1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
|
/*============================================================================
WCSLIB 4.8 - an implementation of the FITS WCS standard.
Copyright (C) 1995-2011, Mark Calabretta
This file is part of WCSLIB.
WCSLIB is free software: you can redistribute it and/or modify it under the
terms of the GNU Lesser General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your option)
any later version.
WCSLIB is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details.
You should have received a copy of the GNU Lesser General Public License
along with WCSLIB. If not, see <http://www.gnu.org/licenses/>.
Correspondence concerning WCSLIB may be directed to:
Internet email: mcalabre@atnf.csiro.au
Postal address: Dr. Mark Calabretta
Australia Telescope National Facility, CSIRO
PO Box 76
Epping NSW 1710
AUSTRALIA
Author: Mark Calabretta, Australia Telescope National Facility
http://www.atnf.csiro.au/~mcalabre/index.html
$Id: sph.c,v 4.8.1.1 2011/08/15 08:07:06 cal103 Exp cal103 $
*===========================================================================*/
#include <math.h>
#include "wcstrig.h"
#include "sph.h"
#define copysign(X, Y) ((Y) < 0.0 ? -fabs(X) : fabs(X))
#define tol 1.0e-5
/*--------------------------------------------------------------------------*/
int sphx2s(
const double eul[5],
int nphi,
int ntheta,
int spt,
int sll,
const double phi[],
const double theta[],
double lng[],
double lat[])
{
int mphi, mtheta, rowlen, rowoff;
double cosphi, costhe, costhe3, costhe4, dlng, dphi, sinphi, sinthe,
sinthe3, sinthe4, x, y, z;
register int iphi, itheta;
register const double *phip, *thetap;
register double *latp, *lngp;
if (ntheta > 0) {
mphi = nphi;
mtheta = ntheta;
} else {
mphi = 1;
mtheta = 1;
ntheta = nphi;
}
/* Check for a simple change in origin of longitude. */
if (eul[4] == 0.0) {
if (eul[1] == 0.0) {
dlng = fmod(eul[0] + 180.0 - eul[2], 360.0);
lngp = lng;
latp = lat;
phip = phi;
thetap = theta;
for (itheta = 0; itheta < ntheta; itheta++) {
for (iphi = 0; iphi < mphi; iphi++) {
*lngp = *phip + dlng;
*latp = *thetap;
/* Normalize the celestial longitude. */
if (eul[0] >= 0.0) {
if (*lngp < 0.0) *lngp += 360.0;
} else {
if (*lngp > 0.0) *lngp -= 360.0;
}
if (*lngp > 360.0) {
*lngp -= 360.0;
} else if (*lngp < -360.0) {
*lngp += 360.0;
}
lngp += sll;
latp += sll;
phip += spt;
thetap += spt;
}
}
} else {
dlng = fmod(eul[0] + eul[2], 360.0);
lngp = lng;
latp = lat;
phip = phi;
thetap = theta;
for (itheta = 0; itheta < ntheta; itheta++) {
for (iphi = 0; iphi < mphi; iphi++) {
*lngp = dlng - *phip;
*latp = -(*thetap);
/* Normalize the celestial longitude. */
if (eul[0] >= 0.0) {
if (*lngp < 0.0) *lngp += 360.0;
} else {
if (*lngp > 0.0) *lngp -= 360.0;
}
if (*lngp > 360.0) {
*lngp -= 360.0;
} else if (*lngp < -360.0) {
*lngp += 360.0;
}
lngp += sll;
latp += sll;
phip += spt;
thetap += spt;
}
}
}
return 0;
}
/* Do phi dependency. */
phip = phi;
rowoff = 0;
rowlen = nphi*sll;
for (iphi = 0; iphi < nphi; iphi++, rowoff += sll, phip += spt) {
dphi = *phip - eul[2];
lngp = lng + rowoff;
for (itheta = 0; itheta < mtheta; itheta++) {
*lngp = dphi;
lngp += rowlen;
}
}
/* Do theta dependency. */
thetap = theta;
lngp = lng;
latp = lat;
for (itheta = 0; itheta < ntheta; itheta++, thetap += spt) {
sincosd(*thetap, &sinthe, &costhe);
costhe3 = costhe*eul[3];
costhe4 = costhe*eul[4];
sinthe3 = sinthe*eul[3];
sinthe4 = sinthe*eul[4];
for (iphi = 0; iphi < mphi; iphi++, lngp += sll, latp += sll) {
dphi = *lngp;
sincosd(dphi, &sinphi, &cosphi);
/* Compute the celestial longitude. */
x = sinthe4 - costhe3*cosphi;
if (fabs(x) < tol) {
/* Rearrange formula to reduce roundoff errors. */
x = -cosd(*thetap + eul[1]) + costhe3*(1.0 - cosphi);
}
y = -costhe*sinphi;
if (x != 0.0 || y != 0.0) {
dlng = atan2d(y, x);
} else {
/* Change of origin of longitude. */
if (eul[1] < 90.0) {
dlng = dphi + 180.0;
} else {
dlng = -dphi;
}
}
*lngp = eul[0] + dlng;
/* Normalize the celestial longitude. */
if (eul[0] >= 0.0) {
if (*lngp < 0.0) *lngp += 360.0;
} else {
if (*lngp > 0.0) *lngp -= 360.0;
}
if (*lngp > 360.0) {
*lngp -= 360.0;
} else if (*lngp < -360.0) {
*lngp += 360.0;
}
/* Compute the celestial latitude. */
if (fmod(dphi,180.0) == 0.0) {
*latp = *thetap + cosphi*eul[1];
if (*latp > 90.0) *latp = 180.0 - *latp;
if (*latp < -90.0) *latp = -180.0 - *latp;
} else {
z = sinthe3 + costhe4*cosphi;
if (fabs(z) > 0.99) {
/* Use an alternative formula for greater accuracy. */
*latp = copysign(acosd(sqrt(x*x+y*y)), z);
} else {
*latp = asind(z);
}
}
}
}
return 0;
}
/*--------------------------------------------------------------------------*/
int sphs2x(
const double eul[5],
int nlng,
int nlat,
int sll,
int spt,
const double lng[],
const double lat[],
double phi[],
double theta[])
{
int mlat, mlng, rowlen, rowoff;
double coslat, coslat3, coslat4, coslng, dlng, dphi, sinlat, sinlat3,
sinlat4, sinlng, x, y, z;
register int ilat, ilng;
register const double *latp, *lngp;
register double *phip, *thetap;
if (nlat > 0) {
mlng = nlng;
mlat = nlat;
} else {
mlng = 1;
mlat = 1;
nlat = nlng;
}
/* Check for a simple change in origin of longitude. */
if (eul[4] == 0.0) {
if (eul[1] == 0.0) {
dphi = fmod(eul[2] - 180.0 - eul[0], 360.0);
lngp = lng;
latp = lat;
phip = phi;
thetap = theta;
for (ilat = 0; ilat < nlat; ilat++) {
for (ilng = 0; ilng < mlng; ilng++) {
*phip = fmod(*lngp + dphi, 360.0);
*thetap = *latp;
/* Normalize the native longitude. */
if (*phip > 180.0) {
*phip -= 360.0;
} else if (*phip < -180.0) {
*phip += 360.0;
}
phip += spt;
thetap += spt;
lngp += sll;
latp += sll;
}
}
} else {
dphi = fmod(eul[2] + eul[0], 360.0);
lngp = lng;
latp = lat;
phip = phi;
thetap = theta;
for (ilat = 0; ilat < nlat; ilat++) {
for (ilng = 0; ilng < mlng; ilng++) {
*phip = fmod(dphi - *lngp, 360.0);
*thetap = -(*latp);
/* Normalize the native longitude. */
if (*phip > 180.0) {
*phip -= 360.0;
} else if (*phip < -180.0) {
*phip += 360.0;
}
phip += spt;
thetap += spt;
lngp += sll;
latp += sll;
}
}
}
return 0;
}
/* Do lng dependency. */
lngp = lng;
rowoff = 0;
rowlen = nlng*spt;
for (ilng = 0; ilng < nlng; ilng++, rowoff += spt, lngp += sll) {
dlng = *lngp - eul[0];
phip = phi + rowoff;
thetap = theta;
for (ilat = 0; ilat < mlat; ilat++) {
*phip = dlng;
phip += rowlen;
}
}
/* Do lat dependency. */
latp = lat;
phip = phi;
thetap = theta;
for (ilat = 0; ilat < nlat; ilat++, latp += sll) {
sincosd(*latp, &sinlat, &coslat);
coslat3 = coslat*eul[3];
coslat4 = coslat*eul[4];
sinlat3 = sinlat*eul[3];
sinlat4 = sinlat*eul[4];
for (ilng = 0; ilng < mlng; ilng++, phip += spt, thetap += spt) {
dlng = *phip;
sincosd(dlng, &sinlng, &coslng);
/* Compute the native longitude. */
x = sinlat4 - coslat3*coslng;
if (fabs(x) < tol) {
/* Rearrange formula to reduce roundoff errors. */
x = -cosd(*latp+eul[1]) + coslat3*(1.0 - coslng);
}
y = -coslat*sinlng;
if (x != 0.0 || y != 0.0) {
dphi = atan2d(y, x);
} else {
/* Change of origin of longitude. */
if (eul[1] < 90.0) {
dphi = dlng - 180.0;
} else {
dphi = -dlng;
}
}
*phip = fmod(eul[2] + dphi, 360.0);
/* Normalize the native longitude. */
if (*phip > 180.0) {
*phip -= 360.0;
} else if (*phip < -180.0) {
*phip += 360.0;
}
/* Compute the native latitude. */
if (fmod(dlng,180.0) == 0.0) {
*thetap = *latp + coslng*eul[1];
if (*thetap > 90.0) *thetap = 180.0 - *thetap;
if (*thetap < -90.0) *thetap = -180.0 - *thetap;
} else {
z = sinlat3 + coslat4*coslng;
if (fabs(z) > 0.99) {
/* Use an alternative formula for greater accuracy. */
*thetap = copysign(acosd(sqrt(x*x+y*y)), z);
} else {
*thetap = asind(z);
}
}
}
}
return 0;
}
/*--------------------------------------------------------------------------*/
int sphdpa(
int nfield,
double lng0,
double lat0,
const double lng[],
const double lat[],
double dist[],
double pa[])
{
int i;
double eul[5];
/* Set the Euler angles for the coordinate transformation. */
eul[0] = lng0;
eul[1] = 90.0 - lat0;
eul[2] = 0.0;
eul[3] = cosd(eul[1]);
eul[4] = sind(eul[1]);
/* Transform field points to the new system. */
sphs2x(eul, nfield, 0, 1, 1, lng, lat, pa, dist);
for (i = 0; i < nfield; i++) {
/* Angular distance is obtained from latitude in the new frame. */
dist[i] = 90.0 - dist[i];
/* Position angle is obtained from longitude in the new frame. */
pa[i] = -pa[i];
if (pa[i] < -180.0) pa[i] += 360.0;
}
return 0;
}
/*--------------------------------------------------------------------------*/
int sphpad(
int nfield,
double lng0,
double lat0,
const double dist[],
const double pa[],
double lng[],
double lat[])
{
int i;
double eul[5];
/* Set the Euler angles for the coordinate transformation. */
eul[0] = lng0;
eul[1] = 90.0 - lat0;
eul[2] = 0.0;
eul[3] = cosd(eul[1]);
eul[4] = sind(eul[1]);
for (i = 0; i < nfield; i++) {
/* Latitude in the new frame is obtained from angular distance. */
lat[i] = 90.0 - dist[i];
/* Longitude in the new frame is obtained from position angle. */
lng[i] = -pa[i];
}
/* Transform field points to the old system. */
sphx2s(eul, nfield, 0, 1, 1, lng, lat, lng, lat);
return 0;
}
|