File: demos.py

package info (click to toggle)
python-pyvista 0.46.5-8
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 178,808 kB
  • sloc: python: 94,599; sh: 218; makefile: 70
file content (575 lines) | stat: -rw-r--r-- 16,073 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
"""Demos to show off the functionality of PyVista."""

from __future__ import annotations

import time

import numpy as np

import pyvista
from pyvista import examples
from pyvista._deprecate_positional_args import _deprecate_positional_args

from .logo import text_3d


def glyphs(grid_sz=3):
    """Create several parametric supertoroids using VTK's glyph table functionality.

    Parameters
    ----------
    grid_sz : int, default: 3
        Create ``grid_sz x grid_sz`` supertoroids.

    Returns
    -------
    pyvista.PolyData
        Mesh of supertoroids.

    See Also
    --------
    plot_glyphs

    Examples
    --------
    >>> from pyvista import demos
    >>> mesh = demos.glyphs()
    >>> mesh.plot()

    """
    # Seed rng for reproducible plots
    rng = np.random.default_rng(seed=0)

    n = 10
    values = np.arange(n)  # values for scalars to look up glyphs by

    # taken from:
    params = rng.uniform(0.5, 2, size=(n, 2))  # (n1, n2) parameters for the toroids

    geoms = [pyvista.ParametricSuperToroid(n1=n1, n2=n2) for n1, n2 in params]

    # get dataset where to put glyphs
    grid_sz = float(grid_sz)
    x, y, z = np.mgrid[:grid_sz, :grid_sz, :grid_sz]
    mesh = pyvista.StructuredGrid(x, y, z)

    # add random scalars
    rng_int = rng.integers(0, n, size=x.size)
    mesh.point_data['scalars'] = rng_int

    # construct the glyphs on top of the mesh; don't scale by scalars now
    return mesh.glyph(
        geom=geoms,
        indices=values,
        scale=False,
        factor=0.3,
        rng=(0, n - 1),
        orient=False,
    )


def plot_glyphs(grid_sz=3, **kwargs):
    """Plot several parametric supertoroids using VTK's glyph table functionality.

    Parameters
    ----------
    grid_sz : int, default: 3
        Create ``grid_sz x grid_sz`` supertoroids.

    **kwargs : dict, optional
        All additional keyword arguments will be passed to
        :func:`pyvista.Plotter.add_mesh`.

    Returns
    -------
    list | np.ndarray | ipywidgets.Widget
        See :func:`show <pyvista.Plotter.show>`.

    Examples
    --------
    >>> from pyvista import demos
    >>> demos.plot_glyphs()

    """
    # construct the glyphs on top of the mesh; don't scale by scalars now
    mesh = glyphs(grid_sz)

    kwargs.setdefault('specular', 1)
    kwargs.setdefault('specular_power', 15)
    kwargs.setdefault('smooth_shading', True)

    # create plotter and add our glyphs with some nontrivial lighting
    plotter = pyvista.Plotter()
    plotter.add_mesh(mesh, show_scalar_bar=False, **kwargs)
    return plotter.show()


def orientation_cube():
    """Return a dictionary containing the meshes composing an orientation cube.

    Returns
    -------
    dict
        Dictionary containing the meshes composing an orientation cube.

    Examples
    --------
    Load the cube mesh and plot it

    >>> import pyvista as pv
    >>> from pyvista import demos
    >>> ocube = demos.orientation_cube()
    >>> pl = pv.Plotter()
    >>> _ = pl.add_mesh(ocube['cube'], show_edges=True)
    >>> _ = pl.add_mesh(ocube['x_p'], color='blue')
    >>> _ = pl.add_mesh(ocube['x_n'], color='blue')
    >>> _ = pl.add_mesh(ocube['y_p'], color='green')
    >>> _ = pl.add_mesh(ocube['y_n'], color='green')
    >>> _ = pl.add_mesh(ocube['z_p'], color='red')
    >>> _ = pl.add_mesh(ocube['z_n'], color='red')
    >>> pl.show_axes()
    >>> pl.show()

    """
    cube = pyvista.Cube()

    x_p = text_3d('X+', depth=0.2)
    x_p.points *= 0.45
    x_p.rotate_y(90, inplace=True)
    x_p.rotate_x(90, inplace=True)
    x_p.translate(-np.array(x_p.center), inplace=True)
    x_p.translate([0.5, 0, 0], inplace=True)
    # x_p.point_data['mesh'] = 1

    x_n = text_3d('X-', depth=0.2)
    x_n.points *= 0.45
    x_n.rotate_y(90, inplace=True)
    x_n.rotate_x(90, inplace=True)
    x_n.rotate_z(180, inplace=True)
    x_n.translate(-np.array(x_n.center), inplace=True)
    x_n.translate([-0.5, 0, 0], inplace=True)
    # x_n.point_data['mesh'] = 2

    y_p = text_3d('Y+', depth=0.2)
    y_p.points *= 0.45
    y_p.rotate_x(90, inplace=True)
    y_p.rotate_z(180, inplace=True)
    y_p.translate(-np.array(y_p.center), inplace=True)
    y_p.translate([0, 0.5, 0], inplace=True)
    # y_p.point_data['mesh'] = 3

    y_n = text_3d('Y-', depth=0.2)
    y_n.points *= 0.45
    y_n.rotate_x(90, inplace=True)
    y_n.translate(-np.array(y_n.center), inplace=True)
    y_n.translate([0, -0.5, 0], inplace=True)
    # y_n.point_data['mesh'] = 4

    z_p = text_3d('Z+', depth=0.2)
    z_p.points *= 0.45
    z_p.rotate_z(90, inplace=True)
    z_p.translate(-np.array(z_p.center), inplace=True)
    z_p.translate([0, 0, 0.5], inplace=True)
    # z_p.point_data['mesh'] = 5

    z_n = text_3d('Z-', depth=0.2)
    z_n.points *= 0.45
    z_n.rotate_x(180, inplace=True)
    z_n.translate(-np.array(z_n.center), inplace=True)
    z_n.translate([0, 0, -0.5], inplace=True)

    return {
        'cube': cube,
        'x_p': x_p,
        'x_n': x_n,
        'y_p': y_p,
        'y_n': y_n,
        'z_p': z_p,
        'z_n': z_n,
    }


def orientation_plotter():
    """Return a plotter containing the orientation cube.

    Returns
    -------
    pyvista.Plotter
        Orientation cube plotter.

    Examples
    --------
    >>> from pyvista import demos
    >>> plotter = demos.orientation_plotter()
    >>> plotter.show()

    """
    ocube = orientation_cube()
    pl = pyvista.Plotter()
    pl.add_mesh(ocube['cube'], show_edges=True)
    pl.add_mesh(ocube['x_p'], color='blue')
    pl.add_mesh(ocube['x_n'], color='blue')
    pl.add_mesh(ocube['y_p'], color='green')
    pl.add_mesh(ocube['y_n'], color='green')
    pl.add_mesh(ocube['z_p'], color='red')
    pl.add_mesh(ocube['z_n'], color='red')
    pl.show_axes()  # type: ignore[call-arg]
    return pl


@_deprecate_positional_args
def plot_wave(fps=30, frequency=1, wavetime=3, notebook=None):  # noqa: PLR0917
    """Plot a 3D moving wave in a render window.

    Parameters
    ----------
    fps : int, default: 30
        Maximum frames per second to display.

    frequency : float, default: 1.0
        Wave cycles per second (Hz).

    wavetime : float, default: 3.0
        The desired total display time in seconds.

    notebook : bool, optional
        When ``True``, the resulting plot is placed inline a jupyter
        notebook.  Assumes a jupyter console is active.

    Returns
    -------
    numpy.ndarray
        Position of points at last frame.

    Examples
    --------
    >>> from pyvista import demos
    >>> out = demos.plot_wave()

    """
    # camera position
    cpos = [
        (6.879481857604187, -32.143727535933195, 23.05622921691103),
        (-0.2336056403734026, -0.6960083534590372, -0.7226721553894022),
        (-0.008900669873416645, 0.6018246347860926, 0.7985786667826725),
    ]

    # Make data
    X = np.arange(-10, 10, 0.25)
    Y = np.arange(-10, 10, 0.25)
    X, Y = np.meshgrid(X, Y)
    R = np.sqrt(X**2 + Y**2)
    Z = np.sin(R)

    # Create and plot structured grid
    sgrid = pyvista.StructuredGrid(X, Y, Z)

    mesh = sgrid.extract_surface()
    mesh['Height'] = Z.ravel()

    # Start a plotter object and set the scalars to the Z height
    plotter = pyvista.Plotter(notebook=notebook)
    plotter.add_mesh(mesh, scalars='Height', show_scalar_bar=False, smooth_shading=True)
    plotter.camera_position = cpos
    plotter.show(
        title='Wave Example',
        window_size=[800, 600],
        auto_close=False,
        interactive_update=True,
    )

    # Update Z and display a frame for each updated position
    tdelay = 1.0 / fps
    tlast = time.time()
    tstart = time.time()
    while time.time() - tstart < wavetime:
        # get phase from start
        telap = time.time() - tstart
        phase = telap * 2 * np.pi * frequency
        Z = np.sin(R + phase)
        mesh.points[:, -1] = Z.ravel()
        mesh['Height'] = Z.ravel()

        mesh.compute_normals(inplace=True)

        # Render and get time to render
        plotter.update()

        # time delay
        tpast = time.time() - tlast
        if tpast < tdelay and tpast >= 0 and not plotter.off_screen:
            time.sleep(tdelay - tpast)

        # store when rendering complete
        tlast = time.time()

    # Close movie and delete object
    plotter.close()
    return mesh.points


def plot_ants_plane(notebook=None):
    """Plot two ants and airplane.

    Demonstrate how to create a plot class to plot multiple meshes while
    adding scalars and text.

    This example plots the following:

    .. code-block:: python

       >>> import pyvista as pv
       >>> from pyvista import examples

       Load and shrink airplane

       >>> airplane = examples.load_airplane()
       >>> airplane.points /= 10

       Rotate and translate ant so it is on the plane.

       >>> ant = examples.load_ant()
       >>> _ = ant.rotate_x(90, inplace=True)
       >>> _ = ant.translate([90, 60, 15], inplace=True)

       Make a copy and add another ant.

       >>> ant_copy = ant.translate([30, 0, -10], inplace=False)

       Create plotting object.

       >>> plotter = pv.Plotter()
       >>> _ = plotter.add_mesh(ant, color='r')
       >>> _ = plotter.add_mesh(ant_copy, color='b')

       Add airplane mesh and make the color equal to the Y position.

       >>> plane_scalars = airplane.points[:, 1]
       >>> _ = plotter.add_mesh(
       ...     airplane,
       ...     scalars=plane_scalars,
       ...     scalar_bar_args={'title': 'Plane Y Location'},
       ... )
       >>> _ = plotter.add_text('Ants and Plane Example')
       >>> plotter.show()

    Parameters
    ----------
    notebook : bool, optional
        When ``True``, the resulting plot is placed inline a jupyter
        notebook.  Assumes a jupyter console is active.

    Examples
    --------
    >>> from pyvista import demos
    >>> demos.plot_ants_plane()

    """
    # load and shrink airplane
    airplane = examples.load_airplane()
    airplane.points /= 10

    # rotate and translate ant so it is on the plane
    ant = examples.load_ant()
    ant.rotate_x(90, inplace=True)
    ant.translate([90, 60, 15], inplace=True)

    # Make a copy and add another ant
    ant_copy = ant.copy()
    ant_copy.translate([30, 0, -10], inplace=True)

    # Create plotting object
    plotter = pyvista.Plotter(notebook=notebook)
    plotter.add_mesh(ant, color='r')
    plotter.add_mesh(ant_copy, color='b')

    # Add airplane mesh and make the color equal to the Y position
    plane_scalars = airplane.points[:, 1]
    plotter.add_mesh(
        airplane,
        scalars=plane_scalars,
        scalar_bar_args={'title': 'Plane Y\nLocation'},
    )
    plotter.add_text('Ants and Plane Example')
    plotter.show()


def plot_beam(notebook=None):
    """Plot a beam with displacement.

    Parameters
    ----------
    notebook : bool, optional
        When ``True``, the resulting plot is placed inline a jupyter
        notebook.  Assumes a jupyter console is active.

    Examples
    --------
    >>> from pyvista import demos
    >>> demos.plot_beam()

    """
    # Create fiticious displacements as a function of Z location
    grid = examples.load_hexbeam()
    d = grid.points[:, 2] ** 3 / 250
    grid.points[:, 1] += d

    # Camera position
    cpos = [
        (11.915126303095157, 6.11392754955802, 3.6124956735471914),
        (0.0, 0.375, 2.0),
        (-0.42546442225230097, 0.9024244135964158, -0.06789847673314177),
    ]

    cmap = 'bwr'

    # plot this displaced beam
    plotter = pyvista.Plotter(notebook=notebook)
    plotter.add_mesh(
        grid,
        scalars=d,
        scalar_bar_args={'title': 'Y Displacement'},
        rng=[-d.max(), d.max()],
        cmap=cmap,  # type: ignore[arg-type]
    )
    plotter.camera_position = cpos
    plotter.add_text('Static Beam Example')
    plotter.show()


def plot_datasets(dataset_type=None):
    """Plot the pyvista dataset types.

    This demo plots the following PyVista dataset types:

    * :class:`pyvista.PolyData`
    * :class:`pyvista.UnstructuredGrid`
    * :class:`pyvista.ImageData`
    * :class:`pyvista.RectilinearGrid`
    * :class:`pyvista.StructuredGrid`

    Parameters
    ----------
    dataset_type : str, optional
        If set, plot just that dataset.  Must be one of the following:

        * ``'PolyData'``
        * ``'UnstructuredGrid'``
        * ``'ImageData'``
        * ``'RectilinearGrid'``
        * ``'StructuredGrid'``

    Examples
    --------
    >>> from pyvista import demos
    >>> demos.plot_datasets()

    """
    allowable_types = [
        'PolyData',
        'UnstructuredGrid',
        'ImageData',
        'RectilinearGrid',
        'StructuredGrid',
    ]
    if dataset_type is not None and dataset_type not in allowable_types:
        msg = (
            f'Invalid dataset_type {dataset_type}.  '
            f'Must be one of the following: {allowable_types}'
        )
        raise ValueError(msg)

    ###########################################################################
    # uniform grid
    image = pyvista.ImageData(dimensions=(6, 6, 1))
    image.spacing = (3, 2, 1)

    ###########################################################################
    # RectilinearGrid
    xrng = np.array([0, 0.3, 1, 4, 5, 6, 6.2, 6.6])
    yrng = np.linspace(-2, 2, 5)
    zrng = [1]
    rec_grid = pyvista.RectilinearGrid(xrng, yrng, zrng)

    ###########################################################################
    # structured grid
    ang = np.linspace(0, np.pi / 2, 10)
    r = np.linspace(6, 10, 8)
    z = [0]
    ang, r, z = np.meshgrid(ang, r, z)  # type: ignore[assignment]

    x = r * np.sin(ang)
    y = r * np.cos(ang)

    struct_grid = pyvista.StructuredGrid(x[::-1], y[::-1], z[::-1])

    ###########################################################################
    # polydata
    points = pyvista.PolyData([[1.0, 2.0, 2.0], [2.0, 2.0, 2.0]])

    line = pyvista.Line()
    line.points += np.array((2, 0, 0))
    line.clear_data()

    tri = pyvista.Triangle()
    tri.points += np.array([0, 1, 0])
    circ = pyvista.Circle()
    circ.points += np.array([1.5, 1.5, 0])

    poly = tri + circ

    ###########################################################################
    # unstructuredgrid
    pyr = pyvista.Pyramid()
    pyr.points *= 0.7
    cube = pyvista.Cube(center=(2, 0, 0))
    ugrid = circ + pyr + cube + tri

    pl = pyvista.Plotter() if dataset_type is not None else pyvista.Plotter(shape='3/2')

    # polydata
    if dataset_type is None:
        pl.subplot(0)
        pl.add_text('4. PolyData')
    if dataset_type in [None, 'PolyData']:
        pl.add_points(points, point_size=20)
        pl.add_mesh(line, line_width=5)
        pl.add_mesh(poly)
        pl.add_mesh(poly.extract_all_edges(), line_width=2, color='k')

    # unstructuredgrid
    if dataset_type is None:
        pl.subplot(1)
        pl.add_text('5. UnstructuredGrid')
    if dataset_type in [None, 'UnstructuredGrid']:
        pl.add_mesh(ugrid)
        pl.add_mesh(ugrid.extract_all_edges(), line_width=2, color='k')

    # ImageData
    if dataset_type is None:
        pl.subplot(2)
        pl.add_text('1. ImageData')
    if dataset_type in [None, 'ImageData']:
        pl.add_mesh(image)
        pl.add_mesh(image.extract_all_edges(), color='k', style='wireframe', line_width=2)
        pl.camera_position = 'xy'

    # RectilinearGrid
    if dataset_type is None:
        pl.subplot(3)
        pl.add_text('2. RectilinearGrid')
    if dataset_type in [None, 'RectilinearGrid']:
        pl.add_mesh(rec_grid)
        pl.add_mesh(rec_grid.extract_all_edges(), color='k', style='wireframe', line_width=2)
        pl.camera_position = 'xy'

    # StructuredGrid
    if dataset_type is None:
        pl.subplot(4)
        pl.add_text('3. StructuredGrid')
    if dataset_type in [None, 'StructuredGrid']:
        pl.add_mesh(struct_grid)
        pl.add_mesh(struct_grid.extract_all_edges(), color='k', style='wireframe', line_width=2)
        pl.camera_position = 'xy'

    pl.show()