return its metadata. Set the plane resolution to 1
so that the plane has no internal points or edges.
>>> mesh = examples.download_shark()
>>> plane, center, normal = pv.fit_plane_to_points(
... mesh.points, return_meta=True, resolution=1
... )
Plot the mesh and fitted plane.
>>> pl = pv.Plotter()
>>> _ = pl.add_mesh(plane, show_edges=True, opacity=0.25)
>>> _ = pl.add_mesh(mesh, color='gray')
>>> pl.camera_position = [
... (-117, 76, 235),
... (1.69, -1.38, 0),
... (0.189, 0.957, -0.22),
... ]
>>> pl.show()
Use the metadata with :meth:`pyvista.DataObjectFilters.clip` to split the mesh into
two.
>>> first_half, second_half = mesh.clip(
... origin=center, normal=normal, return_clipped=True
... )
Plot the two halves of the clipped mesh.
>>> pl = pv.Plotter()
>>> _ = pl.add_mesh(first_half, color='red')
>>> _ = pl.add_mesh(second_half, color='blue')
>>> pl.camera_position = [
... (-143, 43, 40),
... (-8.7, -11, -14),
... (0.25, 0.92, -0.29),
... ]
>>> pl.show()
Note that it is pointing in the positive z-direction.
>>> normal
pyvista_ndarray([5.2734075e-09, 6.7008443e-08, 1.0000000e+00],
dtype=float32)
Use ``init_normal`` to flip the sign and make it negative instead.
>>> _, _, normal = pv.fit_plane_to_points(
... mesh.points, return_meta=True, init_normal='-z'
... )
>>> normal
pyvista_ndarray([-5.2734155e-09, -6.7008422e-08, -1.0000000e+00],
dtype=float32)
"""
valid_resolution = _validation.validate_array(
resolution,
must_have_shape=[(), (2,)],
must_be_integer=True,
broadcast_to=(2,),
dtype_out=int,
)
i_resolution, j_resolution = valid_resolution
# Align points to the xyz-axes
aligned, matrix = pyvista.PolyData(points).align_xyz(
return_matrix=True, axis_2_direction=init_normal
)
# Fit plane to xyz-aligned mesh
i_size, j_size, _ = aligned.bounds_size
plane = pyvista.Plane(
i_size=i_size,
j_size=j_size,
i_resolution=i_resolution,
j_resolution=j_resolution,
)
# Transform plane back to input points positioning
inverse_matrix = pyvista.Transform(matrix).inverse_matrix
plane.transform(inverse_matrix, inplace=True)
if return_meta:
# Compute center and normal from the plane's points and normals
center = np.mean(plane.points, axis=0)
normal = np.mean(plane.point_normals, axis=0)
return plane, center, normal
return plane
def fit_line_to_points(
points: MatrixLike[float],
*,
resolution: int = 1,
init_direction: VectorLike[float] | None = None,
return_meta: bool = False,
) -> PolyData | tuple[PolyData, float, NumpyArray[float]]:
"""Fit a line to points using its :func:`principal_axes`.
The line is automatically sized and oriented to fit the extents of
the points.
.. versionadded:: 0.45.0
Parameters
----------
points : MatrixLike[float]
Size ``[N x 3]`` array of points to fit a line through.
resolution : int, default: 1
Number of pieces to divide the line into.
init_direction : VectorLike[float], optional
Flip the direction of the line's points such that it best aligns with this
vector. Can be a vector or string specifying the axis by name (e.g. ``'x'``
or ``'-x'``, etc.).
return_meta : bool, default: False
If ``True``, also returns the length (magnitude) and direction of the line.
See Also
--------
fit_plane_to_points
Fit a plane using the first two principal axes of the points.
principal_axes
Compute axes vectors which best fit a set of points.
Returns
-------
pyvista.PolyData
Line mesh.
float
Line length if ``return_meta=True``.
numpy.ndarray
Line direction (unit vector) if ``return_meta=True``.
Examples
--------
Download a point cloud. The points trace a path along topographical surface.
>>> import pyvista as pv
>>> from pyvista import examples
>>> mesh = examples.download_gpr_path()
Fit a line to the points and plot the result. The line of best fit is colored red.
>>> line = pv.fit_line_to_points(mesh.points)
>>> pl = pv.Plotter()
>>> _ = pl.add_mesh(mesh, color='black', line_width=10)
>>> _ = pl.add_mesh(line, color='red', line_width=5)
>>> pl.show()
Fit a line to a mesh and return the metadata.
>>> mesh = examples.download_human()
>>> line, length, direction = pv.fit_line_to_points(
... mesh.points, return_meta=True
... )
Show the length of the line.
>>> length
167.6145387467733
Plot the line as an arrow to show its direction.
>>> arrow = pv.Arrow(
... start=line.points[0],
... direction=direction,
... scale=length,
... tip_length=0.2,
... tip_radius=0.04,
... shaft_radius=0.01,
... )
>>> pl = pv.Plotter()
>>> _ = pl.add_mesh(mesh, opacity=0.5)
>>> _ = pl.add_mesh(arrow, color='red')
>>> pl.show()
Set ``init_direction`` to the positive z-axis to flip the line's direction.
>>> mesh = examples.download_human()
>>> line, length, direction = pv.fit_line_to_points(
... mesh.points, init_direction='z', return_meta=True
... )
Plot the results again with an arrow.
>>> arrow = pv.Arrow(
... start=line.points[0],
... direction=direction,
... scale=length,
... tip_length=0.2,
... tip_radius=0.04,
... shaft_radius=0.01,
... )
>>> pl = pv.Plotter()
>>> _ = pl.add_mesh(mesh, opacity=0.5)
>>> _ = pl.add_mesh(arrow, color='red')
>>> pl.show()
"""
# Align points to the xyz-axes
aligned, matrix = pyvista.PolyData(points).align_xyz(
axis_0_direction=init_direction, return_matrix=True
)
# Fit line to xyz-aligned mesh
point_a = (aligned.bounds.x_min, 0, 0)
point_b = (aligned.bounds.x_max, 0, 0)
line_mesh = pyvista.LineSource(point_a, point_b, resolution=resolution).output
# Transform line back to input points positioning
inverse_matrix = pyvista.Transform(matrix).inverse_matrix
line_mesh.transform(inverse_matrix, inplace=True)
if return_meta:
return line_mesh, line_mesh.length, matrix[0, :3]
return line_mesh
def make_tri_mesh(points: NumpyArray[float], faces: NumpyArray[int]) -> PolyData:
"""Construct a ``pyvista.PolyData`` mesh using points and faces arrays.
Construct a mesh from an Nx3 array of points and an Mx3 array of
triangle indices, resulting in a mesh with N vertices and M
triangles. This function does not require the standard VTK
"padding" column and simplifies mesh creation.
Parameters
----------
points : np.ndarray
Array of points with shape ``(N, 3)`` storing the vertices of the
triangle mesh.
faces : np.ndarray
Array of indices with shape ``(M, 3)`` containing the triangle
indices.
Returns
-------
pyvista.PolyData
PolyData instance containing the triangle mesh.
Examples
--------
This example discretizes the unit square into a triangle mesh with
nine vertices and eight faces.
>>> import numpy as np
>>> import pyvista as pv
>>> points = np.array(
... [
... [0, 0, 0],
... [0.5, 0, 0],
... [1, 0, 0],
... [0, 0.5, 0],
... [0.5, 0.5, 0],
... [1, 0.5, 0],
... [0, 1, 0],
... [0.5, 1, 0],
... [1, 1, 0],
... ]
... )
>>> faces = np.array(
... [
... [0, 1, 4],
... [4, 7, 6],
... [2, 5, 4],
... [4, 5, 8],
... [0, 4, 3],
... [3, 4, 6],
... [1, 2, 4],
... [4, 8, 7],
... ]
... )
>>> tri_mesh = pv.make_tri_mesh(points, faces)
>>> tri_mesh.plot(show_edges=True, line_width=5)
"""
if points.shape[1] != 3:
msg = 'Points array should have shape (N, 3).'
raise ValueError(msg)
if faces.ndim != 2 or faces.shape[1] != 3:
msg = 'Face array should have shape (M, 3).'
raise ValueError(msg)
cells = np.empty((faces.shape[0], 4), dtype=faces.dtype)
cells[:, 0] = 3
cells[:, 1:] = faces
return pyvista.PolyData(points, cells)
def vector_poly_data(
orig: VectorLike[float] | MatrixLike[float], vec: VectorLike[float] | MatrixLike[float]
) -> PolyData:
"""Create a pyvista.PolyData object composed of vectors.
Parameters
----------
orig : array_like[float]
Array of vector origins.
vec : array_like[float]
Array of vectors.
Returns
-------
pyvista.PolyData
Mesh containing the ``orig`` points along with the
``'vectors'`` and ``'mag'`` point arrays representing the
vectors and magnitude of the vectors at each point.
Examples
--------
Create basic vector field. This is a point cloud where each point
has a vector and magnitude attached to it.
>>> import pyvista as pv
>>> import numpy as np
>>> x, y = np.meshgrid(np.linspace(-5, 5, 10), np.linspace(-5, 5, 10))
>>> points = np.vstack((x.ravel(), y.ravel(), np.zeros(x.size))).T
>>> u = x / np.sqrt(x**2 + y**2)
>>> v = y / np.sqrt(x**2 + y**2)
>>> vectors = np.vstack((u.ravel() ** 3, v.ravel() ** 3, np.zeros(u.size))).T
>>> pdata = pv.vector_poly_data(points, vectors)
>>> pdata.point_data.keys()
['vectors', 'mag']
Convert these to arrows and plot it.
>>> pdata.glyph(orient='vectors', scale='mag').plot()
"""
# shape, dimension checking
if not isinstance(orig, np.ndarray):
orig = np.asarray(orig)
if not isinstance(vec, np.ndarray):
vec = np.asarray(vec)
if orig.ndim != 2:
orig = orig.reshape((-1, 3))
elif orig.shape[1] != 3:
msg = 'orig array must be 3D'
raise ValueError(msg)
if vec.ndim != 2:
vec = vec.reshape((-1, 3))
elif vec.shape[1] != 3:
msg = 'vec array must be 3D'
raise ValueError(msg)
# Create vtk points and cells objects
vpts = _vtk.vtkPoints()
vpts.SetData(_vtk.numpy_to_vtk(np.ascontiguousarray(orig), deep=True))
npts = orig.shape[0]
vcells = pyvista.core.cell.CellArray.from_regular_cells(
np.arange(npts, dtype=pyvista.ID_TYPE).reshape((npts, 1)),
)
# Create vtkPolyData object
pdata = _vtk.vtkPolyData()
pdata.SetPoints(vpts)
pdata.SetVerts(vcells)
# Add vectors to polydata
name = 'vectors'
vtkfloat = _vtk.numpy_to_vtk(np.ascontiguousarray(vec), deep=True)
vtkfloat.SetName(name)
pdata.GetPointData().AddArray(vtkfloat)
pdata.GetPointData().SetActiveVectors(name)
# Add magnitude of vectors to polydata
name = 'mag'
scalars = (vec * vec).sum(1) ** 0.5
vtkfloat = _vtk.numpy_to_vtk(np.ascontiguousarray(scalars), deep=True)
vtkfloat.SetName(name)
pdata.GetPointData().AddArray(vtkfloat)
pdata.GetPointData().SetActiveScalars(name)
return pyvista.PolyData(pdata)
@overload
def principal_axes(points: MatrixLike[float]) -> NumpyArray[float]: ...
@overload
def principal_axes(
points: MatrixLike[float],
*,
return_std: Literal[True] = True,
) -> tuple[NumpyArray[float], NumpyArray[float]]: ...
@overload
def principal_axes(
points: MatrixLike[float],
*,
return_std: Literal[False] = False,
) -> NumpyArray[float]: ...
@overload
def principal_axes(
points: MatrixLike[float], *, return_std: bool = ...
) -> NumpyArray[float] | tuple[NumpyArray[float], NumpyArray[float]]: ...
def principal_axes(
points: MatrixLike[float], *, return_std: bool = False
) -> NumpyArray[float] | tuple[NumpyArray[float], NumpyArray[float]]:
"""Compute the principal axes of a set of points.
Principal axes are orthonormal vectors that best fit a set of points. The axes
are also known as the principal components in Principal Component Analysis (PCA),
or the right singular vectors from the Singular Value Decomposition (SVD).
The axes are computed as the eigenvectors of the covariance matrix from the
mean-centered points, and are processed to ensure that they form a right-handed
coordinate frame.
The axes explain the total variance of the points. The first axis explains the
largest percentage of variance, followed by the second axis, followed again by
the third axis which explains the smallest percentage of variance.
The axes may be used to build an oriented bounding box or to align the points to
another set of axes (e.g. the world XYZ axes).
.. note::
The computed axes are not unique, and the sign of each axis direction can be
arbitrarily changed.
.. note::
This implementation creates a temporary array of the same size as the input
array, and is therefore not optimal in terms of its memory requirements.
A more memory-efficient computation may be supported in a future release.
.. versionadded:: 0.45.0
See Also
--------
fit_plane_to_points
Fit a plane to points using the first two principal axes.
pyvista.DataSetFilters.align_xyz
Filter which aligns principal axes to the x-y-z axes.
Parameters
----------
points : MatrixLike[float]
Nx3 array of points.
return_std : bool, default: False
If ``True``, also returns the standard deviation of the points along each axis.
Standard deviation is computed as the square root of the eigenvalues of the
mean-centered covariance matrix.
Returns
-------
numpy.ndarray
3x3 orthonormal array with the principal axes as row vectors.
numpy.ndarray
Three-item array of the standard deviations along each axis.
Examples
--------
>>> import pyvista as pv
>>> import numpy as np
>>> rng = np.random.default_rng(seed=0) # only seeding for the example
Create a mesh with points that have the largest variation in ``X``,
followed by ``Y``, then ``Z``.
>>> radii = np.array((6, 3, 1)) # x-y-z radii
>>> mesh = pv.ParametricEllipsoid(
... xradius=radii[0], yradius=radii[1], zradius=radii[2]
... )
Plot the mesh and highlight its points in black.
>>> p = pv.Plotter()
>>> _ = p.add_mesh(mesh)
>>> _ = p.add_points(mesh, color='black')
>>> _ = p.show_grid()
>>> p.show()
Compute its principal axes and return the standard deviations.
>>> axes, std = pv.principal_axes(mesh.points, return_std=True)
>>> axes
pyvista_ndarray([[-1.0000000e+00, -3.8287229e-08, 3.6589407e-10],
[-3.8287229e-08, 1.0000000e+00, -3.0685656e-09],
[-3.6589393e-10, -3.0685656e-09, -1.0000000e+00]],
dtype=float32)
Note that the principal axes have ones along the diagonal and zeros
in the off-diagonal. This indicates that the first principal axis is
aligned with the x-axis, the second with the y-axis, and third with
the z-axis. This is expected, since the mesh is already axis-aligned.
However, since the signs of the principal axes are arbitrary, the
first and third axes in this case have a negative direction.
Show the standard deviation along each axis.
>>> std
array([3.014956 , 1.507478 , 0.7035637], dtype=float32)
Compare this to using :meth:`numpy.std` for the computation.
>>> np.std(mesh.points, axis=0)
pyvista_ndarray([3.0149572, 1.5074761, 0.7035699], dtype=float32)
Since the points are axis-aligned, the two results agree in this case. In general,
however, these two methods differ in that :meth:`numpy.std` with `axis=0` computes
the standard deviation along the `x-y-z` axes, whereas the standard deviation
returned by :meth:`principal_axes` is computed along the principal axes.
Convert the values to proportions for analysis.
>>> std / sum(std)
array([0.5769149 , 0.28845742, 0.1346276 ], dtype=float32)
From this result, we can determine that the axes explain approximately
58%, 29%, and 13% of the total variance in the points, respectively.
Let's compare this to the proportions of the known radii of the ellipsoid.
>>> radii / sum(radii)
array([0.6, 0.3, 0.1])
Note how the two ratios are similar, but do not match exactly. This is
because the points of the ellipsoid are prolate and are denser near the
poles. If the points were normally distributed, however, the proportions
would match exactly.
Create an array of normally distributed points scaled along the x-y-z axes.
Use the same scaling as the radii of the ellipsoid from the previous example.
>>> normal_points = rng.normal(size=(1000, 3))
>>> scaled_points = normal_points * radii
>>> axes, std = pv.principal_axes(scaled_points, return_std=True)
>>> axes
array([[-0.99997578, 0.00682346, 0.00136972],
[ 0.00681368, 0.99995213, -0.00702282],
[-0.00141757, -0.00701331, -0.9999744 ]])
Once again, the axes have ones along the diagonal as expected since the
points are already axis-aligned. Now let's examine the standard deviation
and compare the relative proportions.
>>> std
array([5.94466738, 2.89590334, 1.02103169])
>>> std / sum(std)
array([0.60280948, 0.29365444, 0.10353608])
>>> radii / sum(radii)
array([0.6, 0.3, 0.1])
Since the points are normally distributed, the relative proportion of
the standard deviation matches the scaling of the axes almost perfectly.
"""
points = _validation.validate_arrayNx3(points)
points_centered = points - np.mean(points, axis=0)
eig_vals, eig_vectors = np.linalg.eigh(points_centered.T @ points_centered)
axes = eig_vectors.T[::-1] # columns, ascending order -> rows, descending order
# Ensure axes form a right-handed coordinate frame
if np.linalg.det(axes) < 0:
axes[2] *= -1
if return_std:
# Compute standard deviation and swap order from ascending -> descending
std = np.sqrt(np.abs(eig_vals) / len(points))[::-1]
return axes, std
return axes
|