File: helpers.py

package info (click to toggle)
python-pyvista 0.46.5-6
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 178,808 kB
  • sloc: python: 94,599; sh: 216; makefile: 70
file content (398 lines) | stat: -rw-r--r-- 12,149 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
"""Core helper utilities."""

from __future__ import annotations

from collections import deque
from collections.abc import Sequence
from typing import TYPE_CHECKING
from typing import Any
from typing import cast
from typing import overload

import numpy as np
from typing_extensions import TypeIs

import pyvista
from pyvista._deprecate_positional_args import _deprecate_positional_args
from pyvista.core import _validation
from pyvista.core import _vtk_core as _vtk

from . import transformations
from .fileio import from_meshio
from .fileio import is_meshio_mesh

if TYPE_CHECKING:
    from meshio import Mesh
    from trimesh import Trimesh

    from pyvista import DataObject
    from pyvista import DataSet
    from pyvista import ExplicitStructuredGrid
    from pyvista import ImageData
    from pyvista import MultiBlock
    from pyvista import PartitionedDataSet
    from pyvista import PointSet
    from pyvista import PolyData
    from pyvista import RectilinearGrid
    from pyvista import StructuredGrid
    from pyvista import Table
    from pyvista import UnstructuredGrid
    from pyvista import pyvista_ndarray
    from pyvista.core._typing_core import NumpyArray
    from pyvista.core._typing_core import VectorLike
    from pyvista.wrappers import _WrappableVTKDataObjectType


# vtkDataSet overloads
# Overload types should match the mappings in the `pyvista._wrappers` dict
# Overloads should be ordered from narrow types (child class) to general types (parent class)
@overload
def wrap(dataset: _vtk.vtkPolyData) -> PolyData: ...  # type: ignore[overload-overlap]
@overload
def wrap(dataset: _vtk.vtkStructuredGrid) -> StructuredGrid: ...  # type: ignore[overload-overlap]
@overload
def wrap(dataset: _vtk.vtkExplicitStructuredGrid) -> ExplicitStructuredGrid: ...  # type: ignore[overload-overlap]
@overload
def wrap(dataset: _vtk.vtkUnstructuredGrid) -> UnstructuredGrid: ...  # type: ignore[overload-overlap]
@overload
def wrap(dataset: _vtk.vtkPointSet) -> PointSet: ...
@overload
def wrap(dataset: _vtk.vtkRectilinearGrid) -> RectilinearGrid: ...
@overload
def wrap(dataset: _vtk.vtkStructuredPoints) -> ImageData: ...
@overload
def wrap(dataset: _vtk.vtkImageData) -> ImageData: ...
@overload
def wrap(dataset: _vtk.vtkMultiBlockDataSet) -> MultiBlock: ...
@overload
def wrap(dataset: _vtk.vtkTable) -> Table: ...
@overload
def wrap(dataset: _vtk.vtkPartitionedDataSet) -> PartitionedDataSet: ...


# General catch-all cases
@overload
def wrap(dataset: _vtk.vtkDataSet) -> DataSet: ...
@overload
def wrap(dataset: _vtk.vtkDataObject) -> DataObject: ...


# Misc overloads
@overload
def wrap(dataset: NumpyArray[float]) -> PolyData | ImageData: ...
@overload
def wrap(dataset: _vtk.vtkAbstractArray) -> pyvista_ndarray: ...
@overload
def wrap(dataset: None) -> None: ...


# Third-party meshes
@overload
def wrap(dataset: Trimesh) -> PolyData: ...
# TODO: Support meshio overload
# @overload
# def wrap(dataset: Mesh) -> UnstructuredGrid: ...
def wrap(  # noqa: PLR0911
    dataset: _WrappableVTKDataObjectType
    | DataObject
    | Trimesh
    | Mesh
    | _vtk.vtkAbstractArray
    | NumpyArray[float]
    | None,
) -> DataObject | pyvista_ndarray | None:
    """Wrap any given VTK data object to its appropriate PyVista data object.

    Other formats that are supported include:

    * 2D :class:`numpy.ndarray` of XYZ vertices
    * 3D :class:`numpy.ndarray` representing a volume. Values will be scalars.
    * 3D :class:`trimesh.Trimesh` mesh.
    * 3D :class:`meshio.Mesh` mesh.

    .. versionchanged:: 0.38.0
        If the passed object is already a wrapped PyVista object, then
        this is no-op and will return that object directly. In previous
        versions of PyVista, this would perform a shallow copy.

    Parameters
    ----------
    dataset : :class:`numpy.ndarray` | :class:`trimesh.Trimesh` | vtk.DataSet
        Dataset to wrap.

    Returns
    -------
    pyvista.DataSet
        The PyVista wrapped dataset.

    See Also
    --------
    :ref:`wrap_trimesh_example`

    Examples
    --------
    Wrap a numpy array representing a random point cloud.

    >>> import numpy as np
    >>> import pyvista as pv
    >>> points = np.random.default_rng().random((10, 3))
    >>> cloud = pv.wrap(points)
    >>> cloud
    PolyData (...)
      N Cells:    10
      N Points:   10
      N Strips:   0
      X Bounds:   ...
      Y Bounds:   ...
      Z Bounds:   ...
      N Arrays:   0

    Wrap a VTK object.

    >>> import pyvista as pv
    >>> import vtk
    >>> points = vtk.vtkPoints()
    >>> p = [1.0, 2.0, 3.0]
    >>> vertices = vtk.vtkCellArray()
    >>> pid = points.InsertNextPoint(p)
    >>> _ = vertices.InsertNextCell(1)
    >>> _ = vertices.InsertCellPoint(pid)
    >>> point = vtk.vtkPolyData()
    >>> _ = point.SetPoints(points)
    >>> _ = point.SetVerts(vertices)
    >>> mesh = pv.wrap(point)
    >>> mesh
    PolyData (...)
      N Cells:    1
      N Points:   1
      N Strips:   0
      X Bounds:   1.000e+00, 1.000e+00
      Y Bounds:   2.000e+00, 2.000e+00
      Z Bounds:   3.000e+00, 3.000e+00
      N Arrays:   0

    Wrap a Trimesh object.

    >>> import trimesh
    >>> import pyvista as pv
    >>> points = [[0, 0, 0], [0, 0, 1], [0, 1, 0]]
    >>> faces = [[0, 1, 2]]
    >>> tmesh = trimesh.Trimesh(points, faces=faces, process=False)
    >>> mesh = pv.wrap(tmesh)
    >>> mesh  # doctest:+SKIP
    PolyData (0x7fc55ff27ad0)
      N Cells:  1
      N Points: 3
      X Bounds: 0.000e+00, 0.000e+00
      Y Bounds: 0.000e+00, 1.000e+00
      Z Bounds: 0.000e+00, 1.000e+00
      N Arrays: 0

    """
    # Return if None
    if dataset is None:
        return None

    if isinstance(dataset, tuple(pyvista._wrappers.values())):
        # Return object if it is already wrapped
        return cast('DataObject', dataset)

    # Check if dataset is a numpy array.  We do this first since
    # pyvista_ndarray contains a VTK type that we don't want to
    # directly wrap.
    if isinstance(dataset, (np.ndarray, pyvista.pyvista_ndarray)):
        if dataset.ndim == 1 and dataset.shape[0] == 3:
            return pyvista.PolyData(dataset)
        if dataset.ndim > 1 and dataset.ndim < 3 and dataset.shape[1] == 3:
            return pyvista.PolyData(dataset)
        elif dataset.ndim == 3:
            mesh = pyvista.ImageData(dimensions=dataset.shape)
            if isinstance(dataset, pyvista.pyvista_ndarray):
                # this gets rid of pesky VTK reference since we're raveling this
                dataset = np.asarray(dataset)
            mesh['values'] = dataset.ravel(order='F')
            mesh.active_scalars_name = 'values'
            return mesh
        else:
            msg = 'NumPy array could not be wrapped pyvista.'
            raise NotImplementedError(msg)

    # wrap VTK arrays as pyvista_ndarray
    if isinstance(dataset, _vtk.vtkDataArray):
        return pyvista.pyvista_ndarray(dataset)

    # Check if a dataset is a VTK type
    if hasattr(dataset, 'GetClassName'):
        key = dataset.GetClassName()
        try:
            return pyvista._wrappers[key](dataset)
        except KeyError:
            msg = f'VTK data type ({key}) is not currently supported by pyvista.'
            raise TypeError(msg)

    # wrap meshio
    if is_meshio_mesh(dataset):
        return from_meshio(dataset)

    # wrap trimesh
    if dataset.__class__.__name__ == 'Trimesh':
        # trimesh doesn't pad faces
        dataset = cast('Trimesh', dataset)
        polydata = pyvista.PolyData.from_regular_faces(
            np.asarray(dataset.vertices),
            faces=dataset.faces,
        )
        # If the Trimesh object has uv, pass them to the PolyData
        if hasattr(dataset.visual, 'uv') and dataset.visual.uv is not None:
            polydata.active_texture_coordinates = np.asarray(dataset.visual.uv)
        return polydata

    # otherwise, flag tell the user we can't wrap this object
    msg = f'Unable to wrap ({type(dataset)}) into a pyvista type.'
    raise NotImplementedError(msg)


def is_pyvista_dataset(obj: Any) -> TypeIs[pyvista.DataSet | pyvista.MultiBlock]:
    """Return ``True`` if the object is a PyVista wrapped dataset.

    Parameters
    ----------
    obj : Any
        Any object to test.

    Returns
    -------
    bool
        ``True`` when the object is a :class:`pyvista.DataSet`.

    """
    return isinstance(obj, (pyvista.DataSet, pyvista.MultiBlock))


def generate_plane(normal: VectorLike[float], origin: VectorLike[float]):
    """Return a :vtk:`vtkPlane`.

    Parameters
    ----------
    normal : sequence[float]
        Three item sequence representing the normal of the plane.

    origin : sequence[float]
        Three item sequence representing the origin of the plane.

    Returns
    -------
    :vtk:`vtkPlane`
        VTK plane.

    """
    plane = _vtk.vtkPlane()
    # NORMAL MUST HAVE MAGNITUDE OF 1
    normal_ = _validation.validate_array3(normal, dtype_out=float)
    normal_ = normal_ / np.linalg.norm(normal_)
    plane.SetNormal(*normal_)
    plane.SetOrigin(*origin)
    return plane


@_deprecate_positional_args(allowed=['points', 'angle'])
def axis_rotation(  # noqa: PLR0917
    points: NumpyArray[float],
    angle: float,
    inplace: bool = False,  # noqa: FBT001, FBT002
    deg: bool = True,  # noqa: FBT001, FBT002
    axis='z',
):
    """Rotate points by angle about an axis.

    Parameters
    ----------
    points : numpy.ndarray
        Array of points with shape ``(N, 3)``.

    angle : float
        Rotation angle.

    inplace : bool, default: False
        Updates points in-place while returning nothing.

    deg : bool, default: True
        If ``True``, the angle is interpreted as degrees instead of
        radians.

    axis : str, default: "z"
        Name of axis to rotate about. Valid options are ``'x'``, ``'y'``,
        and ``'z'``.

    Returns
    -------
    numpy.ndarray
        Rotated points.

    Examples
    --------
    Rotate a set of points by 90 degrees about the x-axis in-place.

    >>> import numpy as np
    >>> import pyvista as pv
    >>> from pyvista import examples
    >>> points = examples.load_airplane().points
    >>> points_orig = points.copy()
    >>> pv.axis_rotation(points, 90, axis='x', deg=True, inplace=True)
    >>> assert np.all(np.isclose(points[:, 0], points_orig[:, 0]))
    >>> assert np.all(np.isclose(points[:, 1], -points_orig[:, 2]))
    >>> assert np.all(np.isclose(points[:, 2], points_orig[:, 1]))

    """
    axis = axis.lower()
    axis_to_vec = {'x': (1, 0, 0), 'y': (0, 1, 0), 'z': (0, 0, 1)}

    if axis not in axis_to_vec:
        msg = 'Invalid axis. Must be either "x", "y", or "z"'
        raise ValueError(msg)

    rot_mat = transformations.axis_angle_rotation(axis_to_vec[axis], angle, deg=deg)
    return transformations.apply_transformation_to_points(rot_mat, points, inplace=inplace)


def is_inside_bounds(point, bounds):
    """Check if a point is inside a set of bounds.

    This is implemented through recursion so that this is N-dimensional.

    Parameters
    ----------
    point : sequence[float]
        Three item cartesian point (i.e. ``[x, y, z]``).

    bounds : sequence[float]
        Six item bounds in the form of ``(x_min, x_max, y_min, y_max, z_min, z_max)``.

    Returns
    -------
    bool
        ``True`` when ``point`` is inside ``bounds``.

    """
    if isinstance(point, (int, float)):
        point = [point]
    if isinstance(point, (np.ndarray, Sequence)) and not isinstance(
        point,
        deque,
    ):
        if len(bounds) < 2 * len(point) or len(bounds) % 2 != 0:
            msg = 'Bounds mismatch point dimensionality'
            raise ValueError(msg)
        point = deque(point)
        bounds = deque(bounds)
        return is_inside_bounds(point, bounds)
    if not isinstance(point, deque):
        msg = f'Unknown input data type ({type(point)}).'
        raise TypeError(msg)
    if len(point) < 1:
        return True
    p = point.popleft()
    lower, upper = bounds.popleft(), bounds.popleft()
    if lower <= p <= upper:
        return is_inside_bounds(point, bounds)
    return False