File: openfoam_cooling.py

package info (click to toggle)
python-pyvista 0.46.5-6
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 178,808 kB
  • sloc: python: 94,599; sh: 216; makefile: 70
file content (196 lines) | stat: -rw-r--r-- 5,362 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
"""
.. _openfoam_cooling_example:

Electronics Cooling CFD
-----------------------
Plot an electronics cooling CFD example from OpenFoam hosted on the public
SimScale examples at `SimScale Project Library
<https://www.simscale.com/projects/>`_ and generated from the `Thermal
Management Tutorial: CHT Analysis of an Electronics Box
<https://www.simscale.com/docs/tutorials/thermal-management-cht-analysis-electronics-box/>`_.

This example dataset was read using the :class:`pyvista.POpenFOAMReader` and
post processed according to this `README.md
<https://github.com/pyvista/vtk-data/blob/master/Data/fvm/cooling_electronics/README.md>`_.

"""

from __future__ import annotations

import numpy as np

import pyvista as pv
from pyvista import examples

# %%
# Load the Datasets
# ~~~~~~~~~~~~~~~~~
# Download and load the datasets.
#
# The ``structure`` dataset consists of a box with several components, being
# cooled down by a fan, while the ``air`` dataset is the air, containing
# several scalar arrays including the velocity and temperature of the air.

structure, air = examples.download_electronics_cooling()
structure, air


# %%
# Plot the Electronics
# ~~~~~~~~~~~~~~~~~~~~
# Here we plot the temperature of the electronics using the ``"reds"`` colormap
# and improve the look of the plot using surface space ambient occlusion with
# :func:`enable_ssao() <pyvista.Plotter.enable_ssao>`.

pl = pv.Plotter()
pl.enable_ssao(radius=0.01)
pl.add_mesh(
    structure,
    scalars='T',
    smooth_shading=True,
    split_sharp_edges=True,
    cmap='reds',
    ambient=0.2,
)
pl.enable_anti_aliasing('fxaa')  # also try 'ssaa'
pl.show()


# %%
# Plot Air Velocity
# ~~~~~~~~~~~~~~~~~
# Let's plot the velocity of the air.
#
# Start by clipping the air dataset with :func:`clip()
# <pyvista.DataObjectFilters.clip>` and plotting it alongside the electronics.
#
# As you can see, the air enters from the front of the case (left) and is being
# pushed out of the "back" of the case via a fan.

# Clip the air in the XY plane
z_slice = air.clip('z', value=-0.005)

# Plot it
pl = pv.Plotter()
pl.enable_ssao(radius=0.01)
pl.add_mesh(z_slice, scalars='U', lighting=False, scalar_bar_args={'title': 'Velocity'})
pl.add_mesh(structure, color='w', smooth_shading=True, split_sharp_edges=True)
pl.camera_position = 'xy'
pl.camera.roll = 90
pl.enable_anti_aliasing('fxaa')
pl.show()


# %%
# Plot Air Temperature
# ~~~~~~~~~~~~~~~~~~~~
# Let's also plot the temperature of the air. This time, let's also plot the
# temperature of the components.

pl = pv.Plotter()
pl.enable_ssao(radius=0.01)
pl.add_mesh(
    z_slice,
    scalars='T',
    lighting=False,
    scalar_bar_args={'title': 'Temperature'},
    cmap='reds',
)
pl.add_mesh(
    structure,
    scalars='T',
    smooth_shading=True,
    split_sharp_edges=True,
    cmap='reds',
    show_scalar_bar=False,
)
pl.camera_position = 'xy'
pl.camera.roll = 90
pl.enable_anti_aliasing('fxaa')
pl.show()


# %%
# Plot Streamlines - Flow Velocity
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Now, let's plot the streamlines of this dataset so we can see how the air is
# flowing through the case.
#
# Generate streamlines using :func:`streamlines_from_source()
# <pyvista.DataSetFilters.streamlines_from_source>`.

# Have our streamlines start from the regular openings of the case.
points = []
for x in np.linspace(0.045, 0.105, 7, endpoint=True):
    points.extend([x, 0.2, z] for z in np.linspace(0, 0.03, 5))
points = pv.PointSet(points)
lines = air.streamlines_from_source(points, max_length=2.0)

# Plot
pl = pv.Plotter()
pl.enable_ssao(radius=0.01)
pl.add_mesh(
    lines,
    line_width=2,
    scalars='T',
    cmap='reds',
    scalar_bar_args={'title': 'Temperature'},
)
pl.add_mesh(
    structure,
    scalars='T',
    smooth_shading=True,
    split_sharp_edges=True,
    cmap='reds',
    show_scalar_bar=False,
)
pl.camera_position = 'xy'
pl.camera.roll = 90
pl.enable_anti_aliasing('fxaa')  # also try 'ssaa'
pl.show()


# %%
# Volumetric Plot - Visualize High Temperatures
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Show a 3D plot of areas of temperature.
#
# For this example, we will first sample the results from the
# :class:`pyvista.UnstructuredGrid` onto a :class:`pyvista.ImageData` using
# :func:`sample() <pyvista.DataObjectFilters.sample>`. This is so we can visualize
# it using :func:`add_volume() <pyvista.Plotter.add_volume>`


# sphinx_gallery_start_ignore
# volume rendering does not work in interactive plots currently
PYVISTA_GALLERY_FORCE_STATIC = True
# sphinx_gallery_end_ignore

bounds = np.array(air.bounds) * 1.2
origin = (bounds[0], bounds[2], bounds[4])
spacing = (0.002, 0.002, 0.002)
dimensions = (
    int((bounds[1] - bounds[0]) // spacing[0] + 2),
    int((bounds[3] - bounds[2]) // spacing[1] + 2),
    int((bounds[5] - bounds[4]) // spacing[2] + 2),
)
grid = pv.ImageData(dimensions=dimensions, spacing=spacing, origin=origin)
grid = grid.sample(air)

opac = np.zeros(20)
opac[1:] = np.geomspace(1e-7, 0.1, 19)
opac[-5:] = [0.05, 0.1, 0.5, 0.5, 0.5]

pl = pv.Plotter()
pl.add_mesh(structure, color='w', smooth_shading=True, split_sharp_edges=True)
vol = pl.add_volume(
    grid,
    scalars='T',
    opacity=opac,
    cmap='autumn_r',
    show_scalar_bar=True,
    scalar_bar_args={'title': 'Temperature'},
)
vol.prop.interpolation_type = 'linear'
pl.camera.zoom(2)
pl.show()