1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
|
"""
.. _volumetric_analysis_example:
Volumetric Analysis
~~~~~~~~~~~~~~~~~~~
Calculate mass properties such as the volume or area of datasets
"""
# sphinx_gallery_thumbnail_number = 4
from __future__ import annotations
import numpy as np
from pyvista import examples
# %%
# Computing mass properties such as the volume or area of datasets in PyVista
# is quite easy using the :func:`pyvista.DataObjectFilters.compute_cell_sizes`
# filter and the :attr:`pyvista.DataSet.volume` property on all PyVista meshes.
#
# Let's get started with a simple gridded mesh:
# Load a simple example mesh
dataset = examples.load_uniform()
dataset.set_active_scalars('Spatial Cell Data')
# %%
# We can then calculate the volume of every cell in the array using the
# ``.compute_cell_sizes`` filter which will add arrays to the cell data of the
# mesh core the volume and area by default.
# Compute volumes and areas
sized = dataset.compute_cell_sizes()
# Grab volumes for all cells in the mesh
cell_volumes = sized.cell_data['Volume']
# %%
# We can also compute the total volume of the mesh using the ``.volume``
# property:
# Compute the total volume of the mesh
volume = dataset.volume
# %%
# But what if we have a dataset that we threshold with two
# volumetric bodies left over in one dataset? Take this for example:
threshed = dataset.threshold_percent([0.15, 0.50], invert=True)
threshed.plot(show_grid=True, cpos=[-2, 5, 3])
# %%
# We could then assign a classification array for the two bodies, compute the
# cell sizes, then extract the volumes of each body. Note that there is a
# simpler implementation of this below in :ref:`split_vol`.
# Create a classifying array to ID each body
rng = dataset.get_data_range()
cval = ((rng[1] - rng[0]) * 0.20) + rng[0]
classifier = threshed.cell_data['Spatial Cell Data'] > cval
# Compute cell volumes
sizes = threshed.compute_cell_sizes()
volumes = sizes.cell_data['Volume']
# Split volumes based on classifier and get the volumes
idx = np.argwhere(classifier)
hvol = np.sum(volumes[idx])
idx = np.argwhere(~classifier)
lvol = np.sum(volumes[idx])
print(f'Low grade volume: {lvol}')
print(f'High grade volume: {hvol}')
print(f'Original volume: {dataset.volume}')
# %%
# Or better yet, you could simply extract the largest volume from your
# dataset directly by passing ``'largest'`` to the ``connectivity`` and
# specifying the scalar range of interest.
# Grab the largest connected volume within a scalar range
scalar_range = [0, 77] # Range corresponding to bottom 15% of values
largest = threshed.connectivity('largest', scalar_range=scalar_range)
# Get volume as numeric value
large_volume = largest.volume
# Display it
largest.plot(show_grid=True, cpos=[-2, 5, 3])
# %%
# -----
#
# .. _split_vol:
#
# Splitting Volumes
# +++++++++++++++++
#
# What if instead, we wanted to split all the different connected bodies /
# volumes in a dataset like the one above? We could use the
# :func:`pyvista.DataSetFilters.split_bodies` filter to extract all the
# different connected volumes in a dataset into blocks in a
# :class:`pyvista.MultiBlock` dataset. For example, lets split the thresholded
# volume in the example above:
# Load a simple example mesh
dataset = examples.load_uniform()
dataset.set_active_scalars('Spatial Cell Data')
threshed = dataset.threshold_percent([0.15, 0.50], invert=True)
bodies = threshed.split_bodies()
for i, body in enumerate(bodies):
print(f'Body {i} volume: {body.volume:.3f}')
# %%
bodies.plot(show_grid=True, multi_colors=True, cpos=[-2, 5, 3])
# %%
# -----
#
# A Real Dataset
# ++++++++++++++
#
# Here is a realistic training dataset of fluvial channels in the subsurface.
# This will threshold the channels from the dataset then separate each
# significantly large body and compute the volumes for each.
#
# Load up the data and threshold the channels:
data = examples.load_channels()
channels = data.threshold([0.9, 1.1])
# %%
# Now extract all the different bodies and compute their volumes:
bodies = channels.split_bodies()
# Now remove all bodies with a small volume
for key in bodies.keys():
b = bodies[key]
vol = b.volume
if vol < 1000.0:
del bodies[key]
continue
# Now lets add a volume array to all blocks
b.cell_data['TOTAL VOLUME'] = np.full(b.n_cells, vol)
# %%
# Print out the volumes for each body:
for i, body in enumerate(bodies):
print(f'Body {i:02d} volume: {body.volume:.3f}')
# %%
# And visualize all the different volumes:
bodies.plot(scalars='TOTAL VOLUME', cmap='viridis', show_grid=True)
# %%
# .. tags:: filter
|