1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html><head><meta http-equiv="Content-Type" content="text/html;charset=UTF-8">
<title>WCSLIB 4.8.2: sph.h File Reference</title>
<link href="doxygen.css" rel="stylesheet" type="text/css">
<link href="tabs.css" rel="stylesheet" type="text/css">
</head><body>
<!-- Generated by Doxygen 1.5.6 -->
<div class="navigation" id="top">
<div class="tabs">
<ul>
<li><a href="index.html"><span>Main Page</span></a></li>
<li><a href="pages.html"><span>Related Pages</span></a></li>
<li><a href="annotated.html"><span>Data Structures</span></a></li>
<li class="current"><a href="files.html"><span>Files</span></a></li>
</ul>
</div>
</div>
<div class="contents">
<h1>sph.h File Reference</h1>
<p>
<a href="sph_8h-source.html">Go to the source code of this file.</a><table border="0" cellpadding="0" cellspacing="0">
<tr><td></td></tr>
<tr><td colspan="2"><br><h2>Functions</h2></td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">int </td><td class="memItemRight" valign="bottom"><a class="el" href="sph_8h.html#bcdbd119e57482315882d849f2b04e91">sphx2s</a> (const double eul[5], int nphi, int ntheta, int spt, int sxy, const double phi[], const double theta[], double lng[], double lat[])</td></tr>
<tr><td class="mdescLeft"> </td><td class="mdescRight">Rotation in the pixel-to-world direction. <a href="#bcdbd119e57482315882d849f2b04e91"></a><br></td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">int </td><td class="memItemRight" valign="bottom"><a class="el" href="sph_8h.html#5c0783d56189d48d9f52af05b64a4df6">sphs2x</a> (const double eul[5], int nlng, int nlat, int sll, int spt, const double lng[], const double lat[], double phi[], double theta[])</td></tr>
<tr><td class="mdescLeft"> </td><td class="mdescRight">Rotation in the world-to-pixel direction. <a href="#5c0783d56189d48d9f52af05b64a4df6"></a><br></td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">int </td><td class="memItemRight" valign="bottom"><a class="el" href="sph_8h.html#ec6222fe1e4d807c9b59980b8e548eb0">sphdpa</a> (int nfield, double lng0, double lat0, const double lng[], const double lat[], double dist[], double pa[])</td></tr>
<tr><td class="mdescLeft"> </td><td class="mdescRight">Compute angular distance and position angle. <a href="#ec6222fe1e4d807c9b59980b8e548eb0"></a><br></td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">int </td><td class="memItemRight" valign="bottom"><a class="el" href="sph_8h.html#8ee2e117701f434f0bffbbe52f05d118">sphpad</a> (int nfield, double lng0, double lat0, const double dist[], const double pa[], double lng[], double lat[])</td></tr>
<tr><td class="mdescLeft"> </td><td class="mdescRight">Compute field points offset from a given point. <a href="#8ee2e117701f434f0bffbbe52f05d118"></a><br></td></tr>
</table>
<hr><a name="_details"></a><h2>Detailed Description</h2>
The WCS spherical coordinate transformations are implemented via separate functions, <a class="el" href="sph_8h.html#bcdbd119e57482315882d849f2b04e91" title="Rotation in the pixel-to-world direction.">sphx2s()</a> and <a class="el" href="sph_8h.html#5c0783d56189d48d9f52af05b64a4df6" title="Rotation in the world-to-pixel direction.">sphs2x()</a>, for the transformation in each direction.<p>
A utility function, <a class="el" href="sph_8h.html#ec6222fe1e4d807c9b59980b8e548eb0" title="Compute angular distance and position angle.">sphdpa()</a>, computes the angular distances and position angles from a given point on the sky to a number of other points. <a class="el" href="sph_8h.html#8ee2e117701f434f0bffbbe52f05d118" title="Compute field points offset from a given point.">sphpad()</a> does the complementary operation - computes the coordinates of points offset by the given angular distances and position angles from a given point on the sky. <hr><h2>Function Documentation</h2>
<a class="anchor" name="bcdbd119e57482315882d849f2b04e91"></a><!-- doxytag: member="sph.h::sphx2s" ref="bcdbd119e57482315882d849f2b04e91" args="(const double eul[5], int nphi, int ntheta, int spt, int sxy, const double phi[], const double theta[], double lng[], double lat[])" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">int sphx2s </td>
<td>(</td>
<td class="paramtype">const double </td>
<td class="paramname"> <em>eul</em>[5], </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int </td>
<td class="paramname"> <em>nphi</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int </td>
<td class="paramname"> <em>ntheta</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int </td>
<td class="paramname"> <em>spt</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int </td>
<td class="paramname"> <em>sxy</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">const double </td>
<td class="paramname"> <em>phi</em>[], </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">const double </td>
<td class="paramname"> <em>theta</em>[], </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">double </td>
<td class="paramname"> <em>lng</em>[], </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">double </td>
<td class="paramname"> <em>lat</em>[]</td><td> </td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td><td></td>
</tr>
</table>
</div>
<div class="memdoc">
<p>
<b>sphx2s</b>() transforms native coordinates of a projection to celestial coordinates.<p>
<dl compact><dt><b>Parameters:</b></dt><dd>
<table border="0" cellspacing="2" cellpadding="0">
<tr><td valign="top"><tt>[in]</tt> </td><td valign="top"><em>eul</em> </td><td>Euler angles for the transformation:<ul>
<li>0: Celestial longitude of the native pole [deg].</li><li>1: Celestial colatitude of the native pole, or native colatitude of the celestial pole [deg].</li><li>2: Native longitude of the celestial pole [deg].</li><li>3: <img class="formulaInl" alt="$cos$" src="form_46.png">(eul[1])</li><li>4: <img class="formulaInl" alt="$sin$" src="form_47.png">(eul[1]) </li></ul>
</td></tr>
<tr><td valign="top"><tt>[in]</tt> </td><td valign="top"><em>nphi,ntheta</em> </td><td>Vector lengths. </td></tr>
<tr><td valign="top"><tt>[in]</tt> </td><td valign="top"><em>spt,sxy</em> </td><td>Vector strides. </td></tr>
<tr><td valign="top"><tt>[in]</tt> </td><td valign="top"><em>phi,theta</em> </td><td>Longitude and latitude in the native coordinate system of the projection [deg].</td></tr>
<tr><td valign="top"><tt>[out]</tt> </td><td valign="top"><em>lng,lat</em> </td><td>Celestial longitude and latitude [deg]. These may refer to the same storage as <em>phi</em> and <em>theta</em> respectively.</td></tr>
</table>
</dl>
<dl class="return" compact><dt><b>Returns:</b></dt><dd>Status return value:<ul>
<li>0: Success. </li></ul>
</dd></dl>
</div>
</div><p>
<a class="anchor" name="5c0783d56189d48d9f52af05b64a4df6"></a><!-- doxytag: member="sph.h::sphs2x" ref="5c0783d56189d48d9f52af05b64a4df6" args="(const double eul[5], int nlng, int nlat, int sll, int spt, const double lng[], const double lat[], double phi[], double theta[])" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">int sphs2x </td>
<td>(</td>
<td class="paramtype">const double </td>
<td class="paramname"> <em>eul</em>[5], </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int </td>
<td class="paramname"> <em>nlng</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int </td>
<td class="paramname"> <em>nlat</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int </td>
<td class="paramname"> <em>sll</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int </td>
<td class="paramname"> <em>spt</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">const double </td>
<td class="paramname"> <em>lng</em>[], </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">const double </td>
<td class="paramname"> <em>lat</em>[], </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">double </td>
<td class="paramname"> <em>phi</em>[], </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">double </td>
<td class="paramname"> <em>theta</em>[]</td><td> </td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td><td></td>
</tr>
</table>
</div>
<div class="memdoc">
<p>
<b>sphs2x</b>() transforms celestial coordinates to the native coordinates of a projection.<p>
<dl compact><dt><b>Parameters:</b></dt><dd>
<table border="0" cellspacing="2" cellpadding="0">
<tr><td valign="top"><tt>[in]</tt> </td><td valign="top"><em>eul</em> </td><td>Euler angles for the transformation:<ul>
<li>0: Celestial longitude of the native pole [deg].</li><li>1: Celestial colatitude of the native pole, or native colatitude of the celestial pole [deg].</li><li>2: Native longitude of the celestial pole [deg].</li><li>3: <img class="formulaInl" alt="$cos$" src="form_46.png">(eul[1])</li><li>4: <img class="formulaInl" alt="$sin$" src="form_47.png">(eul[1]) </li></ul>
</td></tr>
<tr><td valign="top"><tt>[in]</tt> </td><td valign="top"><em>nlng,nlat</em> </td><td>Vector lengths. </td></tr>
<tr><td valign="top"><tt>[in]</tt> </td><td valign="top"><em>sll,spt</em> </td><td>Vector strides. </td></tr>
<tr><td valign="top"><tt>[in]</tt> </td><td valign="top"><em>lng,lat</em> </td><td>Celestial longitude and latitude [deg].</td></tr>
<tr><td valign="top"><tt>[out]</tt> </td><td valign="top"><em>phi,theta</em> </td><td>Longitude and latitude in the native coordinate system of the projection [deg]. These may refer to the same storage as <em>lng</em> and <em>lat</em> respectively.</td></tr>
</table>
</dl>
<dl class="return" compact><dt><b>Returns:</b></dt><dd>Status return value:<ul>
<li>0: Success. </li></ul>
</dd></dl>
</div>
</div><p>
<a class="anchor" name="ec6222fe1e4d807c9b59980b8e548eb0"></a><!-- doxytag: member="sph.h::sphdpa" ref="ec6222fe1e4d807c9b59980b8e548eb0" args="(int nfield, double lng0, double lat0, const double lng[], const double lat[], double dist[], double pa[])" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">int sphdpa </td>
<td>(</td>
<td class="paramtype">int </td>
<td class="paramname"> <em>nfield</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">double </td>
<td class="paramname"> <em>lng0</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">double </td>
<td class="paramname"> <em>lat0</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">const double </td>
<td class="paramname"> <em>lng</em>[], </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">const double </td>
<td class="paramname"> <em>lat</em>[], </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">double </td>
<td class="paramname"> <em>dist</em>[], </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">double </td>
<td class="paramname"> <em>pa</em>[]</td><td> </td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td><td></td>
</tr>
</table>
</div>
<div class="memdoc">
<p>
<b>sphdpa</b>() computes the angular distance and generalized position angle (see notes) from a "reference" point to a number of "field" points on the sphere. The points must be specified consistently in any spherical coordinate system.<p>
<b>sphdpa</b>() is complementary to <a class="el" href="sph_8h.html#8ee2e117701f434f0bffbbe52f05d118" title="Compute field points offset from a given point.">sphpad()</a>.<p>
<dl compact><dt><b>Parameters:</b></dt><dd>
<table border="0" cellspacing="2" cellpadding="0">
<tr><td valign="top"><tt>[in]</tt> </td><td valign="top"><em>nfield</em> </td><td>The number of field points. </td></tr>
<tr><td valign="top"><tt>[in]</tt> </td><td valign="top"><em>lng0,lat0</em> </td><td>Spherical coordinates of the reference point [deg]. </td></tr>
<tr><td valign="top"><tt>[in]</tt> </td><td valign="top"><em>lng,lat</em> </td><td>Spherical coordinates of the field points [deg].</td></tr>
<tr><td valign="top"><tt>[out]</tt> </td><td valign="top"><em>dist,pa</em> </td><td>Angular distances and position angles [deg]. These may refer to the same storage as <em>lng</em> and <em>lat</em> respectively.</td></tr>
</table>
</dl>
<dl class="return" compact><dt><b>Returns:</b></dt><dd>Status return value:<ul>
<li>0: Success.</li></ul>
</dd></dl>
<b>Notes:</b> <br>
<b>sphdpa</b>() uses <a class="el" href="sph_8h.html#5c0783d56189d48d9f52af05b64a4df6" title="Rotation in the world-to-pixel direction.">sphs2x()</a> to rotate coordinates so that the reference point is at the north pole of the new system with the north pole of the old system at zero longitude in the new. The Euler angles required by <a class="el" href="sph_8h.html#5c0783d56189d48d9f52af05b64a4df6" title="Rotation in the world-to-pixel direction.">sphs2x()</a> for this rotation are <div class="fragment"><pre class="fragment"> eul[0] = lng0;
eul[1] = 90.0 - lat0;
eul[2] = 0.0;
</pre></div><p>
The angular distance and generalized position angle are readily obtained from the longitude and latitude of the field point in the new system. This applies even if the reference point is at one of the poles, in which case the "position angle" returned is as would be computed for a reference point at <img class="formulaInl" alt="$(\alpha_0,+90^\circ-\epsilon)$" src="form_48.png"> or <img class="formulaInl" alt="$(\alpha_0,-90^\circ+\epsilon)$" src="form_49.png">, in the limit as <img class="formulaInl" alt="$\epsilon$" src="form_43.png"> goes to zero.<p>
It is evident that the coordinate system in which the two points are expressed is irrelevant to the determination of the angular separation between the points. However, this is not true of the generalized position angle.<p>
The generalized position angle is here defined as the angle of intersection of the great circle containing the reference and field points with that containing the reference point and the pole. It has its normal meaning when the the reference and field points are specified in equatorial coordinates (right ascension and declination).<p>
Interchanging the reference and field points changes the position angle in a non-intuitive way (because the sum of the angles of a spherical triangle normally exceeds <img class="formulaInl" alt="$180^\circ$" src="form_50.png">).<p>
The position angle is undefined if the reference and field points are coincident or antipodal. This may be detected by checking for a distance of <img class="formulaInl" alt="$0^\circ$" src="form_51.png"> or <img class="formulaInl" alt="$180^\circ$" src="form_50.png"> (within rounding tolerance). <b>sphdpa</b>() will return an arbitrary position angle in such circumstances.
</div>
</div><p>
<a class="anchor" name="8ee2e117701f434f0bffbbe52f05d118"></a><!-- doxytag: member="sph.h::sphpad" ref="8ee2e117701f434f0bffbbe52f05d118" args="(int nfield, double lng0, double lat0, const double dist[], const double pa[], double lng[], double lat[])" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">int sphpad </td>
<td>(</td>
<td class="paramtype">int </td>
<td class="paramname"> <em>nfield</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">double </td>
<td class="paramname"> <em>lng0</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">double </td>
<td class="paramname"> <em>lat0</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">const double </td>
<td class="paramname"> <em>dist</em>[], </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">const double </td>
<td class="paramname"> <em>pa</em>[], </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">double </td>
<td class="paramname"> <em>lng</em>[], </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">double </td>
<td class="paramname"> <em>lat</em>[]</td><td> </td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td><td></td>
</tr>
</table>
</div>
<div class="memdoc">
<p>
<b>sphpad</b>() computes the coordinates of a set of points that are offset by the specified angular distances and position angles from a given "reference" point on the sky. The distances and position angles must be specified consistently in any spherical coordinate system.<p>
<b>sphpad</b>() is complementary to <a class="el" href="sph_8h.html#ec6222fe1e4d807c9b59980b8e548eb0" title="Compute angular distance and position angle.">sphdpa()</a>.<p>
<dl compact><dt><b>Parameters:</b></dt><dd>
<table border="0" cellspacing="2" cellpadding="0">
<tr><td valign="top"><tt>[in]</tt> </td><td valign="top"><em>nfield</em> </td><td>The number of field points. </td></tr>
<tr><td valign="top"><tt>[in]</tt> </td><td valign="top"><em>lng0,lat0</em> </td><td>Spherical coordinates of the reference point [deg]. </td></tr>
<tr><td valign="top"><tt>[in]</tt> </td><td valign="top"><em>dist,pa</em> </td><td>Angular distances and position angles [deg].</td></tr>
<tr><td valign="top"><tt>[out]</tt> </td><td valign="top"><em>lng,lat</em> </td><td>Spherical coordinates of the field points [deg]. These may refer to the same storage as <em>dist</em> and <em>pa</em> respectively.</td></tr>
</table>
</dl>
<dl class="return" compact><dt><b>Returns:</b></dt><dd>Status return value:<ul>
<li>0: Success.</li></ul>
</dd></dl>
<b>Notes:</b> <br>
<b>sphpad</b>() is implemented analogously to <a class="el" href="sph_8h.html#ec6222fe1e4d807c9b59980b8e548eb0" title="Compute angular distance and position angle.">sphdpa()</a> although using <a class="el" href="sph_8h.html#bcdbd119e57482315882d849f2b04e91" title="Rotation in the pixel-to-world direction.">sphx2s()</a> for the inverse transformation. In particular, when the reference point is at one of the poles, "position angle" is interpreted as though the reference point was at <img class="formulaInl" alt="$(\alpha_0,+90^\circ-\epsilon)$" src="form_48.png"> or <img class="formulaInl" alt="$(\alpha_0,-90^\circ+\epsilon)$" src="form_49.png">, in the limit as <img class="formulaInl" alt="$\epsilon$" src="form_43.png"> goes to zero.<p>
Applying <b>sphpad</b>() with the distances and position angles computed by <a class="el" href="sph_8h.html#ec6222fe1e4d807c9b59980b8e548eb0" title="Compute angular distance and position angle.">sphdpa()</a> should return the original field points.
</div>
</div><p>
</div>
<hr size="1"><address style="text-align: right;"><small>Generated on Tue Oct 4 19:02:30 2011 for WCSLIB 4.8.2 by
<a href="http://www.doxygen.org/index.html">
<img src="doxygen.png" alt="doxygen" align="middle" border="0"></a> 1.5.6 </small></address>
</body>
</html>
|