1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
|
"""Tests for pyvista.core.dataset."""
from __future__ import annotations
import math
import re
from typing import TYPE_CHECKING
import numpy as np
import pytest
import vtk
from vtk.util.numpy_support import vtk_to_numpy
import pyvista as pv
from pyvista import examples
from pyvista.core import dataset
from pyvista.core.errors import PyVistaDeprecationWarning
from pyvista.core.errors import VTKVersionError
from pyvista.examples import load_airplane
from pyvista.examples import load_explicit_structured
from pyvista.examples import load_hexbeam
from pyvista.examples import load_rectilinear
from pyvista.examples import load_structured
from pyvista.examples import load_tetbeam
from pyvista.examples import load_uniform
if TYPE_CHECKING:
from pytest_mock import MockerFixture
from pyvista.core.dataset import DataSet
def test_invalid_copy_from(hexbeam):
with pytest.raises(TypeError):
hexbeam.copy_from(pv.Plane())
def test_memory_address(hexbeam):
assert isinstance(hexbeam.memory_address, str)
assert 'Addr' in hexbeam.memory_address
def test_point_data(hexbeam):
key = 'test_array_points'
hexbeam[key] = np.arange(hexbeam.n_points)
assert key in hexbeam.point_data
orig_value = hexbeam.point_data[key][0] / 1.0
hexbeam.point_data[key][0] += 1
assert orig_value == hexbeam.point_data[key][0] - 1
del hexbeam.point_data[key]
assert key not in hexbeam.point_data
hexbeam.point_data[key] = np.arange(hexbeam.n_points)
assert key in hexbeam.point_data
assert np.allclose(hexbeam[key], np.arange(hexbeam.n_points))
hexbeam.clear_point_data()
assert len(hexbeam.point_data.keys()) == 0
hexbeam.point_data['list'] = np.arange(hexbeam.n_points).tolist()
assert isinstance(hexbeam.point_data['list'], np.ndarray)
assert np.allclose(hexbeam.point_data['list'], np.arange(hexbeam.n_points))
def test_point_data_bad_value(hexbeam):
with pytest.raises(TypeError):
hexbeam.point_data['new_array'] = None
match = (
"Invalid array shape. Array 'new_array' has length (98) but a length of (99) was expected."
)
with pytest.raises(ValueError, match=re.escape(match)):
hexbeam.point_data['new_array'] = np.arange(hexbeam.n_points - 1)
def test_ipython_key_completions(hexbeam):
assert isinstance(hexbeam._ipython_key_completions_(), list)
def test_cell_data(hexbeam):
key = 'test_array_cells'
hexbeam[key] = np.arange(hexbeam.n_cells)
assert key in hexbeam.cell_data
orig_value = hexbeam.cell_data[key][0] / 1.0
hexbeam.cell_data[key][0] += 1
assert orig_value == hexbeam.cell_data[key][0] - 1
del hexbeam.cell_data[key]
assert key not in hexbeam.cell_data
hexbeam.cell_data[key] = np.arange(hexbeam.n_cells)
assert key in hexbeam.cell_data
assert np.allclose(hexbeam[key], np.arange(hexbeam.n_cells))
hexbeam.cell_data['list'] = np.arange(hexbeam.n_cells).tolist()
assert isinstance(hexbeam.cell_data['list'], np.ndarray)
assert np.allclose(hexbeam.cell_data['list'], np.arange(hexbeam.n_cells))
def test_cell_array_range(hexbeam):
rng = range(hexbeam.n_cells)
hexbeam.cell_data['tmp'] = rng
assert np.allclose(rng, hexbeam.cell_data['tmp'])
def test_cell_data_bad_value(hexbeam):
with pytest.raises(TypeError):
hexbeam.cell_data['new_array'] = None
match = (
"Invalid array shape. Array 'new_array' has length (39) but a length of (40) was expected."
)
with pytest.raises(ValueError, match=re.escape(match)):
hexbeam.cell_data['new_array'] = np.arange(hexbeam.n_cells - 1)
@pytest.mark.parametrize('empty_shape', [(0,), (-1, 0), (0, -1), (0, 0)])
@pytest.mark.parametrize('attribute', ['point_data', 'cell_data', 'field_data'])
@pytest.mark.parametrize('mesh_is_empty', [True, False])
def test_point_cell_field_data_empty_array(uniform, attribute, empty_shape, mesh_is_empty):
# Test that setting empty arrays is only allowed when the mesh is
# empty OR when setting field data.
# Empty arrays with non-zero shape values are never allowed.
mesh = pv.PolyData() if mesh_is_empty else uniform
# Define empty array with a shape that matches the dataset
if attribute == 'point_data':
mesh_data_length = mesh.n_points
elif attribute == 'cell_data':
mesh_data_length = mesh.n_cells
else:
# Use an arbitrary non-zero positive value for field data in the non-empty case
mesh_data_length = 0 if mesh_is_empty else 10
if mesh_is_empty:
assert mesh_data_length == 0
else:
assert mesh_data_length > 0
# Replace `-1` in empty shape with the actual length of the mesh data
empty_shape = np.array(empty_shape)
empty_shape[empty_shape == -1] = mesh_data_length
empty_shape = tuple(empty_shape.tolist())
empty_array = np.ones(empty_shape)
assert empty_array.size == 0
assert empty_array.shape == empty_shape
# Test setting the array
data = getattr(mesh, attribute)
if empty_shape in [(0,), (0, 0)] and (attribute == 'field_data' or mesh_is_empty):
# Special case, no error raised
data['new_array'] = empty_array
assert 'new_array' in data
assert data['new_array'].size == 0
# Note: the output shape is always (0,) and may not match the input shape (bug?)
assert data['new_array'].shape == (0,)
else:
# Expect error for all other cases
with pytest.raises(ValueError, match='Invalid array shape.'):
data['new_array'] = empty_array
def test_point_cell_data_single_scalar_no_exception_raised():
m = pv.PolyData([0, 0, 0.0])
m.point_data['foo'] = 1
m.cell_data['bar'] = 1
m['baz'] = 1
def test_field_data(hexbeam):
key = 'test_array_field'
# Add array of length not equal to n_cells or n_points
n = hexbeam.n_cells // 3
hexbeam.field_data[key] = np.arange(n)
assert key in hexbeam.field_data
assert np.allclose(hexbeam.field_data[key], np.arange(n))
assert np.allclose(hexbeam[key], np.arange(n))
orig_value = hexbeam.field_data[key][0] / 1.0
hexbeam.field_data[key][0] += 1
assert orig_value == hexbeam.field_data[key][0] - 1
assert key in hexbeam.array_names
del hexbeam.field_data[key]
assert key not in hexbeam.field_data
hexbeam.field_data['list'] = np.arange(n).tolist()
assert isinstance(hexbeam.field_data['list'], np.ndarray)
assert np.allclose(hexbeam.field_data['list'], np.arange(n))
foo = np.arange(n) * 5
hexbeam.add_field_data(foo, 'foo')
assert isinstance(hexbeam.field_data['foo'], np.ndarray)
assert np.allclose(hexbeam.field_data['foo'], foo)
with pytest.raises(ValueError): # noqa: PT011
hexbeam.set_active_scalars('foo')
def test_field_data_string(hexbeam):
# test `mesh.field_data`
field_name = 'foo'
field_value = 'bar'
hexbeam.field_data[field_name] = field_value
returned = hexbeam.field_data[field_name]
assert returned == field_value
assert isinstance(returned, str)
# test `mesh.add_field_data`
field_name = 'eggs'
field_value = 'ham'
hexbeam.add_field_data(array=field_value, name=field_name)
returned = hexbeam.field_data[field_name]
assert returned == field_value
assert isinstance(returned, str)
# test `mesh[name] = data`
field_name = 'baz'
field_value = 'a' * hexbeam.n_points
hexbeam[field_name] = field_value
returned = hexbeam.field_data[field_name]
assert returned == field_value
assert isinstance(returned, str)
@pytest.mark.parametrize('field', [range(5), np.ones((3, 3))[:, 0]])
def test_add_field_data(hexbeam, field):
hexbeam.add_field_data(field, 'foo')
assert isinstance(hexbeam.field_data['foo'], np.ndarray)
assert np.allclose(hexbeam.field_data['foo'], field)
def test_modify_field_data(hexbeam):
field = range(4)
hexbeam.add_field_data(range(5), 'foo')
hexbeam.add_field_data(field, 'foo')
assert np.allclose(hexbeam.field_data['foo'], field)
field = range(8)
hexbeam.field_data['foo'] = field
assert np.allclose(hexbeam.field_data['foo'], field)
def test_active_scalars_cell(hexbeam):
hexbeam.add_field_data(range(5), 'foo')
del hexbeam.point_data['sample_point_scalars']
del hexbeam.point_data['VTKorigID']
assert hexbeam.active_scalars_info[1] == 'sample_cell_scalars'
def test_field_data_bad_value(hexbeam):
with pytest.raises(TypeError):
hexbeam.field_data['new_array'] = None
def test_copy(hexbeam):
grid_copy = hexbeam.copy(deep=True)
grid_copy.points[0] = np.nan
assert not np.any(np.isnan(hexbeam.points[0]))
grid_copy_shallow = hexbeam.copy(deep=False)
grid_copy.points[0] += 0.1
assert np.all(grid_copy_shallow.points[0] == hexbeam.points[0])
def test_copy_metadata(globe):
"""Ensure metadata is copied correctly."""
globe.point_data['bitarray'] = np.zeros(globe.n_points, dtype=bool)
globe.point_data['complex_data'] = np.zeros(globe.n_points, dtype=np.complex128)
globe_shallow = globe.copy(deep=False)
assert globe_shallow._active_scalars_info is globe._active_scalars_info
assert globe_shallow._active_vectors_info is globe._active_vectors_info
assert globe_shallow._active_tensors_info is globe._active_tensors_info
assert globe_shallow.point_data['bitarray'].dtype == np.bool_
assert globe_shallow.point_data['complex_data'].dtype == np.complex128
assert globe_shallow._association_bitarray_names is globe._association_bitarray_names
assert globe_shallow._association_complex_names is globe._association_complex_names
globe_deep = globe.copy(deep=True)
assert globe_deep._active_scalars_info is not globe._active_scalars_info
assert globe_deep._active_vectors_info is not globe._active_vectors_info
assert globe_deep._active_tensors_info is not globe._active_tensors_info
assert globe_deep._active_scalars_info == globe._active_scalars_info
assert globe_deep._active_vectors_info == globe._active_vectors_info
assert globe_deep._active_tensors_info == globe._active_tensors_info
assert globe_deep.point_data['bitarray'].dtype == np.bool_
assert globe_deep.point_data['complex_data'].dtype == np.complex128
assert (
globe_deep._association_bitarray_names['POINT']
is not globe._association_bitarray_names['POINT']
)
assert (
globe_deep._association_complex_names['POINT']
is not globe._association_complex_names['POINT']
)
def test_set_points():
dataset = pv.UnstructuredGrid()
points = np.random.default_rng().random((10, 3))
dataset.points = pv.vtk_points(points)
def test_make_points_double(hexbeam):
hexbeam.points = hexbeam.points.astype(np.float32)
assert hexbeam.points.dtype == np.float32
hexbeam.points_to_double()
assert hexbeam.points.dtype == np.double
def test_invalid_points(hexbeam):
with pytest.raises(TypeError):
hexbeam.points = None
def test_points_np_bool(hexbeam):
bool_arr = np.zeros(hexbeam.n_points, np.bool_)
hexbeam.point_data['bool_arr'] = bool_arr
bool_arr[:] = True
assert hexbeam.point_data['bool_arr'].all()
assert hexbeam.point_data['bool_arr'].all()
assert hexbeam.point_data['bool_arr'].dtype == np.bool_
def test_cells_np_bool(hexbeam):
bool_arr = np.zeros(hexbeam.n_cells, np.bool_)
hexbeam.cell_data['bool_arr'] = bool_arr
bool_arr[:] = True
assert hexbeam.cell_data['bool_arr'].all()
assert hexbeam.cell_data['bool_arr'].all()
assert hexbeam.cell_data['bool_arr'].dtype == np.bool_
def test_field_np_bool(hexbeam):
bool_arr = np.zeros(hexbeam.n_cells // 3, np.bool_)
hexbeam.field_data['bool_arr'] = bool_arr
bool_arr[:] = True
assert hexbeam.field_data['bool_arr'].all()
assert hexbeam.field_data['bool_arr'].all()
assert hexbeam.field_data['bool_arr'].dtype == np.bool_
def test_cells_uint8(hexbeam):
arr = np.zeros(hexbeam.n_cells, np.uint8)
hexbeam.cell_data['arr'] = arr
arr[:] = np.arange(hexbeam.n_cells)
assert np.allclose(hexbeam.cell_data['arr'], np.arange(hexbeam.n_cells))
def test_points_uint8(hexbeam):
arr = np.zeros(hexbeam.n_points, np.uint8)
hexbeam.point_data['arr'] = arr
arr[:] = np.arange(hexbeam.n_points)
assert np.allclose(hexbeam.point_data['arr'], np.arange(hexbeam.n_points))
def test_field_uint8(hexbeam):
n = hexbeam.n_points // 3
arr = np.zeros(n, np.uint8)
hexbeam.field_data['arr'] = arr
arr[:] = np.arange(n)
assert np.allclose(hexbeam.field_data['arr'], np.arange(n))
def test_bitarray_points(hexbeam):
n = hexbeam.n_points
vtk_array = vtk.vtkBitArray()
np_array = np.empty(n, np.bool_)
vtk_array.SetNumberOfTuples(n)
vtk_array.SetName('bint_arr')
for i in range(n):
value = i % 2
vtk_array.SetValue(i, value)
np_array[i] = value
hexbeam.GetPointData().AddArray(vtk_array)
assert np.allclose(hexbeam.point_data['bint_arr'], np_array)
def test_bitarray_cells(hexbeam):
n = hexbeam.n_cells
vtk_array = vtk.vtkBitArray()
np_array = np.empty(n, np.bool_)
vtk_array.SetNumberOfTuples(n)
vtk_array.SetName('bint_arr')
for i in range(n):
value = i % 2
vtk_array.SetValue(i, value)
np_array[i] = value
hexbeam.GetCellData().AddArray(vtk_array)
assert np.allclose(hexbeam.cell_data['bint_arr'], np_array)
def test_bitarray_field(hexbeam):
n = hexbeam.n_cells // 3
vtk_array = vtk.vtkBitArray()
np_array = np.empty(n, np.bool_)
vtk_array.SetNumberOfTuples(n)
vtk_array.SetName('bint_arr')
for i in range(n):
value = i % 2
vtk_array.SetValue(i, value)
np_array[i] = value
hexbeam.GetFieldData().AddArray(vtk_array)
assert np.allclose(hexbeam.field_data['bint_arr'], np_array)
def test_html_repr(hexbeam):
"""This just tests to make sure no errors are thrown on the HTML
representation method for DataSet.
"""
assert hexbeam._repr_html_() is not None
def test_html_repr_string_scalar(hexbeam):
array_data = 'data'
array_name = 'name'
hexbeam.add_field_data(array_data, array_name)
assert hexbeam._repr_html_() is not None
@pytest.mark.parametrize('html', [True, False])
@pytest.mark.parametrize('display', [True, False])
def test_print_repr(hexbeam, display, html):
"""This just tests to make sure no errors are thrown on the text friendly
representation method for DataSet.
"""
result = hexbeam.head(display=display, html=html)
assert isinstance(result, str)
if display and html:
assert result == ''
else:
assert result != ''
def test_invalid_vector(hexbeam):
with pytest.raises(ValueError): # noqa: PT011
hexbeam['vectors'] = np.empty(10)
with pytest.raises(ValueError): # noqa: PT011
hexbeam['vectors'] = np.empty((3, 2))
with pytest.raises(ValueError): # noqa: PT011
hexbeam['vectors'] = np.empty((3, 3))
def test_no_texture_coordinates(hexbeam):
assert hexbeam.active_texture_coordinates is None
def test_no_arrows(hexbeam):
assert hexbeam.arrows is None
def test_arrows():
sphere = pv.Sphere(radius=math.pi)
# make cool swirly pattern
vectors = np.vstack(
(np.sin(sphere.points[:, 0]), np.cos(sphere.points[:, 1]), np.cos(sphere.points[:, 2])),
).T
# add and scales
sphere['vectors'] = vectors * 0.3
sphere.set_active_vectors('vectors')
assert np.allclose(sphere.active_vectors, vectors * 0.3)
assert np.allclose(sphere['vectors'], vectors * 0.3)
assert sphere.active_vectors_info[1] == 'vectors'
arrows = sphere.arrows
assert isinstance(arrows, pv.PolyData)
assert np.any(arrows.points)
assert arrows.active_vectors_name == 'GlyphVector'
def test_arrows_cell_data():
box = pv.Box().compute_normals(cell_normals=True, point_normals=False)
assert box.array_names == ['Normals']
assert box.cell_data.keys() == ['Normals']
assert box.arrows is None
box.set_active_vectors('Normals')
arrows = box.arrows
# Test that there are as many arrows as there are vectors
num_parts_per_arrow = pv.Arrow().split_bodies().n_blocks
num_parts = arrows.split_bodies().n_blocks
num_arrows = num_parts / num_parts_per_arrow
num_vectors = len(box['Normals'])
assert num_arrows == num_vectors
def test_arrows_ndim_raises(mocker: MockerFixture):
m = mocker.patch.object(pv.DataSet, 'active_vectors')
mocker.patch.object(pv.DataSet, 'active_vectors_name')
m.ndim = 1
sphere = pv.Sphere(radius=math.pi)
with pytest.raises(ValueError, match='Active vectors are not vectors.'):
sphere.arrows # noqa: B018
def test_set_active_scalars_raises(mocker: MockerFixture):
sphere = pv.Sphere(radius=math.pi)
sphere.point_data[(f := 'foo')] = 1
m = mocker.patch.object(dataset, 'get_array_association')
m.return_value = 1
with pytest.raises(
ValueError,
match=re.escape('Data field (foo) with type (1) not usable'),
):
sphere.set_active_scalars(f)
def test_set_active_scalars_raises_vtk(mocker: MockerFixture):
sphere = pv.Sphere(radius=math.pi)
sphere.point_data[(f := 'foo')] = 1
m = mocker.patch.object(sphere, 'GetPointData')
m().SetActiveScalars.return_value = -1
match = re.escape(
f'Data field "{f}" with type (FieldAssociation.POINT) could not be set as the '
f'active scalars'
)
with pytest.raises(ValueError, match=match):
sphere.set_active_scalars(f)
def active_component_consistency_check(grid, component_type, field_association='point'):
# Tests if the active component (scalars, vectors, tensors) actually reflects
# the underlying VTK dataset
component_type = component_type.lower()
vtk_component_type = component_type.capitalize()
field_association = field_association.lower()
vtk_field_association = field_association.capitalize()
pv_arr = getattr(grid, 'active_' + component_type)
vtk_arr = getattr(
getattr(grid, f'Get{vtk_field_association}Data')(),
f'Get{vtk_component_type}',
)()
assert (pv_arr is None and vtk_arr is None) or np.allclose(pv_arr, vtk_to_numpy(vtk_arr))
def test_set_active_vectors(hexbeam):
vector_arr = np.arange(hexbeam.n_points * 3).reshape([hexbeam.n_points, 3])
hexbeam.point_data['vector_arr'] = vector_arr
hexbeam.active_vectors_name = 'vector_arr'
active_component_consistency_check(hexbeam, 'vectors', 'point')
assert hexbeam.active_vectors_name == 'vector_arr'
assert np.allclose(hexbeam.active_vectors, vector_arr)
hexbeam.active_vectors_name = None
assert hexbeam.active_vectors_name is None
active_component_consistency_check(hexbeam, 'vectors', 'point')
def test_set_active_tensors(hexbeam):
tensor_arr = np.arange(hexbeam.n_points * 9).reshape([hexbeam.n_points, 9])
hexbeam.point_data['tensor_arr'] = tensor_arr
hexbeam.active_tensors_name = 'tensor_arr'
active_component_consistency_check(hexbeam, 'tensors', 'point')
assert hexbeam.active_tensors_name == 'tensor_arr'
assert np.allclose(hexbeam.active_tensors, tensor_arr)
hexbeam.active_tensors_name = None
assert hexbeam.active_tensors_name is None
active_component_consistency_check(hexbeam, 'tensors', 'point')
def test_set_texture_coordinates(hexbeam):
with pytest.raises(TypeError):
hexbeam.active_texture_coordinates = [1, 2, 3]
with pytest.raises(ValueError): # noqa: PT011
hexbeam.active_texture_coordinates = np.empty(10)
with pytest.raises(ValueError): # noqa: PT011
hexbeam.active_texture_coordinates = np.empty((3, 3))
with pytest.raises(ValueError): # noqa: PT011
hexbeam.active_texture_coordinates = np.empty((hexbeam.n_points, 1))
def test_set_active_vectors_fail(hexbeam):
with pytest.raises(ValueError): # noqa: PT011
hexbeam.set_active_vectors('not a vector')
active_component_consistency_check(hexbeam, 'vectors', 'point')
vector_arr = np.arange(hexbeam.n_points * 3).reshape([hexbeam.n_points, 3])
hexbeam.point_data['vector_arr'] = vector_arr
hexbeam.active_vectors_name = 'vector_arr'
active_component_consistency_check(hexbeam, 'vectors', 'point')
hexbeam.point_data['scalar_arr'] = np.zeros([hexbeam.n_points])
with pytest.raises(ValueError): # noqa: PT011
hexbeam.set_active_vectors('scalar_arr')
assert hexbeam.active_vectors_name == 'vector_arr'
active_component_consistency_check(hexbeam, 'vectors', 'point')
def test_set_active_tensors_fail(hexbeam):
with pytest.raises(ValueError): # noqa: PT011
hexbeam.set_active_tensors('not a tensor')
active_component_consistency_check(hexbeam, 'tensors', 'point')
tensor_arr = np.arange(hexbeam.n_points * 9).reshape([hexbeam.n_points, 9])
hexbeam.point_data['tensor_arr'] = tensor_arr
hexbeam.active_tensors_name = 'tensor_arr'
active_component_consistency_check(hexbeam, 'tensors', 'point')
hexbeam.point_data['scalar_arr'] = np.zeros([hexbeam.n_points])
hexbeam.point_data['vector_arr'] = np.zeros([hexbeam.n_points, 3])
with pytest.raises(ValueError): # noqa: PT011
hexbeam.set_active_tensors('scalar_arr')
with pytest.raises(ValueError): # noqa: PT011
hexbeam.set_active_tensors('vector_arr')
assert hexbeam.active_tensors_name == 'tensor_arr'
active_component_consistency_check(hexbeam, 'tensors', 'point')
def test_set_active_scalars(hexbeam):
arr = np.arange(hexbeam.n_cells)
hexbeam.cell_data['tmp'] = arr
hexbeam.set_active_scalars('tmp')
assert np.allclose(hexbeam.active_scalars, arr)
# Make sure we can set no active scalars
hexbeam.set_active_scalars(None)
assert hexbeam.GetPointData().GetScalars() is None
assert hexbeam.GetCellData().GetScalars() is None
def test_set_active_scalars_name(hexbeam):
point_keys = list(hexbeam.point_data.keys())
hexbeam.active_scalars_name = point_keys[0]
hexbeam.active_scalars_name = None
def test_rename_array_point(hexbeam):
point_keys = list(hexbeam.point_data.keys())
old_name = point_keys[0]
orig_vals = hexbeam[old_name].copy()
new_name = 'point changed'
hexbeam.set_active_scalars(old_name, preference='point')
hexbeam.rename_array(old_name, new_name, preference='point')
assert new_name in hexbeam.point_data
assert old_name not in hexbeam.point_data
assert new_name == hexbeam.active_scalars_name
assert np.array_equal(orig_vals, hexbeam[new_name])
def test_rename_array_cell(hexbeam):
cell_keys = list(hexbeam.cell_data.keys())
old_name = cell_keys[0]
orig_vals = hexbeam[old_name].copy()
new_name = 'cell changed'
hexbeam.rename_array(old_name, new_name)
assert new_name in hexbeam.cell_data
assert old_name not in hexbeam.cell_data
assert np.array_equal(orig_vals, hexbeam[new_name])
def test_rename_array_field(hexbeam):
hexbeam.field_data['fieldfoo'] = np.array([8, 6, 7])
field_keys = list(hexbeam.field_data.keys())
old_name = field_keys[0]
orig_vals = hexbeam[old_name].copy()
new_name = 'cell changed'
hexbeam.rename_array(old_name, new_name)
assert new_name in hexbeam.field_data
assert old_name not in hexbeam.field_data
assert np.array_equal(orig_vals, hexbeam[new_name])
def test_rename_array_raises(mocker: MockerFixture):
sphere = pv.Sphere(radius=math.pi)
m = mocker.patch.object(dataset, 'get_array_association')
m.return_value = None
f = 'foo'
with pytest.raises(
KeyError,
match=re.escape(f'Array with name {f} not found.'),
):
sphere.rename_array(f, 'bar')
def test_rename_array_doesnt_delete():
# Regression test for issue #5244
def make_mesh():
m = pv.Sphere()
m.point_data['orig'] = np.ones(m.n_points)
return m
mesh = make_mesh()
was_deleted = [False]
def on_delete(*_):
# Would be easier to throw an exception here but even though the exception gets printed to
# stderr pytest reports the test passing. See #5246 .
was_deleted[0] = True
mesh.point_data['orig'].VTKObject.AddObserver('DeleteEvent', on_delete)
mesh.rename_array('orig', 'renamed')
assert not was_deleted[0]
mesh.point_data['renamed'].VTKObject.RemoveAllObservers()
assert (mesh.point_data['renamed'] == 1).all()
def test_change_name_fail(hexbeam):
with pytest.raises(KeyError):
hexbeam.rename_array('not a key', '')
def test_get_cell_array_fail():
sphere = pv.Sphere()
with pytest.raises(TypeError):
sphere.cell_data[None]
def test_get_item(hexbeam):
with pytest.raises(KeyError):
hexbeam[0]
def test_set_item(hexbeam):
with pytest.raises(TypeError):
hexbeam['tmp'] = None
# field data
with pytest.raises(ValueError): # noqa: PT011
hexbeam['bad_field'] = range(5)
def test_set_item_range(hexbeam):
rng = range(hexbeam.n_points)
hexbeam['pt_rng'] = rng
assert np.allclose(hexbeam['pt_rng'], rng)
def test_str(hexbeam):
assert 'UnstructuredGrid' in str(hexbeam)
def test_set_cell_vectors(hexbeam):
arr = np.random.default_rng().random((hexbeam.n_cells, 3))
hexbeam.cell_data['_cell_vectors'] = arr
hexbeam.set_active_vectors('_cell_vectors')
assert hexbeam.active_vectors_name == '_cell_vectors'
assert np.allclose(hexbeam.active_vectors, arr)
def test_axis_rotation_invalid():
with pytest.raises(ValueError): # noqa: PT011
pv.axis_rotation(np.empty((3, 3)), 0, inplace=False, axis='not')
def test_axis_rotation_not_inplace():
p = np.eye(3)
p_out = pv.axis_rotation(p, 1, inplace=False, axis='x')
assert not np.allclose(p, p_out)
@pytest.mark.parametrize('name', ['DataSet', 'Grid', 'DataSetFilters', 'PointGrid', 'DataObject'])
def test_init_abstract_class(name):
klass = getattr(pv, name)
with pytest.raises(TypeError):
klass()
def test_string_arrays():
poly = pv.PolyData(np.random.default_rng().random((10, 3)))
arr = np.array([f'foo{i}' for i in range(10)])
poly['foo'] = arr
back = poly['foo']
assert len(back) == 10
def test_clear_data():
# First try on an empty mesh
grid = pv.ImageData(dimensions=(10, 10, 10))
# Now try something more complicated
grid.clear_data()
grid['foo-p'] = np.random.default_rng().random(grid.n_points)
grid['foo-c'] = np.random.default_rng().random(grid.n_cells)
grid.field_data['foo-f'] = np.random.default_rng().random(grid.n_points * grid.n_cells)
assert grid.n_arrays == 3
grid.clear_data()
assert grid.n_arrays == 0
def test_scalars_dict_update():
mesh = examples.load_uniform()
n = len(mesh.point_data)
arrays = {
'foo': np.arange(mesh.n_points),
'rand': np.random.default_rng().random(mesh.n_points),
}
mesh.point_data.update(arrays)
assert 'foo' in mesh.array_names
assert 'rand' in mesh.array_names
assert len(mesh.point_data) == n + 2
# Test update from Table
table = pv.Table(arrays)
mesh = examples.load_uniform()
mesh.point_data.update(table)
assert 'foo' in mesh.array_names
assert 'rand' in mesh.array_names
assert len(mesh.point_data) == n + 2
def test_handle_array_with_null_name():
poly = pv.PolyData()
# Add point array with no name
poly.GetPointData().AddArray(pv.convert_array(np.array([])))
html = poly._repr_html_()
assert html is not None
pdata = poly.point_data
assert pdata is not None
assert len(pdata) == 1
# Add cell array with no name
poly.GetCellData().AddArray(pv.convert_array(np.array([])))
html = poly._repr_html_()
assert html is not None
cdata = poly.cell_data
assert cdata is not None
assert len(cdata) == 1
# Add field array with no name
poly.GetFieldData().AddArray(pv.convert_array(np.array([5, 6])))
html = poly._repr_html_()
assert html is not None
fdata = poly.field_data
assert fdata is not None
assert len(fdata) == 1
def test_add_point_array_list(hexbeam):
rng = range(hexbeam.n_points)
hexbeam.point_data['tmp'] = rng
assert np.allclose(hexbeam.point_data['tmp'], rng)
def test_shallow_copy_back_propagation():
"""Test that the original data object's points get modified after a
shallow copy.
Reference: https://github.com/pyvista/pyvista/issues/375#issuecomment-531691483
"""
# Case 1
points = vtk.vtkPoints()
points.InsertNextPoint(0.0, 0.0, 0.0)
points.InsertNextPoint(1.0, 0.0, 0.0)
points.InsertNextPoint(2.0, 0.0, 0.0)
original = vtk.vtkPolyData()
original.SetPoints(points)
wrapped = pv.PolyData(original, deep=False)
wrapped.points[:] = 2.8
orig_points = vtk_to_numpy(original.GetPoints().GetData())
assert np.allclose(orig_points, wrapped.points)
# Case 2
original = vtk.vtkPolyData()
wrapped = pv.PolyData(original, deep=False)
wrapped.points = np.random.default_rng().random((5, 3))
orig_points = vtk_to_numpy(original.GetPoints().GetData())
assert np.allclose(orig_points, wrapped.points)
def test_find_closest_point():
sphere = pv.Sphere()
node = np.array([0, 0.2, 0.2])
with pytest.raises(TypeError):
sphere.find_closest_point([1, 2])
with pytest.raises(ValueError): # noqa: PT011
sphere.find_closest_point([0, 0, 0], n=0)
with pytest.raises(TypeError):
sphere.find_closest_point([0, 0, 0], n=3.0)
with pytest.raises(TypeError):
# allow Sequence but not Iterable
sphere.find_closest_point({1, 2, 3})
index = sphere.find_closest_point(node)
assert isinstance(index, int)
# Make sure we can fetch that point
closest = sphere.points[index]
assert len(closest) == 3
# n points
node = np.array([0, 0.2, 0.2])
index = sphere.find_closest_point(node, 5)
assert len(index) == 5
def test_find_closest_cell():
mesh = pv.Wavelet()
node = np.array([0, 0.2, 0.2])
index = mesh.find_closest_cell(node)
assert isinstance(index, int)
def test_find_closest_cells():
mesh = pv.Sphere()
# simply get the face centers, ordered by cell Id
fcent = mesh.points[mesh.regular_faces].mean(1)
fcent_copy = fcent.copy()
indices = mesh.find_closest_cell(fcent)
# Make sure we match the face centers
assert np.allclose(indices, np.arange(mesh.n_faces_strict))
# Make sure arg was not modified
assert np.array_equal(fcent, fcent_copy)
def test_find_closest_cell_surface_point():
mesh = pv.Rectangle()
point = np.array([0.5, 0.5, -1.0])
point2 = np.array([1.0, 1.0, -1.0])
points = np.vstack((point, point2))
_, closest_point = mesh.find_closest_cell(point, return_closest_point=True)
assert np.allclose(closest_point, [0.5, 0.5, 0])
_, closest_points = mesh.find_closest_cell(points, return_closest_point=True)
assert np.allclose(closest_points, [[0.5, 0.5, 0], [1.0, 1.0, 0]])
def test_find_containing_cell():
mesh = pv.ImageData(dimensions=[5, 5, 1], spacing=[1 / 4, 1 / 4, 0])
node = np.array([0.3, 0.3, 0.0])
index = mesh.find_containing_cell(node)
assert index == 5
def test_find_containing_cells():
mesh = pv.ImageData(dimensions=[5, 5, 1], spacing=[1 / 4, 1 / 4, 0])
points = np.array([[0.3, 0.3, 0], [0.6, 0.6, 0]])
points_copy = points.copy()
indices = mesh.find_containing_cell(points)
assert np.allclose(indices, [5, 10])
assert np.array_equal(points, points_copy)
def test_find_cells_along_line():
mesh = pv.Cube()
indices = mesh.find_cells_along_line([0, 0, -1], [0, 0, 1])
assert len(indices) == 2
def test_find_cells_along_line_raises():
mesh = pv.Cube()
with pytest.raises(TypeError, match='Point A must be a length three tuple of floats.'):
mesh.find_cells_along_line([0, 0], [0, 0, 1])
with pytest.raises(TypeError, match='Point B must be a length three tuple of floats.'):
mesh.find_cells_along_line([0, 0, -1], [0, 0])
def test_find_cells_intersecting_line():
mesh = pv.Plane(center=(0.01, 0.5, 1), i_resolution=2, j_resolution=2)
linea = [0, 0, 0.0]
lineb = [0.0, 0, 1.0]
if pv.vtk_version_info >= (9, 2, 0):
indices = mesh.find_cells_intersecting_line(linea, lineb)
assert len(indices) == 1
# test tolerance
indices = mesh.find_cells_intersecting_line(linea, lineb, tolerance=0.01)
assert len(indices) == 2
with pytest.raises(TypeError):
mesh.find_cells_intersecting_line([0, 0], [1.0, 0, 0.0])
with pytest.raises(TypeError):
mesh.find_cells_intersecting_line([0, 0, 0.0], [1.0, 0])
else:
with pytest.raises(VTKVersionError):
indices = mesh.find_cells_intersecting_line(linea, lineb)
def test_find_cells_within_bounds():
mesh = pv.Cube()
bounds = [
mesh.bounds.x_min * 2.0,
mesh.bounds.x_max * 2.0,
mesh.bounds.y_min * 2.0,
mesh.bounds.y_max * 2.0,
mesh.bounds.z_min * 2.0,
mesh.bounds.z_max * 2.0,
]
indices = mesh.find_cells_within_bounds(bounds)
assert len(indices) == mesh.n_cells
bounds = [
mesh.bounds.x_min * 0.5,
mesh.bounds.x_max * 0.5,
mesh.bounds.y_min * 0.5,
mesh.bounds.y_max * 0.5,
mesh.bounds.z_min * 0.5,
mesh.bounds.z_max * 0.5,
]
indices = mesh.find_cells_within_bounds(bounds)
assert len(indices) == 0
def test_find_cells_within_bounds_raises():
mesh = pv.Cube()
with pytest.raises(
TypeError,
match='Bounds must be a length six tuple of floats.',
):
mesh.find_cells_within_bounds([0, 0])
def test_setting_points_by_different_types(hexbeam):
grid_copy = hexbeam.copy()
hexbeam.points = grid_copy.points
assert np.array_equal(hexbeam.points, grid_copy.points)
hexbeam.points = np.array(grid_copy.points)
assert np.array_equal(hexbeam.points, grid_copy.points)
hexbeam.points = grid_copy.points.tolist()
assert np.array_equal(hexbeam.points, grid_copy.points)
pgrid = pv.PolyData([0.0, 0.0, 0.0])
pgrid.points = [1.0, 1.0, 1.0]
assert np.array_equal(pgrid.points, [[1.0, 1.0, 1.0]])
pgrid.points = np.array([2.0, 2.0, 2.0])
assert np.array_equal(pgrid.points, [[2.0, 2.0, 2.0]])
def test_empty_points():
pdata = pv.PolyData()
assert np.allclose(pdata.points, np.empty(3))
def test_no_active():
pdata = pv.PolyData()
assert pdata.active_scalars is None
with pytest.raises(TypeError):
pdata.point_data[None]
def test_get_data_range(hexbeam):
# Test with blank mesh
mesh = pv.Sphere()
mesh.clear_data()
rng = mesh.get_data_range()
assert all(np.isnan(rng))
with pytest.raises(KeyError):
rng = mesh.get_data_range('some data')
# Test with some data
hexbeam.active_scalars_name = 'sample_point_scalars'
rng = hexbeam.get_data_range() # active scalars
assert len(rng) == 2
assert np.allclose(rng, (1, 302))
rng = hexbeam.get_data_range('sample_point_scalars', preference='point')
assert len(rng) == 2
assert np.allclose(rng, (1, 302))
rng = hexbeam.get_data_range('sample_cell_scalars', preference='cell')
assert len(rng) == 2
assert np.allclose(rng, (1, 40))
def test_actual_memory_size(hexbeam):
size = hexbeam.actual_memory_size
assert isinstance(size, int)
assert size >= 0
def test_copy_structure(hexbeam):
classname = hexbeam.__class__.__name__
copy = eval(f'pv.{classname}')()
copy.copy_structure(hexbeam)
assert copy.n_cells == hexbeam.n_cells
assert copy.n_points == hexbeam.n_points
assert len(copy.field_data) == 0
assert len(copy.cell_data) == 0
assert len(copy.point_data) == 0
def test_copy_structure_self(datasets):
for dataset in datasets: # noqa: F402
copied = dataset.copy()
assert copied is not dataset
# Copy structure from itself
copied.copy_structure(copied)
assert copied.n_points == dataset.n_points
assert copied.n_cells == dataset.n_cells
def test_copy_attributes(hexbeam):
classname = hexbeam.__class__.__name__
copy = eval(f'pv.{classname}')()
copy.copy_attributes(hexbeam)
assert copy.n_cells == 0
assert copy.n_points == 0
assert copy.field_data.keys() == hexbeam.field_data.keys()
assert copy.cell_data.keys() == hexbeam.cell_data.keys()
assert copy.point_data.keys() == hexbeam.point_data.keys()
def test_point_is_inside_cell():
grid = pv.ImageData(dimensions=(2, 2, 2))
assert grid.point_is_inside_cell(0, [0.5, 0.5, 0.5])
assert not grid.point_is_inside_cell(0, [-0.5, -0.5, -0.5])
assert grid.point_is_inside_cell(0, np.array([0.5, 0.5, 0.5]))
# cell ind out of range
with pytest.raises(ValueError): # noqa: PT011
grid.point_is_inside_cell(100000, [0.5, 0.5, 0.5])
with pytest.raises(ValueError): # noqa: PT011
grid.point_is_inside_cell(-1, [0.5, 0.5, 0.5])
# cell ind wrong type
with pytest.raises(TypeError):
grid.point_is_inside_cell(0.1, [0.5, 0.5, 0.5])
# point not well formed
with pytest.raises(TypeError):
grid.point_is_inside_cell(0, 0.5)
with pytest.raises(ValueError): # noqa: PT011
grid.point_is_inside_cell(0, [0.5, 0.5])
# multi-dimensional
in_cell = grid.point_is_inside_cell(0, [[0.5, 0.5, 0.5], [-0.5, -0.5, -0.5]])
assert np.array_equal(in_cell, np.array([True, False]))
def test_point_is_inside_cell_raises(mocker: MockerFixture):
m = mocker.patch.object(pv.ImageData, 'GetCell')
m().EvaluatePosition.return_value = 2
grid = pv.ImageData(dimensions=(2, 2, 2))
with pytest.raises(
RuntimeError,
match=re.escape('Computational difficulty encountered for point [0 0 0] in cell 0'),
):
grid.point_is_inside_cell(0, [0, 0, 0])
def test_active_normals(sphere):
# both cell and point normals
mesh = sphere.compute_normals()
assert mesh.active_normals.shape[0] == mesh.n_points
mesh = sphere.compute_normals(point_normals=False)
assert mesh.active_normals.shape[0] == mesh.n_cells
@pytest.mark.needs_vtk_version(9, 1, 0, reason='Requires VTK>=9.1.0 for a concrete PointSet class')
def test_cast_to_pointset(sphere):
sphere = sphere.elevation()
pointset = sphere.cast_to_pointset()
assert isinstance(pointset, pv.PointSet)
assert not np.may_share_memory(sphere.points, pointset.points)
assert not np.may_share_memory(sphere.active_scalars, pointset.active_scalars)
assert np.allclose(sphere.points, pointset.points)
assert np.allclose(sphere.active_scalars, pointset.active_scalars)
pointset.points[:] = 0
assert not np.allclose(sphere.points, pointset.points)
pointset.active_scalars[:] = 0
assert not np.allclose(sphere.active_scalars, pointset.active_scalars)
@pytest.mark.needs_vtk_version(9, 1, 0, reason='Requires VTK>=9.1.0 for a concrete PointSet class')
def test_cast_to_pointset_implicit(uniform):
pointset = uniform.cast_to_pointset(pass_cell_data=True)
assert isinstance(pointset, pv.PointSet)
assert pointset.n_arrays == uniform.n_arrays
assert not np.may_share_memory(uniform.active_scalars, pointset.active_scalars)
assert np.allclose(uniform.active_scalars, pointset.active_scalars)
ctp = uniform.cell_data_to_point_data()
for name in ctp.point_data.keys():
assert np.allclose(ctp[name], pointset[name])
for i, name in enumerate(uniform.point_data.keys()):
pointset[name][:] = i
assert not np.allclose(uniform[name], pointset[name])
def test_cast_to_poly_points_implicit(uniform):
points = uniform.cast_to_poly_points(pass_cell_data=True)
assert isinstance(points, pv.PolyData)
assert points.n_arrays == uniform.n_arrays
assert len(points.cell_data) == len(uniform.cell_data)
assert len(points.point_data) == len(uniform.point_data)
assert not np.may_share_memory(uniform.active_scalars, points.active_scalars)
assert np.allclose(uniform.active_scalars, points.active_scalars)
ctp = uniform.cell_data_to_point_data()
for name in ctp.point_data.keys():
assert np.allclose(ctp[name], points[name])
for i, name in enumerate(uniform.point_data.keys()):
points[name][:] = i
assert not np.allclose(uniform[name], points[name])
def test_partition(hexbeam):
if pv.vtk_version_info < (9, 1, 0):
with pytest.raises(VTKVersionError):
hexbeam.partition(2)
return
# split as composite
n_part = 2
out = hexbeam.partition(n_part)
assert isinstance(out, pv.MultiBlock)
assert len(out) == 2
# split as unstrucutred grid
out = hexbeam.partition(hexbeam.n_cells, as_composite=False)
assert isinstance(hexbeam, pv.UnstructuredGrid)
assert out.n_points > hexbeam.n_points
def test_explode(datasets):
for dataset in datasets: # noqa: F402
out = dataset.explode()
assert out.n_cells == dataset.n_cells
assert out.n_points > dataset.n_points
def test_separate_cells(hexbeam):
assert hexbeam.n_points != hexbeam.n_cells * 8
sep_grid = hexbeam.separate_cells()
assert sep_grid.n_points == hexbeam.n_cells * 8
def test_volume_area():
def assert_volume(grid):
assert np.isclose(grid.volume, 64.0)
assert np.isclose(grid.area, 0.0)
def assert_area(grid):
assert np.isclose(grid.volume, 0.0)
assert np.isclose(grid.area, 16.0)
# ImageData 3D size 4x4x4
vol_grid = pv.ImageData(dimensions=(5, 5, 5))
assert_volume(vol_grid)
# 2D grid size 4x4
surf_grid = pv.ImageData(dimensions=(5, 5, 1))
assert_area(surf_grid)
# UnstructuredGrid
assert_volume(vol_grid.cast_to_unstructured_grid())
assert_area(surf_grid.cast_to_unstructured_grid())
# StructuredGrid
assert_volume(vol_grid.cast_to_structured_grid())
assert_area(surf_grid.cast_to_structured_grid())
# Rectilinear
assert_volume(vol_grid.cast_to_rectilinear_grid())
assert_area(surf_grid.cast_to_rectilinear_grid())
# PolyData
# cube of size 4
# PolyData is special because it is a 2D surface that can enclose a volume
grid = pv.ImageData(dimensions=(5, 5, 5)).extract_surface()
assert np.isclose(grid.volume, 64.0)
assert np.isclose(grid.area, 96.0)
# ------------------
# Connectivity tests
# ------------------
i0s = [0, 1]
grids = [
load_airplane(),
load_structured(),
load_hexbeam(),
load_rectilinear(),
load_tetbeam(),
load_uniform(),
load_explicit_structured(),
]
grids_cells = grids[:-1]
ids = list(map(type, grids))
ids_cells = list(map(type, grids_cells))
def test_raises_cell_neighbors_explicit_structured_grid(datasets_vtk9):
for dataset in datasets_vtk9: # noqa: F402
with pytest.raises(TypeError):
_ = dataset.cell_neighbors(0)
def test_raises_point_neighbors_ind_overflow(hexbeam):
with pytest.raises(IndexError):
_ = hexbeam.point_neighbors(hexbeam.n_points)
def test_raises_cell_neighbors_connections(hexbeam):
with pytest.raises(ValueError, match='got "topological"'):
_ = hexbeam.cell_neighbors(0, 'topological')
@pytest.mark.parametrize('grid', grids, ids=ids)
@pytest.mark.parametrize('i0', i0s)
def test_point_cell_ids(grid: DataSet, i0):
cell_ids = grid.point_cell_ids(i0)
assert isinstance(cell_ids, list)
assert all(isinstance(id_, int) for id_ in cell_ids)
assert all(0 <= id_ < grid.n_cells for id_ in cell_ids)
assert len(cell_ids) > 0
# Check that the output cells contain the i0-th point but also that the
# remaining cells does not contain this point id
for c in cell_ids:
assert i0 in grid.get_cell(c).point_ids
others = [i for i in range(grid.n_cells) if i not in cell_ids]
for c in others:
assert i0 not in grid.get_cell(c).point_ids
def test_point_cell_ids_order():
resolution = 10
mesh = pv.Sphere(theta_resolution=resolution)
expected_ids = list(range(resolution))
actual_ids = mesh.point_cell_ids(0)
assert actual_ids == expected_ids
@pytest.mark.parametrize('grid', grids_cells, ids=ids_cells)
@pytest.mark.parametrize('i0', i0s)
def test_cell_point_neighbors_ids(grid: DataSet, i0):
cell_ids = grid.cell_neighbors(i0, 'points')
cell = grid.get_cell(i0)
assert isinstance(cell_ids, list)
assert all(isinstance(id_, int) for id_ in cell_ids)
assert all(0 <= id_ < grid.n_cells for id_ in cell_ids)
assert len(cell_ids) > 0
# Check that all the neighbors cells share at least one point with the
# current cell
current_points = set(cell.point_ids)
for i in cell_ids:
neighbor_points = set(grid.get_cell(i).point_ids)
assert not neighbor_points.isdisjoint(current_points)
# Check that other cells do not share a point with the current cell
other_ids = [i for i in range(grid.n_cells) if (i not in cell_ids and i != i0)]
for i in other_ids:
neighbor_points = set(grid.get_cell(i).point_ids)
assert neighbor_points.isdisjoint(current_points)
@pytest.mark.parametrize('grid', grids_cells, ids=ids_cells)
@pytest.mark.parametrize('i0', i0s)
def test_cell_edge_neighbors_ids(grid: DataSet, i0):
cell_ids = grid.cell_neighbors(i0, 'edges')
cell = grid.get_cell(i0)
assert isinstance(cell_ids, list)
assert all(isinstance(id_, int) for id_ in cell_ids)
assert all(0 <= id_ < grid.n_cells for id_ in cell_ids)
assert len(cell_ids) > 0
# Check that all the neighbors cells share at least one edge with the
# current cell
current_points = set()
current_points.update(frozenset(e.point_ids) for e in cell.edges)
for i in cell_ids:
neighbor_points = set()
neighbor_cell = grid.get_cell(i)
for ie in range(neighbor_cell.n_edges):
e = neighbor_cell.get_edge(ie)
neighbor_points.add(frozenset(e.point_ids))
assert not neighbor_points.isdisjoint(current_points)
# Check that other cells do not share an edge with the current cell
other_ids = [i for i in range(grid.n_cells) if (i not in cell_ids and i != i0)]
for i in other_ids:
neighbor_points = set()
neighbor_cell = grid.get_cell(i)
for ie in range(neighbor_cell.n_edges):
e = neighbor_cell.get_edge(ie)
neighbor_points.add(frozenset(e.point_ids))
assert neighbor_points.isdisjoint(current_points)
# Slice grids since some do not contain faces
@pytest.mark.parametrize('grid', grids_cells[2:], ids=ids_cells[2:])
@pytest.mark.parametrize('i0', i0s)
def test_cell_face_neighbors_ids(grid: DataSet, i0):
cell_ids = grid.cell_neighbors(i0, 'faces')
cell = grid.get_cell(i0)
assert isinstance(cell_ids, list)
assert all(isinstance(id_, int) for id_ in cell_ids)
assert all(0 <= id_ < grid.n_cells for id_ in cell_ids)
assert len(cell_ids) > 0
# Check that all the neighbors cells share at least one face with the
# current cell
current_points = set()
current_points.update(frozenset(f.point_ids) for f in cell.faces)
for i in cell_ids:
neighbor_points = set()
neighbor_cell = grid.get_cell(i)
for ifa in range(neighbor_cell.n_faces):
f = neighbor_cell.get_face(ifa)
neighbor_points.add(frozenset(f.point_ids))
assert not neighbor_points.isdisjoint(current_points)
# Check that other cells do not share a face with the current cell
other_ids = [i for i in range(grid.n_cells) if (i not in cell_ids and i != i0)]
for i in other_ids:
neighbor_points = set()
neighbor_cell = grid.get_cell(i)
for ifa in range(neighbor_cell.n_faces):
f = neighbor_cell.get_face(ifa)
neighbor_points.add(frozenset(f.point_ids))
assert neighbor_points.isdisjoint(current_points)
@pytest.mark.parametrize('grid', grids_cells, ids=ids_cells)
@pytest.mark.parametrize('i0', i0s, ids=lambda x: f'i0={x}')
@pytest.mark.parametrize('n_levels', [1, 3], ids=lambda x: f'n_levels={x}')
@pytest.mark.parametrize(
'connections',
['points', 'edges', 'faces'],
ids=lambda x: f'connections={x}',
)
def test_cell_neighbors_levels(grid: DataSet, i0, n_levels, connections):
cell_ids = grid.cell_neighbors_levels(i0, connections=connections, n_levels=n_levels)
if connections == 'faces' and grid.get_cell(i0).dimension != 3:
pytest.skip("Grid's cells does not contain faces")
if n_levels == 1:
# Consume generator and check length and consistency
# with underlying method
cell_ids = list(cell_ids)
assert len(cell_ids) == 1
cell_ids = cell_ids[0]
assert len(cell_ids) > 0
assert set(cell_ids) == set(grid.cell_neighbors(i0, connections=connections))
else:
assert len(list(cell_ids)) == n_levels
for ids in cell_ids:
assert isinstance(ids, list)
assert all(isinstance(id_, int) for id_ in ids)
assert all(0 <= id_ < grid.n_cells for id_ in ids)
assert len(ids) > 0
@pytest.mark.parametrize('grid', grids, ids=ids)
@pytest.mark.parametrize('i0', i0s)
@pytest.mark.parametrize('n_levels', [1, 3])
def test_point_neighbors_levels(grid: DataSet, i0, n_levels):
point_ids = grid.point_neighbors_levels(i0, n_levels=n_levels)
if n_levels == 1:
# Consume generator and check length and consistency
# with underlying method
point_ids = list(point_ids)
assert len(point_ids) == 1
point_ids = point_ids[0]
assert len(point_ids) > 0
assert set(point_ids) == set(grid.point_neighbors(i0))
else:
assert len(list(point_ids)) == n_levels
for ids in point_ids:
assert isinstance(ids, list)
assert all(isinstance(id_, int) for id_ in ids)
assert all(0 <= id_ < grid.n_points for id_ in ids)
assert len(ids) > 0
@pytest.fixture
def mesh():
return examples.load_globe()
def test_active_array_info_deprecated():
match = 'ActiveArrayInfo is deprecated. Use ActiveArrayInfoTuple instead.'
with pytest.warns(PyVistaDeprecationWarning, match=match):
pv.core.dataset.ActiveArrayInfo(association=pv.FieldAssociation.POINT, name='name')
if pv._version.version_info[:2] > (0, 48):
msg = 'Remove this deprecated class'
raise RuntimeError(msg)
|