1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
|
"""Module implementing point transformations and their matrices."""
from __future__ import annotations
from typing import TYPE_CHECKING
from typing import Literal
from typing import overload
import numpy as np
from pyvista._deprecate_positional_args import _deprecate_positional_args
from pyvista.core import _validation
if TYPE_CHECKING:
from pyvista.core._typing_core import NumpyArray
from pyvista.core._typing_core import TransformLike
from pyvista.core._typing_core import VectorLike
@_deprecate_positional_args(allowed=['axis', 'angle'])
def axis_angle_rotation( # noqa: PLR0917
axis: VectorLike[float],
angle: float,
point: VectorLike[float] | None = None,
deg: bool = True, # noqa: FBT001, FBT002
) -> NumpyArray[float]:
r"""Return a 4x4 matrix for rotation about any axis by given angle.
Rotations around an axis that contains the origin can easily be
computed using Rodrigues' rotation formula. The key quantity is
the ``K`` cross product matrix for the unit vector ``n`` defining
the axis of the rotation:
/ 0 -nz ny \
K = | nz 0 -nx |
\ -ny nx 0 /
For a rotation angle ``phi`` around the vector ``n`` the rotation
matrix is given by
R = I + sin(phi) K + (1 - cos(phi)) K^2
where ``I`` is the 3-by-3 unit matrix and ``K^2`` denotes the matrix
square of ``K``.
If the rotation axis doesn't contain the origin, we have to first
shift real space to transform the axis' ``p0`` reference point into
the origin, then shift the points back after rotation:
p' = R @ (p - p0) + p0 = R @ p + (p0 - R @ p0)
This means that the rotation in general consists of a 3-by-3
rotation matrix ``R``, and a translation given by
``b = p0 - R @ p0``. These can be encoded in a 4-by-4 transformation
matrix by filling the 3-by-3 leading principal submatrix with ``R``,
and filling the top 3 values in the last column with ``b``.
Parameters
----------
axis : sequence[float]
The direction vector of the rotation axis. It need not be a
unit vector, but it must not be a zero vector.
angle : float
Angle of rotation around the axis. The angle is defined as a
counterclockwise rotation when facing the normal vector of the
rotation axis. Passed either in degrees or radians depending on
the value of ``deg``.
point : sequence[float], optional
The origin of the rotation (a reference point through which the
rotation axis passes). By default the rotation axis contains the
origin.
deg : bool, default: True
Whether the angle is specified in degrees. ``False`` implies
radians.
Returns
-------
numpy.ndarray
The ``(4, 4)`` rotation matrix.
Examples
--------
Generate a transformation matrix for rotation around a cube's body
diagonal by 120 degrees.
>>> import numpy as np
>>> from pyvista import transformations
>>> trans = transformations.axis_angle_rotation([1, 1, 1], 120)
Check that the transformation cycles the cube's three corners.
>>> corners = np.array(
... [
... [1, 0, 0],
... [0, 1, 0],
... [0, 0, 1],
... ]
... )
>>> rotated = transformations.apply_transformation_to_points(
... trans, corners
... )
>>> np.allclose(rotated, corners[[1, 2, 0], :])
True
"""
if deg:
# convert to radians
angle *= np.pi / 180
# return early for no rotation; play it safe and check only exact equality
if angle % (2 * np.pi) == 0:
return np.eye(4)
axis_ = _validation.validate_array3(axis, dtype_out=float, name='axis')
if point is not None:
point_ = _validation.validate_array3(point, dtype_out=float, name='point')
# check and normalize
axis_norm = np.linalg.norm(axis_)
if np.isclose(axis_norm, 0):
msg = 'Cannot rotate around zero vector axis.'
raise ValueError(msg)
if not np.isclose(axis_norm, 1):
axis_ = axis_ / axis_norm
# build Rodrigues' rotation matrix
K = np.zeros((3, 3))
K[[2, 0, 1], [1, 2, 0]] = axis_
K += -K.T
# the cos and sin functions can introduce some numerical error
# round the elements to exact values for special cases where we know
# sin/cos should evaluate exactly to 0 or 1
sin_angle = np.sin(angle)
cos_angle = np.cos(angle)
if angle % (np.pi / 2) == 0:
cos_angle = round(cos_angle)
sin_angle = round(sin_angle)
R = np.eye(3) + sin_angle * K + (1 - cos_angle) * K @ K
augmented = np.eye(4)
augmented[:-1, :-1] = R
if point is not None:
# rotation of point p would be R @ (p - point) + point
# which is R @ p + (point - R @ point)
augmented[:-1, -1] = point_ - R @ point_
return augmented
def reflection(
normal: VectorLike[float], point: VectorLike[float] | None = None
) -> NumpyArray[float]:
"""Return a 4x4 matrix for reflection across a normal about a point.
Projection to a unit vector ``n`` can be computed using the dyadic
product (or outer product) ``P`` of ``n`` with itself, which is a
3-by-3 symmetric matrix.
Reflection across a plane that contains the origin amounts to
reversing the components of real space points that are perpendicular
to the reflection plane. This gives us the transformation ``R``
acting on a point ``p`` as
p' = R @ p = p - 2 P @ p = (I - 2 P) @ p
so the reflection's transformation matrix is the unit matrix minus
twice the dyadic product ``P``.
If additionally we want to compute a reflection to a plane that does
not contain the origin, we can we can first shift every point in
real space by ``-p0`` (if ``p0`` is a point that lies on the plane)
p' = R @ (p - p0) + p0 = R @ p + (p0 - R @ p0)
This means that the reflection in general consists of a 3-by-3
reflection matrix ``R``, and a translation given by
``b = p0 - R @ p0``. These can be encoded in a 4-by-4 transformation
matrix by filling the 3-by-3 leading principal submatrix with ``R``,
and filling the top 3 values in the last column with ``b``.
Parameters
----------
normal : sequence[float]
The normal vector of the reflection plane. It need not be a unit
vector, but it must not be a zero vector.
point : sequence[float], optional
The origin of the reflection (a reference point through which
the reflection plane passes). By default the reflection plane
contains the origin.
Returns
-------
ndarray
A ``(4, 4)`` transformation matrix for reflecting points across the
plane defined by the given normal and point.
Examples
--------
Generate a transformation matrix for reflection over the XZ plane.
>>> import numpy as np
>>> from pyvista import transformations
>>> trans = transformations.reflection([0, 1, 0])
Check that the reflection transforms corners of a cube among one
another.
>>> verts = np.array(
... [
... [1, -1, 1],
... [-1, -1, 1],
... [-1, -1, -1],
... [-1, -1, 1],
... [1, 1, 1],
... [-1, 1, 1],
... [-1, 1, -1],
... [-1, 1, 1],
... ]
... )
>>> mirrored = transformations.apply_transformation_to_points(trans, verts)
>>> np.allclose(mirrored, verts[[np.r_[4:8, 0:4]], :])
True
"""
normal = np.asarray(normal, dtype='float64')
if normal.shape != (3,):
msg = 'Normal must be a 3-length array-like.'
raise ValueError(msg)
if point is not None:
point = np.asarray(point)
if point.shape != (3,):
msg = 'Plane reference point must be a 3-length array-like.'
raise ValueError(msg)
# check and normalize
normal_norm = np.linalg.norm(normal)
if np.isclose(normal_norm, 0):
msg = 'Plane normal cannot be zero.'
raise ValueError(msg)
if not np.isclose(normal_norm, 1):
normal = normal / normal_norm
# build reflection matrix
projection = np.outer(normal, normal)
R = np.eye(3) - 2 * projection
augmented = np.eye(4)
augmented[:-1, :-1] = R
if point is not None:
# reflection of point p would be R @ (p - point) + point
# which is R @ p + (point - R @ point)
augmented[:-1, -1] = point - R @ point
return augmented
@overload
def apply_transformation_to_points(
transformation: NumpyArray[float],
points: NumpyArray[float],
inplace: Literal[True] = True, # noqa: FBT002
) -> None: ...
@overload
def apply_transformation_to_points(
transformation: NumpyArray[float],
points: NumpyArray[float],
inplace: Literal[False] = False, # noqa: FBT002
) -> NumpyArray[float]: ...
@overload
def apply_transformation_to_points(
transformation: NumpyArray[float],
points: NumpyArray[float],
inplace: bool = ..., # noqa: FBT001
) -> NumpyArray[float] | None: ...
@_deprecate_positional_args(allowed=['transformation', 'points'])
def apply_transformation_to_points(
transformation: NumpyArray[float],
points: NumpyArray[float],
inplace: Literal[True, False] = False, # noqa: FBT002
) -> NumpyArray[float] | None:
"""Apply a given transformation matrix (3x3 or 4x4) to a set of points.
Parameters
----------
transformation : np.ndarray
Transformation matrix of shape (3, 3) or (4, 4).
points : np.ndarray
Array of points to be transformed of shape (N, 3).
inplace : bool, default: False
Updates points in-place while returning nothing.
Returns
-------
numpy.ndarray
Transformed points.
Examples
--------
Scale a set of points in-place.
>>> import numpy as np
>>> import pyvista as pv
>>> from pyvista import examples
>>> points = examples.load_airplane().points
>>> points_orig = points.copy()
>>> scale_factor = 2
>>> tf = scale_factor * np.eye(4)
>>> tf[3, 3] = 1
>>> pv.core.utilities.transformations.apply_transformation_to_points(
... tf, points, inplace=True
... )
>>> assert np.all(np.isclose(points, scale_factor * points_orig))
"""
transformation_shape = transformation.shape
if transformation_shape not in ((3, 3), (4, 4)):
msg = '`transformation` must be of shape (3, 3) or (4, 4).'
raise ValueError(msg)
if points.shape[1] != 3:
msg = '`points` must be of shape (N, 3).'
raise ValueError(msg)
if transformation_shape[0] == 4:
# Divide by scale factor when homogeneous
transformation /= transformation[3, 3]
# Add the homogeneous coordinate
# `points_2` is a copy of the data, not a view
points_2 = np.empty((len(points), 4))
points_2[:, :-1] = points
points_2[:, -1] = 1
else:
points_2 = points # type: ignore[assignment]
# Paged matrix multiplication. For arrays with ndim > 2, matmul assumes
# that the matrices to be multiplied lie in the last two dimensions.
points_2 = (transformation[np.newaxis, :, :] @ points_2.T)[0, :3, :].T
# If inplace, set the points
if inplace:
points[:] = points_2
return None
else:
# otherwise return the new points
return points_2
def decomposition(
transformation: TransformLike,
*,
homogeneous: bool = False,
) -> tuple[
NumpyArray[float], NumpyArray[float], NumpyArray[float], NumpyArray[float], NumpyArray[float]
]:
"""Decompose a transformation into its components.
The transformation matrix ``M`` is decomposed into five components:
- translation ``T``
- rotation ``R``
- reflection ``N``
- scaling ``S``
- shearing ``K``
such that, when represented as 4x4 matrices, ``M = TRNSK``. The decomposition is
unique and is computed with polar matrix decomposition.
By default, compact representations of the transformations are returned (e.g. as a
3-element vector or a 3x3 matrix). Optionally, 4x4 matrices may be returned instead.
.. note::
- The rotation is orthonormal and right-handed with positive determinant.
- The scaling factors are positive.
- The reflection is either ``1`` (no reflection) or ``-1`` (has reflection)
and can be used like a scaling factor.
Parameters
----------
transformation : TransformLike
Array or transform to decompose.
homogeneous : bool, default: False
If ``True``, return the components (translation, rotation, etc.) as 4x4
homogeneous matrices. By default, reflection is a scalar, translation and
scaling are length-3 vectors, and rotation and shear are 3x3 matrices.
Returns
-------
numpy.ndarray
Translation component ``T``. Returned as a 3-element vector (or a 4x4
translation matrix if ``homogeneous`` is ``True``).
numpy.ndarray
Rotation component ``R``. Returned as a 3x3 orthonormal rotation matrix of row
vectors (or a 4x4 rotation matrix if ``homogeneous`` is ``True``).
numpy.ndarray
Reflection component ``N``. Returned as a NumPy scalar (or a 4x4 reflection
matrix if ``homogeneous`` is ``True``).
numpy.ndarray
Scaling component ``S``. Returned as a 3-element vector (or a 4x4 scaling matrix
if ``homogeneous`` is ``True``).
numpy.ndarray
Shear component ``K``. Returned as a 3x3 matrix with ones on the diagonal and
shear values in the off-diagonals (or as a 4x4 shearing matrix if ``homogeneous``
is ``True``).
Examples
--------
Decompose a transformation matrix which has scaling, rotation, and translation.
>>> import pyvista as pv
>>> matrix = [
... [0.0, -2.0, 0.0, 4.0],
... [1.0, 0.0, 0.0, 5.0],
... [0.0, 0.0, 3.0, 6.0],
... [0.0, 0.0, 0.0, 1.0],
... ]
>>> T, R, N, S, K = pv.transformations.decomposition(matrix)
Since the input has no shear, this component is the identity matrix.
>>> K # shear
array([[1., 0., 0.],
[0., 1., 0.],
[0., 0., 1.]])
>>> S # scale
array([1., 2., 3.])
There is no reflection so this component is ``1``.
>>> N # reflection
array(1.)
>>> R # rotation
array([[ 0., -1., 0.],
[ 1., 0., 0.],
[ 0., 0., 1.]])
>>> T # translation
array([4., 5., 6.])
Repeat the example, but this time with a small shear component of 0.1. Note how the
presence of shear also affects the values of the scaling and rotation components.
>>> matrix = [
... [0.0, -2.0, 0.0, 4.0],
... [1.0, 0.1, 0.0, 5.0],
... [0.0, 0.0, 3.0, 6.0],
... [0.0, 0.0, 0.0, 1.0],
... ]
>>> T, R, N, S, K = pv.transformations.decomposition(matrix)
>>> K # shear
array([[1. , 0.03333333, 0. ],
[0.01663894, 1. , 0. ],
[0. , 0. , 1. ]])
>>> S # scale
array([0.99944491, 2.0022213 , 3. ])
>>> N # reflection
array(1.)
>>> R # rotation
array([[ 0.03331483, -0.99944491, 0. ],
[ 0.99944491, 0.03331483, 0. ],
[ 0. , 0. , 1. ]])
>>> T # translation
array([4., 5., 6.])
"""
matrix4x4 = _validation.validate_transform4x4(transformation)
dtype_out = matrix4x4.dtype
I3 = np.eye(3, dtype=dtype_out)
I4 = np.eye(4, dtype=dtype_out)
matrix3x3 = matrix4x4[:3, :3]
T = matrix4x4[:3, 3]
RN, SK = _polar_decomposition(matrix3x3)
# Get scale from diagonals and shear from off-diagonals
S = np.diagonal(SK).copy() # Copy since it's read only
K = (SK * (I3 == 0.0)) / S[:, np.newaxis] + I3
# Get reflection and ensure rotation is right-handed
if np.linalg.det(RN) < 0:
# Reflections are present
R = RN * -1
N = np.array(-1, dtype=dtype_out)
else:
R = RN
N = np.array(1, dtype=dtype_out)
if homogeneous:
T4 = I4.copy()
T4[:3, 3] = T
R4 = I4.copy()
R4[:3, :3] = R
N4 = I4.copy()
N4[:3, :3] = I3 * N
S4 = I4.copy()
S4[:3, :3] = I3 * S
K4 = I4.copy()
K4[:3, :3] = K
return T4, R4, N4, S4, K4
return T, R, N, S, K
def _polar_decomposition(a: NumpyArray[float]) -> tuple[NumpyArray[float], NumpyArray[float]]:
# Decompose `a=up` where u is orthonormal and p is positive semi-definite
# See scipy.linalg.polar for details
w, s, vh = np.linalg.svd(a, full_matrices=False)
u = w.dot(vh)
p = (vh.T.conj() * s).dot(vh)
return u, p
|