File: test_objects.py

package info (click to toggle)
python-pyvista 0.46.4-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 176,968 kB
  • sloc: python: 94,346; sh: 216; makefile: 70
file content (232 lines) | stat: -rw-r--r-- 6,591 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
"""Tests for non-spatially referenced objects"""

from __future__ import annotations

from typing import TYPE_CHECKING

import numpy as np
import pytest
import vtk

import pyvista as pv
from pyvista import examples

if TYPE_CHECKING:
    from pytest_mock import MockerFixture

try:
    import pandas as pd
except ImportError:
    pd = None


def test_table_init(tmpdir):
    """Save some delimited text to a file and read it"""
    filename = str(tmpdir.mkdir('tmpdir').join('tmp.csv'))
    nr, nc = 50, 3
    arrays = np.random.default_rng().random((nr, nc))

    # Create from 2D array
    table = pv.Table(arrays)
    assert table.n_rows == nr
    assert table.n_columns == nc
    assert table.n_arrays == nc

    assert len(table.row_arrays) == nc
    for i in range(nc):
        assert np.allclose(arrays[:, i], table[i])

    with pytest.raises(ValueError):  # noqa: PT011
        pv.Table(np.random.default_rng().random((100, 2, 3)))

    # Create from 1D array
    table = pv.Table(arrays[:, 0])
    assert table.n_rows == nr
    assert table.n_columns == 1

    assert len(table.row_arrays) == 1
    assert np.allclose(arrays[:, 0], table[0])

    # create from dictionary
    array_dict = {}
    for i in range(nc):
        array_dict[f'foo{i}'] = arrays[:, i].copy()
    table = pv.Table(array_dict)
    assert table.n_rows == nr
    assert table.n_columns == nc

    assert len(table.row_arrays) == nc
    for i in range(nc):
        assert np.allclose(arrays[:, i], table[f'foo{i}'])

    dataset = examples.load_hexbeam()
    array_dict = dict(dataset.point_data)
    table = pv.Table(array_dict)
    assert table.n_rows == dataset.n_points
    assert table.n_columns == len(array_dict)

    assert len(table.row_arrays) == len(array_dict)
    for name in table.keys():
        assert np.allclose(dataset[name], table[name])

    # Create from vtkTable object
    h = '\t'.join([f'a{i}' for i in range(nc)])
    np.savetxt(filename, arrays, delimiter='\t', header=h, comments='')

    reader = vtk.vtkDelimitedTextReader()
    reader.SetFileName(filename)
    reader.DetectNumericColumnsOn()
    reader.SetFieldDelimiterCharacters('\t')
    reader.SetHaveHeaders(True)
    reader.Update()

    # Test init
    table = pv.Table(reader.GetOutput(), deep=True)
    assert isinstance(table, vtk.vtkTable)
    assert isinstance(table, pv.Table)

    table = pv.Table(reader.GetOutput(), deep=False)
    assert isinstance(table, vtk.vtkTable)
    assert isinstance(table, pv.Table)

    # Test wrap
    table = pv.wrap(reader.GetOutput())
    assert isinstance(table, vtk.vtkTable)
    assert isinstance(table, pv.Table)

    assert table.n_rows == nr
    assert table.n_columns == nc

    assert len(table.row_arrays) == nc
    for i in range(nc):
        assert np.allclose(arrays[:, i], table[i])

    with pytest.raises(TypeError):
        pv.Table('foo')


def test_table_row_arrays():
    nr, nc = 50, 3
    arrays = np.random.default_rng().random((nr, nc))
    table = pv.Table()
    for i in range(nc):
        table[f'foo{i}'] = arrays[:, i]
    assert table.n_columns == nc
    assert table.n_rows == nr
    for i in range(nc):
        assert np.allclose(table[f'foo{i}'], arrays[:, i])
    # Multi component
    table = pv.Table()
    table['multi'] = arrays
    assert table.n_columns == 1
    assert table.n_rows == nr
    assert np.allclose(table[0], arrays)
    assert np.allclose(table['multi'], arrays)
    del table['multi']
    assert table.n_columns == 0

    dataset = examples.load_hexbeam()
    array_dict = dataset.point_data
    # Test dict methods
    table = pv.Table()
    table.update(array_dict)
    assert table.n_rows == dataset.n_points
    assert table.n_columns == len(array_dict)

    assert len(table.row_arrays) == len(array_dict)
    for name in table.keys():
        assert np.allclose(dataset[name], table[name])

    for i, array in enumerate(table.values()):
        name = table.keys()[i]
        assert np.allclose(dataset[name], array)

    for name, array in table.items():
        assert np.allclose(dataset[name], array)

    n = table.n_arrays
    array = table.pop(table.keys()[0])
    assert isinstance(array, np.ndarray)
    assert table.n_arrays == n - 1
    array = table.get(table.keys()[0])
    assert isinstance(array, np.ndarray)
    assert table.n_arrays == n - 1

    del table[table.keys()[0]]
    assert table.n_arrays == n - 2


def test_table_row_np_bool():
    n = 50
    table = pv.Table()
    bool_arr = np.zeros(n, np.bool_)
    table.row_arrays['bool_arr'] = bool_arr
    bool_arr[:] = True
    assert table.row_arrays['bool_arr'].all()
    assert table._row_array('bool_arr').all()
    assert table._row_array('bool_arr').dtype == np.bool_


def test_table_row_uint8():
    n = 50
    table = pv.Table()
    arr = np.zeros(n, np.uint8)
    table.row_arrays['arr'] = arr
    arr[:] = np.arange(n)
    assert np.allclose(table.row_arrays['arr'], np.arange(n))


def test_table_repr():
    nr, nc = 50, 3
    arrays = np.random.default_rng().random((nr, nc))
    table = pv.Table(arrays)
    text = table._repr_html_()
    assert isinstance(text, str)
    text = table.__repr__()
    assert isinstance(text, str)
    text = table.__str__()
    assert isinstance(text, str)


@pytest.mark.skipif(pd is None, reason='Requires Pandas')
def test_table_pandas():
    nr, nc = 50, 3
    arrays = np.random.default_rng().random((nr, nc))
    df = pd.DataFrame()
    for i in range(nc):
        df[f'foo{i}'] = arrays[:, i].copy()
    table = pv.Table(df)
    assert table.n_rows == nr
    assert table.n_columns == nc
    for i in range(nc):
        assert np.allclose(table.row_arrays[f'foo{i}'], arrays[:, i])
    assert df.equals(table.to_pandas())


def test_table_iter():
    nr, nc = 50, 3
    arrays = np.random.default_rng().random((nr, nc))
    table = pv.Table(arrays)
    for i, array in enumerate(table):
        assert np.allclose(array, arrays[:, i])


@pytest.mark.parametrize('preference', ['row', None])
def test_get_data_range_table(preference):
    nr, nc = 50, 3
    arrays = np.random.default_rng().random((nr, nc))
    table = pv.Table(arrays)
    nanmin, nanmax = (
        table.get_data_range(preference=preference) if preference else table.get_data_range()
    )
    assert nanmin == np.nanmin(arrays[:, 0])
    assert nanmax == np.nanmax(arrays[:, 0])


def test_from_dict_raises(mocker: MockerFixture):
    m = mocker.MagicMock()
    m.ndim = 1
    with pytest.raises(
        ValueError, match='Dictionary must contain only NumPy arrays with maximum of 2D.'
    ):
        pv.Table(dict(a=m))