1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662
|
*=======================================================================
*
* PGSBOX 4.8 - draw curvilinear coordinate axes for PGPLOT.
* Copyright (C) 1997-2011, Mark Calabretta
*
* This file is part of PGSBOX.
*
* PGSBOX is free software: you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* PGSBOX is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
* License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with PGSBOX. If not, see http://www.gnu.org/licenses.
*
* Correspondence concerning PGSBOX may be directed to:
* Internet email: mcalabre@atnf.csiro.au
* Postal address: Dr. Mark Calabretta
* Australia Telescope National Facility, CSIRO
* PO Box 76
* Epping NSW 1710
* AUSTRALIA
*
* Author: Mark Calabretta, Australia Telescope National Facility
* http://www.atnf.csiro.au/~mcalabre/index.html
* $Id: pgsbox.f,v 4.8.1.1 2011/08/15 08:07:07 cal103 Exp cal103 $
*=======================================================================
*
* PGSBOX draws and labels a curvilinear coordinate grid. The caller
* must provide a separate external function, NLFUNC, to define the
* non-linear coordinate transformation.
*
* PGLBOX, a simplified ENTRY point to PGSBOX, has been provided for
* drawing simple linear axes without the need to specify NLFUNC.
* PGLBOX allows simplified access to formatting control for labelling
* world coordinate axes that is not provided by the standard PGPLOT
* routines, PGBOX or PGTBOX. PGLBOX uses the world coordinate range
* set by a prior call to PGSWIN and omits the following arguments:
*
* BLC, TRC, NLFUNC, NLC, NLI, NLD, NLCPRM, NLIPRM, NLDPRM
*
* The remaining arguments are specified in the same order as PGSBOX.
*
* Given:
* BLC R(2) Cartesian coordinates of the bottom left-hand
* TRC R(2) corner and top right-hand corner of the frame.
* Any convenient Cartesian system may be used in
* conjunction with the non-linear transformation
* function, NLFUNC, described below.
*
* For example, FITS images have pixel coordinate
* (1,1) at the centre of the pixel in the bottom
* left-hand corner. Thus it would be
* appropriate to set BLC to (0.5,0.5) and TRC to
* (NAXIS1+0.5, NAXIS2+0.5).
*
* IDENTS C(3)*(*) Identification strings:
* 1: Name of the first world coordinate
* element used for axis labelling.
* 2: Name of the second world coordinate.
* 3: Title, written at top.
*
* OPT C(2)*(*) Formatting control for the world coordinates,
* used for axis labelling (see notes 1 and 2):
* ' ': plain numeric
* 'A': angle in degrees expressed in decimal
* notation normalized in the range [0,360).
* 'B': as 'A' but normalized in the range
* (-180,180].
* 'C': as 'A' but unnormalized.
* 'D': angle in degrees expressed in sexagesimal
* notation, DD^MM'SS".S, normalized in the
* range [0,360).
* 'E': as 'D' but normalized in the range
* (-180,180].
* 'F': as 'D' but unnormalized.
* 'G': angle in degrees expressed in hms
* notation, HHhMMmSSs.S, normalized in the
* range [0,24) hours.
* 'H': as 'G' but normalized in the range
* (-12,12] hours.
* 'I': as 'G' but unnormalized.
* 'L': logarithmic (see note 2)
* 'T': time in hours expressed as HH:MM:SS.S
* 'Y': Modified Julian Date to be expressed as
* a Gregorian calendar date, YYYY/MM/DD.
* (MJD = JD - 2400000.5.)
*
* For the angular types, NLFUNC is assumed to
* return the angle in degrees whereupon it will
* be formatted for display in the specified way.
* For example, an angle of -417.2958 degrees
* (returned by NLFUNC):
*
* 'A': 302^.7042
* 'B': -57^.2958
* 'C': -417^.2958
* 'D': 302^42'15"
* 'E': -57^17'45"
* 'F': -417^17'45"
* 'H': 20h10m49s
* 'I': -3h49m11s
* 'J': -27h49m11s
*
* These are properly superscripted.
*
* LABCTL I Decimal encoded grid labelling control:
* -1: Accumulate information on grid labels
* (see note 3) but do not write them.
* 0: Let PGSBOX decide what edges to label.
* 1: Label bottom of frame with the first
* world coordinate.
* 2: Label bottom of frame with the second
* world coordinate.
* 10: ... left side of frame.
* 20: ... left side of frame.
* 100: ... top of frame.
* 200: ... top of frame.
* 1000: ... right side of frame.
* 2000: ... right side of frame.
* 10000: Write labels from information
* accumulated in previous calls without
* drawing grid lines or tick marks.
*
* LABCTL = 0 usually gets what you want.
* LABCTL = 3333 labels all sides with both world
* coordinates.
*
* LABDEN I Decimal encoded labelling density control for
* use where PGSBOX is called upon to determine a
* suitable grid spacing (e.g. via NG1 = 0,
* GRID1(0) = 0). LABDEN = 100*D2 + D1 where
* D1, and D2 are the approximate number of grid
* lines for the first and second world
* coordinate. LABDEN = 0 is effectively the same
* as LABDEN = 808.
*
* CI I(7) Table of predefined colours established by
* calls to PGSCR. This is used to control the
* colour used for different parts of the plot.
* CI table entries are used as follows:
*
* world
* coordinate
* Index usage element
* ----- -------------- ----------
* 1 grid lines 1
* 2 grid lines 2
* 3 numeric labels 1
* 4 numeric labels 2
* 5 axis annotation 1
* 6 axis annotation 2
* 7 title -
*
* For example, CI(3) is used for numeric labels
* for the first world coordinate.
*
* Colour selection is disabled for component J
* if CI(J) < 0.
*
* GCODE(2) I Code for the type of grid to draw for each
* world coordinate:
* 0: No grid or tick marks.
* 1: Tick marks (on all edges).
* 2: Full coordinate grid.
*
* Tick marks can be restricted to particular
* edges of the frame; a negative GCODE is
* interpreted as a decimal encoded control
* variable:
* -1: bottom
* -10: left
* -100: top
* -1000: right
*
* The digit scales the basic tick length. For
* example, GCODE(1) = -102 restricts tick marks
* for the first world coordinate to the bottom
* and top edges of the frame. Those on the
* bottom will be twice the length specified by
* TIKLEN.
*
* TIKLEN D Tick length, in mm. Negative values produce
* outside tick marks.
*
* NG1 I Upper array index for GRID1.
*
* GRID1 D(0:NG1) Grid values in WORLD(1) in the same units as
* returned by NLFUNC.
*
* If NG1 is zero, then
* a: if GRID1(0) is greater than zero it
* defines a uniform grid spacing.
* b: if GRID1(0) is zero a suitable spacing
* will be determined (see LABDEN).
* c: if GRID1(0) is less than zero then no
* grid lines will be drawn.
*
* If NG1 is greater than zero, then GRID1(0) is
* ignored.
*
* NG2 I Upper array index for GRID2.
*
* GRID2 D(0:NG2) Grid values in WORLD(2) in the same units as
* returned by NLFUNC, interpreted the same way
* as GRID1.
*
* DOEQ L If NG1 = NG2 = 0, and GRID1(0) = 0D0 and/or
* GRID2(0) = 0D0, then choose the same grid
* spacing for each world coordinate.
*
* NLFUNC Ext Non-linear coordinate function, see below.
*
* NLC I Number of elements in NLCPRM (must be >0).
*
* NLI I Number of elements in NLIPRM (must be >0).
*
* NLD I Number of elements in NLDPRM (must be >0).
*
* Given and/or returned:
* NLCPRM C(NLC)*1 Character coefficients for NLFUNC.
*
* NLIPRM I(NLI) Integer coefficients for NLFUNC.
*
* NLDPRM D(NLD) Double precision coefficients for NLFUNC.
*
* NC I Upper array index for CACHE (see note 3).
*
* IC I Current number of entries in the CACHE table.
* Should be set to -1 on the first call to
* PGSBOX (see note 3).
*
* CACHE D(4,0:NC) Table of points where the tick marks or grid
* lines cross the frame (see note 3).
* 1: Frame segment
* 1: bottom
* 2: left
* 3: top
* 4: right
* 2: X or Y-Cartesian coordinate.
* 3: World coordinate element (1 or 2).
* 4: Value.
*
* CACHE(,0) is used to cache the extrema of the
* coordinate values between calls. CACHE(1,NC-1)
* is also used to store related information.
*
* CACHE(,NC) will contain the margin widths in
* Cartesian coordinates when the labels are
* produced (i.e. the same Cartesian system used
* for BLC and TRC).
*
* Returned:
* IERR I Status return value:
* 0: Success
* 1: Initialization error
* 2: Invalid coordinate system
* 3: Cache overflow (see note 3).
*
* Notes:
* 1: Where a logarithmic world coordinate type is indicated PGSBOX
* chooses grid lines and labels on the basis that the value
* returned by NLFUNC is a base 10 logarithm. PGSBOX does not
* itself take logarithms or antilogarithms. For example, if the
* range of values returned by NLFUNC were 0.9 - 2.5, then PGSBOX
* would draw a subset of the following set of grid lines and
* labels:
*
* value label
* ------------------ -----
* 0.9031 = log10(8) 8
* 0.9542 = log10(9) 9
* 1.0000 = log10(10) 10**1
* 1.3010 = log10(20) 2
* 1.4771 = log10(30) 3
* 1.6021 = log10(40) 4
* 1.6990 = log10(50) 5
* 1.7782 = log10(60) 6
* 1.8451 = log10(70) 7
* 1.9031 = log10(80) 8
* 1.9542 = log10(90) 9
* 2.0000 = log10(100) 10**2
* 2.3010 = log10(200) 2
* 2.4771 = log10(300) 3
*
* The subset chosen depends on the coordinate increment as
* specified by the caller (e.g. via NG1 = 0, GRID1(0) > 0) or as
* deduced by PGSBOX from the required density of grid lines
* specified in the LABDEN argument. The selection is made
* according to the following table:
*
* increment grid lines
* (0.00,0.12] 1, 2, 3, 4, 5, 6, 7, 8, 9
* (0.12,0.18] 1, 2, 3, 4, 5, 7
* (0.18,0.23] 1, 2, 3, 5, 7
* (0.23,0.28] 1, 2, 3, 5
* (0.28,0.40] 1, 2, 5
* (0.40,0.70] 1, 3
* (0.70,1.00] 1
*
* For increments greater than 1 the nearest integer is used.
*
* 2: PGSBOX will attempt to handle discontinuities in angle, such as
* may occur when cycling through 360 degrees, wherever the
* discontinuity may occur, for example
*
* 359 -> 0 -> 1
*
* or
*
* 179 -> 180 -> -179
*
* Only single cycles are detected, so the sequence
*
* -360 -> 0 -> ... -> 359 -> 0 -> ... -> 359
*
* would not be handled properly. In such cases NLFUNC should be
* changed to return a normalized angle, or else a continuous
* sequence.
*
* 3: PGSBOX maintains a table of axis crossings, CACHE, in which it
* stores information used for axis labelling. The caller need not
* normally be concerned about the use of this table other than to
* provide sufficient space. Typically, NC = 256 should be enough;
* if not, IERR = 3 will be returned.
*
* However, a coordinate grid may be produced via multiple calls to
* PGSBOX with deferment of axis labelling. This might be done to
* change the pen colour and/or thickness for different sets of
* grid lines. The table accumulates information from each
* successive call until the labels are produced. The table index,
* IC, may be reset to zero by the caller to discard the
* information collected.
*
* The extrema of the world coordinate elements are stored in
* CACHE(,0). When a coordinate grid is plotted with multiple
* calls to PGSBOX the initial call should always have IC set to -1
* to signal that PGSBOX needs to determine the extrema. On
* subsequent calls with IC non-negative PGSBOX uses the extrema
* cached from the first call. This can speed up execution
* considerably.
*
*- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
*
* The curvilinear coordinate grid is defined by external function
* NLFUNC whose interface is defined as follows:
*
* Given:
* OPCODE I Transformation code:
* +2: Compute a set of Cartesian coordinates
* that describe a path between this and
* the previous pair of world coordinates
* remembered from the last call with
* OPCODE = +1 or +2. Usually only takes
* a single step unless traversing a
* discontinuity or some other
* irregularity (see explanation below).
* +1: Compute Cartesian coordinates from world
* coordinates.
* 0: Initialize.
* -1: Compute world coordinates from Cartesian
* coordinates.
*
* N.B. NLFUNC must not change the input
* coordinates; that is the world coordinates for
* OPCODEs = +2 and +1, or the Cartesian
* coordinates for OPCODE = -1.
*
* NLC I Number of elements in NLCPRM (must be >0).
*
* NLI I Number of elements in NLIPRM (must be >0).
*
* NLD I Number of elements in NLDPRM (must be >0).
*
* Given and/or returned:
* NLCPRM C(NLC)*1 Character array.
*
* NLIPRM I(NLI) Integer coefficients.
*
* NLDPRM D(NLD) Double precision coefficients.
*
* WORLD D(2) World coordinates. Given if OPCODE > 0,
* returned if OPCODE < 0.
*
* XY D(2) Cartesian coordinates. Given if OPCODE < 0,
* returned if OPCODE > 0.
*
* CONTRL I Control flag for OPCODE = +2:
* 0: Normal state.
* 1: Force PGSBOX to flush its plotting buffer
* and call NLFUNC again with the same world
* coordinates.
* 2: Force PGSBOX to call NLFUNC again with
* the same world coordinates (without
* flushing its plotting buffer).
*
* CONTXT D(20) Context elements for OPCODE = +2.
*
* Returned:
* IERR I Status return value:
* 0: Success.
* 1: Invalid parameters.
* 2: Invalid world coordinate.
* 3: Invalid Cartesian coordinate.
*
* The following status returns are recognized for
* opcodes +2 and +1
* -1: Accept the returned (x,y) coordinates but
* do not consider this as one end of a
* crossing segment for labelling world
* coordinate 1.
* -2: Ditto for world coordinate 2.
* -3: Ditto for world coordinates 1 and 2.
*
* PGSBOX passes its NLCPRM, NLIPRM, and NLDPRM adjustable size array
* arguments of length NLC, NLI, and NLD to NLFUNC without
* modification. Comments within NLFUNC should specify the parameters
* it wants passed to it via these arrays.
*
* PGSBOX first calls NLFUNC with OPCODE = 0 to cause it to initialize
* its work arrays (if necessary). It then uses OPCODE = -1 to
* determine the range of world coordinate values. It anchors the
* start of each coordinate grid line with a call with OPCODE = +1, and
* then tracks it with OPCODE = +2.
*
* The CONTXT array is also passed to NLFUNC without modification to
* allow it to preserve state information between calls for OPCODE = 2.
* In particular, NLFUNC can use this to detect discontinuities in the
* grid lines.
*
* The CONTRL argument is provided so that NLFUNC can force PGSBOX to
* call it again with or without flushing its plotting buffer. This
* may be needed when plotting a grid line through a discontinuity.
* PGSBOX does not modify CONTRL.
*
* Notes:
* 1: NLFUNC must not change the input coordinates; that is the world
* coordinates for OPCODEs = +1 and +2, or the Cartesian coordinates
* for OPCODE = -1.
*
* 2: NLFUNC must define a single-valued function, that is, each
* Cartesian coordinate (x,y) must map to a unique world coordinate
* pair (xi,eta).
*
* 3: Notwithstanding the fact that PGSBOX declares NLCPRM, NLIPRM,
* and NLDPRM as single dimension arrays of length NLC, NLI, and
* NLD, NLFUNC may treat these as higher-dimensional arrays, for
* example, NLDPRM(2,NLD). (The FORTRAN standard requires that
* only the last dimension is adjustable.)
*
*=======================================================================
SUBROUTINE PGSBOX (BLC_, TRC_, IDENTS, OPT, LABCTL, LABDEN, CI,
: GCODE, TIKLEN, NG1, GRID1, NG2, GRID2, DOEQ, NLFUNC, NLC, NLI,
: NLD, NLCPRM, NLIPRM, NLDPRM, NC, IC, CACHE, IERR)
*-----------------------------------------------------------------------
INTEGER BUFSIZ
PARAMETER (BUFSIZ = 2048)
LOGICAL DOEDGE, DOEQ, DOLBOX, FULLSM, GETEND, INSIDE, ISANGL(2),
: LABLOK, MAJOR, OVERFL, PREVIN
INTEGER CI(7), CI0, CJ(7), CONTRL, DENS(2), FSEG, GCODE(2), IC,
: ID, IERR, IM, ISTEP, IW0, IWJ, IWK, IX, IY, IYPREV, J,
: K, KX, L, LABCTL, LABDEN, LDIV(2), LTABL(6,2:6), NC,
: NG(2), NG1, NG2, NLC, NLD, NLI, NLIPRM(NLI), NP,
: NSTEP(2), NWJ, NX, NY, TCODE(2,4)
REAL BLC(2), BLC_(2), S, TRC(2), TRC_(2), WXY(4), X1, X2,
: XPOINT, XR(BUFSIZ), XSCL, XSPAN, XTOL, XVP1, XVP2,
: Y1, Y2, YR(BUFSIZ), YSCL, YSPAN, YTOL, YVP1, YVP2
DOUBLE PRECISION CONTXT(20), CACHE(4,0:NC), DW(2), DX, DY, FACT,
: G0(2), GSTEP(2), GRID1(0:NG1), GRID2(0:NG2),
: NLDPRM(NLD), STEP, SW(2), TIKLEN, TMP, VMAX(2,2),
: VMIN(2,2), W1PREV, W1X0, W2PREV, W2X0, WJUMP, WMAX(2),
: WMIN(2), WORLD(9), XY(9)
CHARACTER FTYPE(2), IDENTS(3)*(*), NLCPRM(NLC)*1, OPT(2)*(*)
EXTERNAL NLFUNC
* Approximate number of grid lines for each coordinate.
INTEGER DENS0
PARAMETER (DENS0 = 8)
* Double precision round-off tolerance.
DOUBLE PRECISION TOL
PARAMETER (TOL = 1D-8)
* Number of steps per grid line.
DATA NSTEP /80, 80/
* Table of logarithmic grid values.
DATA LTABL /3, 10, 0, 0, 0, 0,
: 2, 5, 10, 0, 0, 0,
: 2, 3, 5, 10, 0, 0,
: 2, 3, 5, 7, 10, 0,
: 2, 3, 4, 5, 7, 10/
* These are to stop compiler messages about uninitialized variables.
DATA IW0 /0/
DATA LABLOK, PREVIN /2 * .FALSE./
DATA G0 /2 * 0D0/
DATA W1X0, W1PREV, W2X0, W2PREV /4 * 0D0/
DATA WORLD, XY /9 * 0D0, 9 * 0D0/
*-----------------------------------------------------------------------
* Initialize.
DOLBOX = .FALSE.
CALL NLFUNC (0, NLC, NLI, NLD, NLCPRM, NLIPRM, NLDPRM, WORLD,
: XY, CONTRL, CONTXT, IERR)
* Quick return for now.
IF (IERR.NE.0) THEN
IERR = 1
RETURN
END IF
BLC(1) = BLC_(1)
BLC(2) = BLC_(2)
TRC(1) = TRC_(1)
TRC(2) = TRC_(2)
DOEDGE = GCODE(1).NE.2 .AND. GCODE(2).NE.2
*-----------------------------------------------------------------------
GO TO 10
ENTRY PGLBOX (IDENTS, OPT, LABCTL, LABDEN, CI, GCODE, TIKLEN, NG1,
: GRID1, NG2, GRID2, DOEQ, NC, IC, CACHE, IERR)
DOLBOX = .TRUE.
BLC(1) = 0.0
BLC(2) = 0.0
TRC(1) = 1.0
TRC(2) = 1.0
DOEDGE = .TRUE.
CONTRL = 0
IERR = 0
10 CONTINUE
*-----------------------------------------------------------------------
IF (NC.LT.1) THEN
IERR = 3
RETURN
END IF
NG(1) = NG1
NG(2) = NG2
FTYPE(1) = OPT(1)(1:1)
FTYPE(2) = OPT(2)(1:1)
* Extend the PGPLOT window and rescale it.
CALL PGQVP (0, XVP1, XVP2, YVP1, YVP2)
CALL PGQWIN (WXY(1), WXY(2), WXY(3), WXY(4))
CALL PGSVP (0.0, 1.0, 0.0, 1.0)
XSCL = (TRC(1)-BLC(1))/(XVP2-XVP1)
YSCL = (TRC(2)-BLC(2))/(YVP2-YVP1)
CALL PGSWIN (BLC(1)-XSCL*XVP1, TRC(1)+XSCL*(1.0-XVP2),
: BLC(2)-YSCL*YVP1, TRC(2)+YSCL*(1.0-YVP2))
* Determine initial colour and set colour indices.
CALL PGQCI (CI0)
DO 20 J = 1, 7
IF (CI(J).GE.0) THEN
CJ(J) = CI(J)
ELSE
CJ(J) = CI0
END IF
20 CONTINUE
* Labels only?
IF (LABCTL.GE.10000) GO TO 130
XSPAN = WXY(2) - WXY(1)
YSPAN = WXY(4) - WXY(3)
XTOL = XSPAN*TOL
YTOL = YSPAN*TOL
* Find world coordinate ranges:
* WMIN(1:2) ...lower limit of each world coordinate element.
* WMAX(1:2) ...upper limit of each world coordinate element.
* GSTEP(1:2) ...spacing between grid lines for each element.
* DW(1:2) ...span from WMIN to WMAX.
* SW(1:2) ...increment in world coordinate between plotting steps.
* NSTEP(1:2) ...number of plotting steps between WMIN and WMAX.
FULLSM = .FALSE.
IF (IC.GE.0 .AND. IC.LT.NC-1) FULLSM = CACHE(1,NC-1).EQ.1D0
IF (IC.GE.0 .AND. (FULLSM .OR. DOEDGE)) THEN
* Use extrema cached from a previous call.
WMIN(1) = CACHE(1,0)
WMAX(1) = CACHE(2,0)
WMIN(2) = CACHE(3,0)
WMAX(2) = CACHE(4,0)
ELSE
* Do a coarse search to find approximate ranges.
WMIN(1) = 1D99
WMAX(1) = -1D99
WMIN(2) = 1D99
WMAX(2) = -1D99
* Need to consider cycles in angle through 360 degrees.
ISANGL(1) = INDEX('ABCDEFGHI',FTYPE(1)).NE.0
ISANGL(2) = INDEX('ABCDEFGHI',FTYPE(2)).NE.0
VMIN(1,1) = 1D99
VMIN(1,2) = 1D99
VMAX(1,1) = -1D99
VMAX(1,2) = -1D99
VMIN(2,1) = 1D99
VMIN(2,2) = 1D99
VMAX(2,1) = -1D99
VMAX(2,2) = -1D99
* Sample coordinates on a 50 x 50 grid.
NX = 50
NY = 50
DX = DBLE(TRC(1)-BLC(1))/NX
DY = DBLE(TRC(2)-BLC(2))/NY
K = 0
IYPREV = -1
DO 40 IY = 0, NY
XY(2) = BLC(2) + IY*DY
* Sample the edges only?
KX = 1
IF (DOEDGE) THEN
IF (IY.NE.0 .AND. IY.NE.NY) KX = NX
END IF
DO 30 IX = 0, NX, KX
XY(1) = BLC(1) + IX*DX
IF (DOLBOX) THEN
WORLD(1) = WXY(1) + XY(1)*XSPAN
WORLD(2) = WXY(3) + XY(2)*YSPAN
ELSE
CALL NLFUNC (-1, NLC, NLI, NLD, NLCPRM, NLIPRM,
: NLDPRM, WORLD, XY, CONTRL, CONTXT, IERR)
END IF
IF (IERR.EQ.0) THEN
K = K + 1
IF (ISANGL(1)) THEN
IF (K.EQ.1) W1X0 = WORLD(1)
IF (IY.NE.IYPREV) THEN
W1PREV = W1X0
W1X0 = WORLD(1)
END IF
* Iron out jumps.
WJUMP = WORLD(1) - W1PREV
IF (ABS(WJUMP).GT.180D0) THEN
WJUMP = WJUMP + SIGN(180D0,WJUMP)
WJUMP = 360D0*INT(WJUMP/360D0)
WORLD(1) = WORLD(1) - WJUMP
END IF
W1PREV = WORLD(1)
IYPREV = IY
END IF
IF (ISANGL(2)) THEN
IF (K.EQ.1) W2X0 = WORLD(2)
IF (IY.NE.IYPREV) THEN
W2PREV = W2X0
W2X0 = WORLD(2)
END IF
* Iron out jumps.
WJUMP = WORLD(2) - W2PREV
IF (ABS(WJUMP).GT.180D0) THEN
WJUMP = WJUMP + SIGN(180D0,WJUMP)
WJUMP = 360D0*INT(WJUMP/360D0)
WORLD(2) = WORLD(2) - WJUMP
END IF
W2PREV = WORLD(2)
IYPREV = IY
END IF
IF (WORLD(1).LT.WMIN(1)) WMIN(1) = WORLD(1)
IF (WORLD(1).GT.WMAX(1)) WMAX(1) = WORLD(1)
IF (WORLD(2).LT.WMIN(2)) WMIN(2) = WORLD(2)
IF (WORLD(2).GT.WMAX(2)) WMAX(2) = WORLD(2)
IF (ISANGL(1)) THEN
* Normalize to the range [0,360).
WORLD(1) = MOD(WORLD(1), 360D0)
IF (WORLD(1).LT.0D0) WORLD(1) = WORLD(1) + 360D0
IF (WORLD(1).LT.VMIN(1,1)) VMIN(1,1) = WORLD(1)
IF (WORLD(1).GT.VMAX(1,1)) VMAX(1,1) = WORLD(1)
* Normalize to the range (-180,180].
IF (WORLD(1).GT.180D0) WORLD(1) = WORLD(1) - 360D0
IF (WORLD(1).LT.VMIN(1,2)) VMIN(1,2) = WORLD(1)
IF (WORLD(1).GT.VMAX(1,2)) VMAX(1,2) = WORLD(1)
END IF
IF (ISANGL(2)) THEN
* Normalize to the range [0,360).
WORLD(2) = MOD(WORLD(2), 360D0)
IF (WORLD(2).LT.0D0) WORLD(2) = WORLD(2) + 360D0
IF (WORLD(2).LT.VMIN(2,1)) VMIN(2,1) = WORLD(2)
IF (WORLD(2).GT.VMAX(2,1)) VMAX(2,1) = WORLD(2)
* Normalize to the range (-180,180].
IF (WORLD(2).GT.180D0) WORLD(2) = WORLD(2) - 360D0
IF (WORLD(2).LT.VMIN(2,2)) VMIN(2,2) = WORLD(2)
IF (WORLD(2).GT.VMAX(2,2)) VMAX(2,2) = WORLD(2)
END IF
END IF
30 CONTINUE
40 CONTINUE
IF (K.EQ.0) THEN
* No valid coordinates found within the frame.
IERR = 2
GO TO 999
END IF
* Check for cycles in angle.
DO 50 J = 1, 2
IF (ISANGL(J)) THEN
IF (WMAX(J)-WMIN(J).LT.360D0 .AND.
: WMAX(J)-WMIN(J).GT.VMAX(J,1)-VMIN(J,1)+TOL) THEN
* Must have a cycle, preserve the sign.
IF (WMAX(J).GE.0D0) THEN
WMIN(J) = VMIN(J,1)
WMAX(J) = VMAX(J,1)
ELSE
WMIN(J) = VMIN(J,1) - 360D0
WMAX(J) = VMAX(J,1) - 360D0
END IF
END IF
IF (WMAX(J)-WMIN(J).LT.360D0 .AND.
: WMAX(J)-WMIN(J).GT.VMAX(J,2)-VMIN(J,2)+TOL) THEN
* Must have a cycle, preserve the sign.
IF (WMAX(J).GE.0D0) THEN
IF (VMAX(J,2).GE.0D0) THEN
WMIN(J) = VMIN(J,2)
WMAX(J) = VMAX(J,2)
ELSE
WMIN(J) = VMIN(J,2) + 360D0
WMAX(J) = VMAX(J,2) + 360D0
END IF
ELSE
IF (VMAX(J,2).LT.0D0) THEN
WMIN(J) = VMIN(J,2)
WMAX(J) = VMAX(J,2)
ELSE
WMIN(J) = VMIN(J,2) - 360D0
WMAX(J) = VMAX(J,2) - 360D0
END IF
END IF
END IF
END IF
50 CONTINUE
* Cache extrema for subsequent calls.
CACHE(1,0) = WMIN(1)
CACHE(2,0) = WMAX(1)
CACHE(3,0) = WMIN(2)
CACHE(4,0) = WMAX(2)
* Was full sampling done?
IF (DOEDGE) THEN
CACHE(1,NC-1) = 0D0
ELSE
CACHE(1,NC-1) = 1D0
END IF
IC = 0
END IF
* Choose an appropriate grid spacing.
IF (LABDEN.GT.0) THEN
* User specified grid density.
DENS(1) = MOD(LABDEN,100)
DENS(2) = LABDEN/100
IF (DENS(1).EQ.0) DENS(1) = DENS0
IF (DENS(2).EQ.0) DENS(2) = DENS0
ELSE
* Default grid density.
DENS(1) = DENS0
DENS(2) = DENS0
END IF
IF (NG(1).EQ.0) G0(1) = GRID1(0)
IF (NG(2).EQ.0) G0(2) = GRID2(0)
DO 60 J = 1, 2
IF (J.EQ.1) THEN
K = 2
ELSE
K = 1
END IF
IF (NG(J).EQ.0 .AND. G0(J).LT.0D0) THEN
* Defeat grid lines and tick marks.
GCODE(J) = 0
END IF
IF (NG(J).EQ.0 .AND. G0(J).GT.0D0) THEN
* User-specified, directly.
GSTEP(J) = G0(J)
ELSE IF (DOEQ .AND. NG(K).EQ.0 .AND. G0(K).GT.0D0) THEN
* User-specified, indirectly.
GSTEP(J) = G0(K)
ELSE
* Left to us to choose. Even if grid lines are not drawn for
* coordinate J, i.e. NG(J) = 0 and G0(J) < 0, GSTEP(J) is still
* needed because it is used to deduce SW(J) which is used for
* drawing grid lines for the other coordinate.
DW(J) = WMAX(J) - WMIN(J)
STEP = DW(J)/DENS(J)
FACT = 1D0
IF (INDEX('GHI',FTYPE(J)).NE.0) THEN
* Rescale degrees to hours.
FACT = 1D0/15D0
STEP = STEP*FACT
ELSE IF (FTYPE(J).EQ.'Y' .AND. STEP.LT.0.5D0) THEN
* Calendar increment of less than 12h; use time format.
FTYPE(J) = 'y'
* Rescale days to hours.
FACT = 24D0
STEP = STEP*FACT
END IF
IF (INDEX('ABCDEF',FTYPE(J)).NE.0 .AND. STEP.GE.1D0) THEN
* Angle with multi-degree increment.
IF (STEP.LT.1.5D0) THEN
STEP = 1D0
ELSE IF (STEP.LT.3D0) THEN
STEP = 2D0
ELSE IF (STEP.LT.7D0) THEN
STEP = 5D0
ELSE IF (STEP.LT.12D0) THEN
STEP = 10D0
ELSE IF (STEP.LT.20D0) THEN
STEP = 15D0
ELSE IF (STEP.LT.40D0) THEN
STEP = 30D0
ELSE IF (STEP.LT.70D0) THEN
STEP = 45D0
ELSE IF (STEP.LT.120D0) THEN
STEP = 90D0
ELSE IF (STEP.LT.270D0) THEN
STEP = 180D0
ELSE IF (STEP.LT.520D0) THEN
STEP = 360D0
ELSE
STEP = 360D0*INT(STEP/360D0 + 0.5)
END IF
ELSE IF (INDEX('GHITy',FTYPE(J)).NE.0 .AND.
: STEP.GE.1D0) THEN
* Angle or time in hms format with multi-hour increment.
IF (STEP.LT.1.5D0) THEN
STEP = 1D0
ELSE IF (STEP.LT.2.5D0) THEN
STEP = 2D0
ELSE IF (STEP.LT.3.5D0) THEN
STEP = 3D0
ELSE IF (STEP.LT.5D0) THEN
STEP = 4D0
ELSE IF (STEP.LT.7D0) THEN
STEP = 6D0
ELSE IF (STEP.LT.10D0) THEN
STEP = 8D0
ELSE IF (STEP.LT.15D0) THEN
STEP = 12D0
ELSE IF (STEP.LT.21D0) THEN
STEP = 18D0
ELSE IF (STEP.LT.36D0) THEN
STEP = 24D0
ELSE
STEP = 24D0*INT(STEP/24D0 + 0.5)
END IF
STEP = STEP/FACT
ELSE IF (INDEX('DEFGHITy',FTYPE(J)).NE.0 .AND.
: STEP.LT.1D0) THEN
* Angle or time in sexagesimal format with sub-degree/hour
* increment.
FACT = FACT*60D0
STEP = STEP*60D0
IF (STEP.LT.1D0) THEN
* Sub-minute increment.
FACT = FACT*60D0
STEP = STEP*60D0
END IF
IF (STEP.LT.1D0) THEN
* Sub-second increment.
TMP = 10D0**(INT(LOG10(STEP))-1)
IF (1.5*TMP.GE.STEP) THEN
STEP = TMP
ELSE
IF (3D0*TMP.GE.STEP) THEN
STEP = 2D0*TMP
ELSE
IF (7D0*TMP.GE.STEP) THEN
STEP = 5D0*TMP
ELSE
STEP = 10D0*TMP
END IF
END IF
END IF
ELSE
IF (STEP.LT.1.5D0) THEN
STEP = 1D0
ELSE IF (STEP.LT.2.5D0) THEN
STEP = 2D0
ELSE IF (STEP.LT.3.5D0) THEN
STEP = 3D0
ELSE IF (STEP.LT.4.5D0) THEN
STEP = 4D0
ELSE IF (STEP.LT.5.5D0) THEN
STEP = 5D0
ELSE IF (STEP.LT.8D0) THEN
STEP = 6D0
ELSE IF (STEP.LT.11D0) THEN
STEP = 10D0
ELSE IF (STEP.LT.14D0) THEN
STEP = 12D0
ELSE IF (STEP.LT.18D0) THEN
STEP = 15D0
ELSE IF (STEP.LT.25D0) THEN
STEP = 20D0
ELSE IF (STEP.LT.45D0) THEN
STEP = 30D0
ELSE
STEP = 60D0
END IF
END IF
STEP = STEP/FACT
ELSE IF (FTYPE(J).EQ.'Y') THEN
* Calendar axis: use coded steps.
IF (STEP.LT.15D0) THEN
* Timespan of a few months; use multi-day increments.
STEP = ANINT(STEP)
IF (STEP.LT.1D0) THEN
STEP = 1D0
ELSE IF (STEP.GT.9D0) THEN
* Fortnightly.
STEP = 14D0
ELSE IF (STEP.GT.4D0) THEN
* Weekly.
STEP = 7D0
END IF
ELSE IF (STEP.LT.270D0) THEN
* Timespan of a few years; use multi-month increments.
STEP = ANINT(STEP/30.44D0)
IF (STEP.LT.1.5D0) THEN
STEP = 1D0
ELSE IF (STEP.LT.2.5D0) THEN
STEP = 2D0
ELSE IF (STEP.LT.3.5D0) THEN
STEP = 3D0
ELSE IF (STEP.LT.4.5D0) THEN
STEP = 4D0
ELSE
STEP = 6D0
END IF
* Coding for multi-month increments.
STEP = 100D0*STEP
ELSE
* Multi-year increments.
STEP = ANINT(DW(J)/DENS(J)/365.25D0)
IF (STEP.LT.1D0) THEN
STEP = 1D0
ELSE
TMP = 10D0**INT(LOG10(STEP))
IF (1.5D0*TMP.GE.STEP) THEN
STEP = TMP
ELSE
IF (3D0*TMP.GE.STEP) THEN
STEP = 2D0*TMP
ELSE
IF (7D0*TMP.GE.STEP) THEN
STEP = 5D0*TMP
ELSE
STEP = 10D0*TMP
END IF
END IF
END IF
END IF
* Coding for multi-year increments.
STEP = 10000D0*STEP
END IF
ELSE
* Just numbers.
TMP = 10D0**INT(LOG10(STEP))
IF (STEP.LT.1D0) TMP = TMP/10D0
IF (1.5D0*TMP.GE.STEP) THEN
STEP = TMP
ELSE
IF (3D0*TMP.GE.STEP) THEN
STEP = 2D0*TMP
ELSE
IF (7D0*TMP.GE.STEP) THEN
STEP = 5D0*TMP
ELSE
STEP = 10D0*TMP
END IF
END IF
END IF
* Adjust the step size for logarithmic values.
IF (FTYPE(J).EQ.'L') THEN
IF (STEP.GT.0.7D0) THEN
LDIV(J) = 1
STEP = NINT(STEP)
ELSE
IF (STEP.GT.0.4D0) THEN
LDIV(J) = 2
ELSE IF (STEP.GT.0.28D0) THEN
LDIV(J) = 3
ELSE IF (STEP.GT.0.23D0) THEN
LDIV(J) = 4
ELSE IF (STEP.GT.0.18D0) THEN
LDIV(J) = 5
ELSE IF (STEP.GT.0.12D0) THEN
LDIV(J) = 6
ELSE
LDIV(J) = 9
END IF
STEP = 1D0/LDIV(J)
END IF
END IF
END IF
GSTEP(J) = STEP
END IF
60 CONTINUE
* Equal grid spacing?
IF (DOEQ .AND. NG(1).EQ.0 .AND. NG(2).EQ.0) THEN
IF (GRID1(0).EQ.0D0 .AND. GRID2(0).EQ.0D0) THEN
GSTEP(1) = MIN(GSTEP(1), GSTEP(2))
GSTEP(2) = GSTEP(1)
ELSE IF (GRID1(0).EQ.0D0) THEN
GSTEP(1) = GSTEP(2)
ELSE IF (GRID2(0).EQ.0D0) THEN
GSTEP(2) = GSTEP(1)
END IF
END IF
* Fine tune the end points.
DO 70 J = 1, 2
IF (FTYPE(J).EQ.'L') THEN
WMIN(J) = AINT(WMIN(J)-1D0)
WMAX(J) = AINT(WMAX(J)+1D0)
ELSE IF (FTYPE(J).EQ.'Y') THEN
* Calendar axis.
IF (GSTEP(J).LT.100D0) THEN
* Daily increments.
WMIN(J) = AINT(WMIN(J))
WMAX(J) = AINT(WMAX(J)+1D0)
ELSE
* Start on Jan/01.
CALL PGMJD (0, WMIN(J), IY, IM, ID)
CALL PGMJD (1, WMIN(J), IY, 1, 1)
CALL PGMJD (0, WMAX(J), IY, IM, ID)
IF (GSTEP(J).LT.10000D0) THEN
* Monthly increments.
CALL PGMJD (1, WMAX(J), IY, 12, 1)
ELSE
* Yearly increments.
CALL PGMJD (1, WMAX(J), IY+1, 1, 1)
END IF
END IF
ELSE
TMP = AINT(WMIN(J)/GSTEP(J))*GSTEP(J)
IF (TMP.GE.WMIN(J)) TMP = TMP - GSTEP(J)
WMIN(J) = TMP
TMP = AINT(WMAX(J)/GSTEP(J))*GSTEP(J)
IF (TMP.LE.WMAX(J)) TMP = TMP + GSTEP(J)
WMAX(J) = TMP
END IF
DW(J) = WMAX(J) - WMIN(J)
SW(J) = DW(J)/NSTEP(J)
* Adjust NSTEP so that SW divides GSTEP.
IF (SW(J).LT.GSTEP(J)) THEN
SW(J) = GSTEP(J)/ANINT(GSTEP(J)/SW(J))
ELSE
SW(J) = GSTEP(J)
END IF
NSTEP(J) = ANINT(DW(J)/SW(J))
70 CONTINUE
* Draw the grid.
* Get absolute scale for tick marks.
CALL PGQVP (2, X1, X2, Y1, Y2)
XSCL = (X2-X1)/(TRC(1)-BLC(1))
YSCL = (Y2-Y1)/(TRC(2)-BLC(2))
* Decode tick mark control.
DO 80 J = 1, 2
IF (GCODE(J).EQ.2) THEN
TCODE(J,1) = -1
TCODE(J,2) = -1
TCODE(J,3) = -1
TCODE(J,4) = -1
ELSE IF (GCODE(J).EQ.1) THEN
TCODE(J,1) = 1
TCODE(J,2) = 1
TCODE(J,3) = 1
TCODE(J,4) = 1
ELSE IF (GCODE(J).LT.0) THEN
K = ABS(GCODE(J))
TCODE(J,1) = MOD(K,10)
TCODE(J,2) = MOD(K/10,10)
TCODE(J,3) = MOD(K/100,10)
TCODE(J,4) = MOD(K/1000,10)
ELSE
TCODE(J,1) = 0
TCODE(J,2) = 0
TCODE(J,3) = 0
TCODE(J,4) = 0
END IF
80 CONTINUE
* Draw each set of grid lines.
OVERFL = .FALSE.
DO 120 J = 1, 2
IF (GCODE(J).EQ.0) GO TO 120
IF (J.EQ.1) THEN
CALL PGSCI (CJ(1))
K = 2
ELSE
CALL PGSCI (CJ(2))
K = 1
END IF
IF (NG(J).GT.0) THEN
NWJ = NG(J)
ELSE IF (FTYPE(J).EQ.'Y' .AND. GSTEP(J).GE.100D0) THEN
* Calendar axis.
CALL PGMJD (0, WMAX(J), IY, IM, ID)
IF (GSTEP(J).LT.10000D0) THEN
NWJ = 12*IY + IM
CALL PGMJD (0, WMIN(J), IY, IM, ID)
NWJ = (NWJ - (12*IY + IM))/INT(GSTEP(J)/100D0)
ELSE
NWJ = IY
CALL PGMJD (0, WMIN(J), IY, IM, ID)
NWJ = (NWJ - IY)/INT(GSTEP(J)/10000D0)
END IF
ELSE
NWJ = NINT(DW(J)/GSTEP(J))
IW0 = NINT(WMIN(J)/GSTEP(J))
END IF
DO 110 IWJ = 0, NWJ
MAJOR = .FALSE.
* Determine the world coordinate of the grid line.
IF (NG(J).GT.0) THEN
* User-specified.
IF (IWJ.EQ.0) GO TO 110
IF (J.EQ.1) THEN
WORLD(1) = GRID1(IWJ)
ELSE
WORLD(2) = GRID2(IWJ)
END IF
ELSE
* Internally computed.
IF (FTYPE(J).EQ.'Y' .AND. GSTEP(J).GE.100D0) THEN
* Calendar axis.
CALL PGMJD (0, WMIN(J), IY, IM, ID)
IF (GSTEP(J).LT.10000D0) THEN
IM = IM + IWJ*INT(GSTEP(J)/100D0)
CALL PGMJD (1, WORLD(J), IY, IM, ID)
ELSE
IY = IY + IWJ*INT(GSTEP(J)/10000D0)
CALL PGMJD (1, WORLD(J), IY, IM, ID)
END IF
ELSE
WORLD(J) = (IW0 + IWJ)*GSTEP(J)
* Logarithmic?
IF (FTYPE(J).EQ.'L') THEN
TMP = MOD(WORLD(J),1D0)
IF (TMP.LT.0D0) TMP = TMP + 1D0
L = NINT(TMP*LDIV(J))
IF (L.EQ.0) THEN
* Major tick mark.
MAJOR = .TRUE.
ELSE
* Adjust logarithmic scales.
IF (LDIV(J).LE.6) THEN
L = LTABL(L,LDIV(J))
ELSE
L = L + 1
END IF
WORLD(J) = WORLD(J) - TMP + LOG10(DBLE(L))
END IF
END IF
END IF
END IF
NP = 0
GETEND = .TRUE.
DO 100 IWK = 0, NSTEP(K)
WORLD(K) = WMIN(K) + IWK*SW(K)
IF (GETEND) THEN
* Get end-point context.
IF (DOLBOX) THEN
XY(1) = (WORLD(1) - WXY(1))/XSPAN
XY(2) = (WORLD(2) - WXY(3))/YSPAN
ELSE
CALL NLFUNC (1, NLC, NLI, NLD, NLCPRM, NLIPRM,
: NLDPRM, WORLD, XY, CONTRL, CONTXT, IERR)
END IF
IF (IERR.LE.0) THEN
X1 = REAL(XY(1))
Y1 = REAL(XY(2))
INSIDE = X1.GT.BLC(1) .AND. X1.LT.TRC(1) .AND.
: Y1.GT.BLC(2) .AND. Y1.LT.TRC(2)
NP = 1
XR(1) = X1
YR(1) = Y1
PREVIN = INSIDE
GETEND = .FALSE.
LABLOK = IERR.NE.-J .AND. IERR.NE.-3
END IF
GO TO 100
END IF
DO 90 ISTEP = 1, 1000
IF (DOLBOX) THEN
XY(1) = (WORLD(1) - WXY(1))/XSPAN
XY(2) = (WORLD(2) - WXY(3))/YSPAN
ELSE
CALL NLFUNC (2, NLC, NLI, NLD, NLCPRM, NLIPRM,
: NLDPRM, WORLD, XY, CONTRL, CONTXT, IERR)
END IF
IF (IERR.GT.0) THEN
* Flush buffer.
IF (NP.GT.1) CALL PGLINE(NP, XR, YR)
NP = 0
GETEND = .TRUE.
GO TO 100
END IF
IF (NP.EQ.BUFSIZ) THEN
* Recycle buffer.
CALL PGLINE(NP, XR, YR)
XR(1) = XR(NP)
YR(1) = YR(NP)
NP = 1
END IF
X2 = REAL(XY(1))
Y2 = REAL(XY(2))
INSIDE = X2.GT.BLC(1) .AND. X2.LT.TRC(1) .AND.
: Y2.GT.BLC(2) .AND. Y2.LT.TRC(2)
IF (.NOT.INSIDE) THEN
* For tick marks at the left or right edge.
IF ((X2.EQ.BLC(1) .OR. X2.EQ.TRC(1)) .AND.
: Y2.GT.BLC(2) .AND. Y2.LT.TRC(2)) THEN
INSIDE = X2.EQ.XR(NP)
END IF
END IF
IF (.NOT.INSIDE) THEN
* For tick marks at the bottom or top edge.
IF ((Y2.EQ.BLC(2) .OR. Y2.EQ.TRC(2)) .AND.
: X2.GT.BLC(1) .AND. X2.LT.TRC(1)) THEN
INSIDE = Y2.EQ.YR(NP)
END IF
END IF
IF (NP.EQ.0) THEN
NP = 1
XR(1) = X2
YR(1) = Y2
ELSE
IF (INSIDE) THEN
* This point is inside the frame...
IF (.NOT.PREVIN) THEN
* ...but the previous one was outside.
X1 = XR(NP)
Y1 = YR(NP)
FSEG = 0
XPOINT = 0.0
IF (ABS(X2-X1).GT.XTOL) THEN
S = (Y2-Y1)/(X2-X1)
IF (XR(NP).LE.BLC(1)) THEN
FSEG = 2
XR(NP) = BLC(1)
XPOINT = Y1 + (XR(NP) - X1)*S
YR(NP) = XPOINT
ELSE IF (XR(NP).GE.TRC(1)) THEN
FSEG = 4
XR(NP) = TRC(1)
XPOINT = Y1 + (XR(NP) - X1)*S
YR(NP) = XPOINT
END IF
END IF
IF (ABS(Y2-Y1).GT.YTOL) THEN
S = (X2-X1)/(Y2-Y1)
IF (YR(NP).LE.BLC(2)) THEN
FSEG = 1
YR(NP) = BLC(2)
XPOINT = X1 + (YR(NP) - Y1)*S
XR(NP) = XPOINT
ELSE IF (YR(NP).GE.TRC(2)) THEN
FSEG = 3
YR(NP) = TRC(2)
XPOINT = X1 + (YR(NP) - Y1)*S
XR(NP) = XPOINT
END IF
END IF
IF (FSEG.EQ.0) THEN
* The crossing is too oblique.
INSIDE = .FALSE.
ELSE
* Record this crossing point.
IF (TCODE(J,FSEG).NE.0 .AND. LABLOK) THEN
IF (IC.LT.NC-1) THEN
IC = IC + 1
CACHE(1,IC) = FSEG
CACHE(2,IC) = XPOINT
CACHE(3,IC) = J
CACHE(4,IC) = WORLD(J)
ELSE
* Cache overflow.
OVERFL = .TRUE.
END IF
END IF
IF (TCODE(J,FSEG).GT.0) THEN
* Just want tick marks.
S = (XSCL*(X2-X1))**2 + (YSCL*(Y2-Y1))**2
S = SQRT(S)/TCODE(J,FSEG)
IF (MAJOR) S = S/1.5
NP = NP + 1
XR(NP) = XR(NP-1) + (X2-X1)*TIKLEN/S
YR(NP) = YR(NP-1) + (Y2-Y1)*TIKLEN/S
CALL PGLINE(NP, XR, YR)
NP = 1
END IF
END IF
END IF
IF (INSIDE .AND. GCODE(J).EQ.2) THEN
* Full grid.
NP = NP + 1
END IF
XR(NP) = X2
YR(NP) = Y2
ELSE
* This point is outside the frame...
IF (PREVIN) THEN
* ...but the previous one was inside.
X1 = XR(NP)
Y1 = YR(NP)
NP = NP + 1
XR(NP) = X2
YR(NP) = Y2
FSEG = 0
XPOINT = 0.0
IF (ABS(X2-X1).GT.XTOL) THEN
S = (Y2-Y1)/(X2-X1)
IF (XR(NP).LE.BLC(1)) THEN
FSEG = 2
XR(NP) = BLC(1)
XPOINT = Y1 + (XR(NP) - X1)*S
YR(NP) = XPOINT
ELSE IF (XR(NP).GE.TRC(1)) THEN
FSEG = 4
XR(NP) = TRC(1)
XPOINT = Y1 + (XR(NP) - X1)*S
YR(NP) = XPOINT
END IF
END IF
IF (ABS(Y2-Y1).GT.YTOL) THEN
S = (X2-X1)/(Y2-Y1)
IF (YR(NP).LE.BLC(2)) THEN
FSEG = 1
YR(NP) = BLC(2)
XPOINT = X1 + (YR(NP) - Y1)*S
XR(NP) = XPOINT
ELSE IF (YR(NP).GE.TRC(2)) THEN
FSEG = 3
YR(NP) = TRC(2)
XPOINT = X1 + (YR(NP) - Y1)*S
XR(NP) = XPOINT
END IF
END IF
IF (FSEG.EQ.0) THEN
* The crossing is too oblique.
INSIDE = .TRUE.
IF (GCODE(J).EQ.2) THEN
* Full grid.
NP = NP + 1
END IF
XR(NP) = X2
YR(NP) = Y2
ELSE
* Record this crossing point.
IF (TCODE(J,FSEG).NE.0 .AND. LABLOK) THEN
IF (IC.LT.NC-1) THEN
IC = IC + 1
CACHE(1,IC) = FSEG
CACHE(2,IC) = XPOINT
CACHE(3,IC) = J
CACHE(4,IC) = WORLD(J)
ELSE
* Cache overflow.
OVERFL = .TRUE.
END IF
END IF
IF (TCODE(J,FSEG).GT.0) THEN
* Just want tick marks.
X1 = XR(NP)
Y1 = YR(NP)
X2 = XR(NP-1)
Y2 = YR(NP-1)
S = (XSCL*(X2-X1))**2 + (YSCL*(Y2-Y1))**2
S = SQRT(S)/TCODE(J,FSEG)
IF (MAJOR) S = S/1.5
XR(NP-1) = X1 + (X2-X1)*TIKLEN/S
YR(NP-1) = Y1 + (Y2-Y1)*TIKLEN/S
END IF
* Flush buffer.
IF (TCODE(J,FSEG).NE.0) THEN
CALL PGLINE(NP, XR, YR)
END IF
NP = 0
END IF
ELSE
* The previous point was also outside.
XR(NP) = X2
YR(NP) = Y2
END IF
END IF
END IF
PREVIN = INSIDE
LABLOK = IERR.NE.-J .AND. IERR.NE.-3
IF (CONTRL.EQ.0) THEN
GO TO 100
ELSE IF (CONTRL.EQ.1) THEN
* Flush buffer.
IF (NP.GT.1) CALL PGLINE(NP, XR, YR)
NP = 0
END IF
90 CONTINUE
100 CONTINUE
IF (NP.GT.1) CALL PGLINE(NP, XR, YR)
110 CONTINUE
120 CONTINUE
IERR = 0
IF (OVERFL) IERR = 3
* Produce axis labels.
130 IF (LABCTL.NE.-1) CALL PGCRLB (BLC, TRC, IDENTS, FTYPE, LABCTL,
: CJ, NC, IC, CACHE)
* Restore the original viewport, window and pen colour.
999 CALL PGSVP (XVP1, XVP2, YVP1, YVP2)
CALL PGSWIN (WXY(1), WXY(2), WXY(3), WXY(4))
CALL PGSCI (CI0)
RETURN
END
*=======================================================================
*
* PGCRLB is a helper routine for PGSBOX, not meant to be called directly
* since it expects the viewport and window to be scaled to the full
* extent; it labels a curvilinear coordinate grid.
*
* Given:
* BLC R(2) Cartesian coordinates of the bottom left-hand
* corner.
* TRC R(2) Cartesian coordinates of the top right-hand
* corner.
*
* IDENTS C(3)*(*) Identification strings (see PGSBOX).
*
* FTYPE C(2)*1 Axis types, used for axis labelling (see
* PGSBOX).
*
* LABCTL I Decimal encoded grid labelling control (see
* PGSBOX).
*
* CI I(7) Colour table (see PGSBOX).
*
* Given and/or returned:
* NC I Upper array index for CACHE.
*
* IC I Current number of entries in the CACHE table.
*
* CACHE D(4,0:NC) Table of points where the tick marks or grid
* lines cross the frame (see PGSBOX).
*
* Author: Mark Calabretta, Australia Telescope National Facility
*=======================================================================
SUBROUTINE PGCRLB (BLC, TRC, IDENTS, FTYPE, LABCTL, CI, NC, IC,
: CACHE)
*-----------------------------------------------------------------------
LOGICAL ANGLE, DODEG, DOMIN, DOYEAR, LFORCE, SEXA(2), TICKIT
INTEGER CI(7), DOLAB(4), EDGE, EDJE, IC, ID, ID2, IM, IM2,
: IMAG(2), ITER, IWRLD, IY, IY2, J, JC, K, K1, K2, KWRLD,
: L, LABCTL, LD, LM, LMAG(2), LS, LV, M, M1, M2, MM, NC,
: NCH, NI(2,0:4), NLAB, NLABS(2,-2:6), NSWAP, PP,
: PRVDEG(2), PRVMIN(2), PRVEDG, PRVYR(2), SEXSUP(2),
: SKOP(4)
REAL ANGL, BLC(2), FJUST, BNDRY(4), OMAG(2), SI(2), TRC(2),
: X, XBOX(4), XCH, XL, XW1, XW2, Y, YCH, YBOX(4), YL, YW1,
: YW2, Z
DOUBLE PRECISION CACHE(4,0:NC), MJD1(2), MJD2(2), TMP, VS
CHARACTER ESCAPE*1, EXPONT*20, FMT*8, IDENTS(3)*(*), TEXT*80,
: FTYPE(2)*1, TXT(2)*80
DATA ESCAPE /'\\'/
* These are to stop compiler messages about uninitialized variables.
DATA DODEG, DOMIN, DOYEAR /3 * .FALSE./
DATA XL, YL /2 * -999.0/
*-----------------------------------------------------------------------
* Normalize angular table entries.
IF (INDEX('ABDEGH',FTYPE(1)).NE.0 .OR.
: INDEX('ABDEGH',FTYPE(2)).NE.0) THEN
DO 10 J = 1, IC
IWRLD = NINT(CACHE(3,J))
IF (INDEX('ADG', FTYPE(IWRLD)).NE.0) THEN
CACHE(4,J) = MOD(CACHE(4,J), 360D0)
IF (CACHE(4,J).LT.0D0) CACHE(4,J) = CACHE(4,J) + 360D0
ELSE IF (INDEX('BEH', FTYPE(IWRLD)).NE.0) THEN
CACHE(4,J) = MOD(CACHE(4,J), 360D0)
IF (CACHE(4,J).LE.-180D0) THEN
CACHE(4,J) = CACHE(4,J) + 360D0
ELSE IF (CACHE(4,J).GT.180D0) THEN
CACHE(4,J) = CACHE(4,J) - 360D0
END IF
END IF
IF (INDEX('GHI', FTYPE(IWRLD)).NE.0) THEN
* Angle expressed as time.
CACHE(4,J) = CACHE(4,J)/15D0
END IF
10 CONTINUE
END IF
* Reorganize the table entries.
* Sort crossings for each of the four frame segments.
DO 40 ITER = 1, IC
NSWAP = 0
DO 30 J = 1, IC-1
IF (CACHE(1,J).LT.CACHE(1,J+1)) GO TO 30
IF (CACHE(1,J).EQ.CACHE(1,J+1) .AND.
: CACHE(2,J).LE.CACHE(2,J+1)) GO TO 30
NSWAP = NSWAP + 1
DO 20 M = 1, 4
TMP = CACHE(M,J)
CACHE(M,J) = CACHE(M,J+1)
CACHE(M,J+1) = TMP
20 CONTINUE
30 CONTINUE
IF (NSWAP.EQ.0) GO TO 50
40 CONTINUE
* Squeeze out duplicates.
50 JC = IC
DO 90 J = 2, IC
IF (J.GT.JC) GO TO 100
DO 60 M = 1, 4
IF (CACHE(M,J).NE.CACHE(M,J-1)) GO TO 90
60 CONTINUE
* This entry is the same as the previous one.
JC = JC - 1
DO 80 K = J, JC
DO 70 M = 1, 4
CACHE(M,K) = CACHE(M,K+1)
70 CONTINUE
80 CONTINUE
90 CONTINUE
100 IC = JC
* How do we label the edges of the frame?
* Determine separability indices.
NI(1,0) = 0
NI(1,1) = 0
NI(1,2) = 0
NI(1,3) = 0
NI(1,4) = 0
NI(2,0) = 0
NI(2,1) = 0
NI(2,2) = 0
NI(2,3) = 0
NI(2,4) = 0
DO 110 J = 1, IC
IWRLD = NINT(CACHE(3,J))
EDGE = NINT(CACHE(1,J))
NI(IWRLD,0) = NI(IWRLD,0) + 1
NI(IWRLD,EDGE) = NI(IWRLD,EDGE) + 1
110 CONTINUE
SI(1) = 0.0
SI(2) = 0.0
IF (NI(1,0).GT.0) SI(1) = 2.0*REAL(NI(1,1)+NI(1,3))/NI(1,0) - 1.0
IF (NI(2,0).GT.0) SI(2) = 2.0*REAL(NI(2,1)+NI(2,3))/NI(2,0) - 1.0
* Which coordinates go on which edges?
IF (LABCTL.GT.0) THEN
* User-defined.
L = LABCTL
ELSE
* Work it out ourselves.
L = 0
IF (ABS(SI(1)-SI(2)).GT.1.0) THEN
* Approximately horizontal/vertical grid lines.
IF (SI(1).GT.SI(2)) THEN
* First world coordinate with vertical grid lines.
IF (NI(1,1).GT.3 .OR. NI(1,1).GE.NI(1,3)) THEN
* Label bottom of frame.
L = L + 1
ELSE
* Label top of frame.
L = L + 100
END IF
* Second world coordinate with horizontal grid lines.
IF (NI(2,2).GT.3 .OR. NI(2,2).GE.NI(2,4)) THEN
* Label left side of frame.
L = L + 20
ELSE
* Label right side of frame.
L = L + 2000
END IF
ELSE
* First world coordinate with horizontal grid lines.
IF (NI(1,2).GT.3 .OR. NI(1,2).GE.NI(1,4)) THEN
* Label left side of frame.
L = L + 10
ELSE
* Label right side of frame.
L = L + 1000
END IF
* Second world coordinate with vertical grid lines.
IF (NI(2,1).GT.3 .OR. NI(2,1).GE.NI(2,3)) THEN
* Label bottom of frame.
L = L + 2
ELSE
* Label top of frame.
L = L + 200
END IF
END IF
ELSE
* Skew grid lines or worse.
IF (SI(1).GT.0.5D0) THEN
* First world coordinate with vertical grid lines.
IF (NI(1,1).GT.3 .OR. NI(1,1).GT.NI(1,3)) THEN
L = 1
ELSE
L = 100
END IF
IF (SI(2).GT.0.5D0) THEN
* Second world coordinate also with vertical grid lines.
IF (L.EQ.1) THEN
L = 201
ELSE
IF (NI(2,1).GT.1 .OR. NI(2,1).GT.NI(2,3)) THEN
L = 102
ELSE
L = 300
END IF
END IF
ELSE
* Second world coordinate with diagonal grid lines.
L = L + 2020
END IF
ELSE IF (SI(1).LT.-0.5D0) THEN
* First world coordinate with horizontal grid lines.
IF (NI(1,2).GT.3 .OR. NI(1,2).GT.NI(1,4)) THEN
L = 10
ELSE
L = 1000
END IF
IF (SI(2).LT.-0.5D0) THEN
* Second world coordinate also with horizontal grid.
IF (L.EQ.10) THEN
L = 2010
ELSE
IF (NI(2,2).GT.1 .OR. NI(2,2).GT.NI(2,4)) THEN
L = 1020
ELSE
L = 3000
END IF
END IF
ELSE
* Second world coordinate with diagonal grid lines.
L = L + 202
END IF
ELSE IF (SI(2).GT.0.5D0) THEN
* Second world coordinate with vertical grid lines.
IF (NI(2,1).GT.3 .OR. NI(2,1).GT.NI(2,3)) THEN
L = 1012
ELSE
L = 1210
END IF
ELSE IF (SI(2).LT.-0.5D0) THEN
* Second world coordinate with horizontal grid lines.
IF (NI(2,2).GT.3 .OR. NI(2,2).GT.NI(2,4)) THEN
L = 121
ELSE
L = 2101
END IF
ELSE
* Desperation stakes! Label all four axes.
K1 = NI(1,3) + NI(1,1)
K2 = NI(2,4) + NI(2,2)
L = 2121
M1 = NI(1,4) + NI(1,1)
M2 = NI(2,3) + NI(2,2)
IF (M1.GE.K1 .AND. M2.GE.K2) THEN
L = 1221
K1 = M1
K2 = M2
END IF
M1 = NI(1,2) + NI(1,1)
M2 = NI(2,4) + NI(2,3)
IF (M1.GE.K1 .AND. M2.GE.K2) THEN
L = 2211
K1 = M1
K2 = M2
END IF
M1 = NI(1,4) + NI(1,2)
M2 = NI(2,3) + NI(2,1)
IF (M1.GE.K1 .AND. M2.GE.K2) THEN
L = 1212
K1 = M1
K2 = M2
END IF
M1 = NI(1,3) + NI(1,2)
M2 = NI(2,4) + NI(2,1)
IF (M1.GE.K1 .AND. M2.GE.K2) THEN
L = 2112
K1 = M1
K2 = M2
END IF
M1 = NI(1,4) + NI(1,3)
M2 = NI(2,2) + NI(2,1)
IF (M1.GE.K1 .AND. M2.GE.K2) THEN
L = 1122
K1 = M1
K2 = M2
END IF
END IF
END IF
END IF
* Mark labels as unwanted by setting their edges negative.
DOLAB(1) = MOD(L,10)
DOLAB(2) = MOD(L/10,10)
DOLAB(3) = MOD(L/100,10)
DOLAB(4) = MOD(L/1000,10)
DO 120 J = 1, IC
EDGE = NINT(CACHE(1,J))
IWRLD = NINT(CACHE(3,J))
IF (IWRLD.EQ.1) THEN
IF (MOD(DOLAB(EDGE),2).NE.1) CACHE(1,J) = -EDGE
ELSE
IF (MOD(DOLAB(EDGE)/2,2).NE.1) CACHE(1,J) = -EDGE
END IF
120 CONTINUE
* Determine labelling precision.
* Order of magnitude for plain numeric world coordinates.
IMAG(1) = 0
IMAG(2) = 0
IF (FTYPE(1).EQ.' ' .OR. FTYPE(2).EQ.' ') THEN
OMAG(1) = 0.0
OMAG(2) = 0.0
DO 130 J = 1, IC
IWRLD = NINT(CACHE(3,J))
IF (FTYPE(IWRLD).EQ.' ') THEN
* Plain numeric.
IF (CACHE(4,J).EQ.0D0) GO TO 130
OMAG(IWRLD) = OMAG(IWRLD) + LOG10(ABS(CACHE(4,J)))
IMAG(IWRLD) = IMAG(IWRLD) + 1
END IF
130 CONTINUE
IF (IMAG(1).GT.0) IMAG(1) = INT(OMAG(1)/IMAG(1))
IF (IMAG(1).GE.-2 .AND. IMAG(1).LE.4) IMAG(1) = 0
IF (IMAG(2).GT.0) IMAG(2) = INT(OMAG(2)/IMAG(2))
IF (IMAG(2).GE.-2 .AND. IMAG(2).LE.4) IMAG(2) = 0
* Renormalize grid values.
IF (IMAG(1).NE.0 .OR. IMAG(2).NE.0) THEN
DO 140 J = 1, IC
IWRLD = NINT(CACHE(3,J))
CACHE(4,J) = CACHE(4,J)/10D0**IMAG(IWRLD)
140 CONTINUE
END IF
END IF
* Sexagesimal labelling.
SEXA(1) = INDEX('DEFGHITy', FTYPE(1)).NE.0
SEXA(2) = INDEX('DEFGHITy', FTYPE(2)).NE.0
IF (SEXA(1) .OR. SEXA(2)) THEN
DO 150 K = -2, 6
NLABS(1,K) = 0
NLABS(2,K) = 0
150 CONTINUE
DO 180 J = 1, IC
* Use this label?
EDGE = NINT(CACHE(1,J))
IF (EDGE.LT.0) GO TO 180
* Skip non-sexagesimal coordinates.
IWRLD = NINT(CACHE(3,J))
IF (.NOT.SEXA(IWRLD)) GO TO 180
* Defeat rounding errors.
IF (FTYPE(IWRLD).EQ.'y') THEN
TMP = ABS(MOD(CACHE(4,J),1D0)*86400D0) + 5D-7
ELSE
TMP = ABS(CACHE(4,J)*3600D0) + 5D-7
END IF
LV = INT(MOD(TMP, 1D0)*1D6)
IF (LV.NE.0) THEN
* Sub-arcsec/second resolution.
M = 1
DO 160 K = 1, 6
M = M*10
IF (MOD(LV,M).NE.0) THEN
L = 7 - K
GO TO 170
END IF
160 CONTINUE
ELSE
LS = INT(TMP)
IF (MOD(LS,60).NE.0) THEN
L = 0
ELSE IF (MOD(LS,3600).NE.0) THEN
L = -1
ELSE
L = -2
END IF
END IF
* Use CACHE(1,J) temporarily to hold L.
170 NLABS(IWRLD,L) = NLABS(IWRLD,L) + 1
CACHE(1,J) = CACHE(1,J) + 0.1 + L/100.0
180 CONTINUE
* How many fields are needed to get enough labels?
DO 200 IWRLD = 1, 2
NLAB = 0
DO 190 K = -2, 6
NLAB = NLAB + NLABS(IWRLD,K)
IF (NLAB.GT.3 .OR. K.EQ.6) THEN
LMAG(IWRLD) = K
GO TO 200
END IF
NLABS(IWRLD,K+1) = NLABS(IWRLD,K) + NLABS(IWRLD,K+1)
190 CONTINUE
200 CONTINUE
* Disable unwanted labels.
DO 210 J = 1, IC
* Use this label?
EDGE = NINT(CACHE(1,J))
IF (EDGE.LT.0) GO TO 210
* Skip non-sexagesimal coordinates.
IWRLD = NINT(CACHE(3,J))
IF (.NOT.SEXA(IWRLD)) GO TO 210
L = NINT(100*MOD(CACHE(1,J),1.0)) - 10
IF (L.LE.LMAG(IWRLD)) THEN
* Wanted.
CACHE(1,J) = EDGE
ELSE
* Not wanted.
CACHE(1,J) = -EDGE
END IF
210 CONTINUE
END IF
* Produce labels.
XW1 = BLC(1)
XW2 = TRC(1)
YW1 = BLC(2)
YW2 = TRC(2)
* These will define a box that just contains the labels.
BNDRY(1) = YW1
BNDRY(2) = XW1
BNDRY(3) = YW2
BNDRY(4) = XW2
* These will record the edges on which labels were actually written.
SKOP(1) = 0
SKOP(2) = 0
SKOP(3) = 0
SKOP(4) = 0
* Calendar date range.
MJD1(1) = 1D99
MJD1(2) = 1D99
MJD2(1) = -1D99
MJD2(2) = -1D99
* Character height.
CALL PGQCS (4, XCH, YCH)
PRVEDG = 0
* Loop through the axis crossing table.
DO 340 J = 1, IC
* Determine the position.
IWRLD = NINT(CACHE(3,J))
CALL PGSCI (CI(IWRLD+2))
EDGE = ABS(NINT(CACHE(1,J)))
IF (EDGE.NE.PRVEDG) THEN
* Start of new edge.
IF (SEXA(1) .OR. SEXA(2)) THEN
* Sexagesimal field suppression policy.
PRVDEG(1) = -1
PRVMIN(1) = -1
PRVDEG(2) = -1
PRVMIN(2) = -1
SEXSUP(1) = 0
SEXSUP(2) = 0
* Vertical sides.
IF (MOD(EDGE,2).EQ.0) THEN
DO 220 K = J, IC
EDJE = ABS(NINT(CACHE(1,K)))
IF (EDJE.NE.EDGE) GO TO 230
KWRLD = NINT(CACHE(3,K))
IF (SEXSUP(KWRLD).EQ.1) GO TO 220
IF (FTYPE(KWRLD).EQ.'y') THEN
TMP = ABS(MOD(CACHE(4,K),1D0)*24D0)
ELSE
TMP = ABS(CACHE(4,K))
END IF
LV = INT(TMP*3600D0 + 5D-7)
LD = LV/3600
LM = (LV - LD*3600)/60
LS = LV - LD*3600 - LM*60
TMP = TMP - LD
IF (TMP.LT.5D-7) THEN
* Write deg/hr field only when min/sec are zero.
SEXSUP(KWRLD) = 1
ELSE IF (TMP*60-LM.LT.3D-5) THEN
* Write min field only when sec is zero; only
* write the deg/hr field when min is written.
SEXSUP(KWRLD) = 2
END IF
220 CONTINUE
END IF
END IF
230 CONTINUE
PRVYR(1) = -1
PRVYR(2) = -1
XL = -999.0
YL = -999.0
END IF
PRVEDG = EDGE
LFORCE = .FALSE.
* Fix up edge encoding.
EDGE = NINT(CACHE(1,J))
CACHE(1,J) = ABS(EDGE)
* Use this label?
IF (EDGE.LT.0) GO TO 340
IF (EDGE.EQ.1) THEN
* Bottom.
FJUST = 0.5
X = CACHE(2,J)
Y = YW1 - 1.5*YCH
ELSE IF (EDGE.EQ.2) THEN
* Left.
FJUST = 1.0
X = XW1 - 0.5*XCH
Y = CACHE(2,J) - YCH/2.0
ELSE IF (EDGE.EQ.3) THEN
* Top.
FJUST = 0.5
X = CACHE(2,J)
Y = YW2 + 0.5*YCH
ELSE IF (EDGE.EQ.4) THEN
* Right.
FJUST = 0.0
X = XW2 + 0.5*XCH
Y = CACHE(2,J) - YCH/2.0
END IF
* Format the numeric label.
IF (INDEX('ABC', FTYPE(IWRLD)).NE.0) THEN
* Decimal angle; allow up to 6 decimal digits.
TMP = ABS(CACHE(4,J)) + 5D-7
LD = INT(TMP)
K = 1
IF (CACHE(4,J).LT.0D0) THEN
* Insert a minus sign.
TEXT(1:1) = '-'
K = 2
END IF
CALL PGNUMB (LD, 0, 1, TEXT(K:), NCH)
K = K + NCH
TEXT(K:) = ESCAPE // 'uo' // ESCAPE // 'd'
K = K + 4
LV = INT(MOD(TMP,1D0)*1D6)
IF (LV.NE.0) CALL PGNUMB (LV, -6, 1, TEXT(K:), NCH)
TEXT(K:K) = 'd'
ELSE IF (SEXA(IWRLD)) THEN
* Sexagesimal format; angle or time?
ANGLE = INDEX('DEF', FTYPE(IWRLD)).NE.0
L = LMAG(IWRLD)
* Use integer arithmetic to avoid rounding problems.
IF (FTYPE(IWRLD).EQ.'y') THEN
TMP = ABS(MOD(CACHE(4,J),1D0)*24D0)
* Determine date range.
IF (CACHE(4,J).LT.MJD1(IWRLD)) MJD1(IWRLD) = CACHE(4,J)
IF (CACHE(4,J).GT.MJD2(IWRLD)) MJD2(IWRLD) = CACHE(4,J)
ELSE
TMP = ABS(CACHE(4,J))
END IF
VS = TMP*3600D0 + 5D-7
LV = INT(VS)
* Sexagesimal fields.
LD = LV/3600
LM = (LV - LD*3600)/60
LS = LV - LD*3600 - LM*60
* Field suppression policy.
IF (SEXSUP(IWRLD).GT.0) THEN
TMP = TMP - LD
IF (TMP.LT.5D-7) THEN
DODEG = .TRUE.
DOMIN = .TRUE.
ELSE IF (SEXSUP(IWRLD).EQ.2) THEN
DOMIN = TMP*60-LM.LT.3D-5
DODEG = DOMIN .AND. LD.NE.PRVDEG(IWRLD)
ELSE
DODEG = .FALSE.
DOMIN = .FALSE.
END IF
ELSE
DODEG = LD.NE.PRVDEG(IWRLD)
DOMIN = LM.NE.PRVMIN(IWRLD)
END IF
K = 1
IF (L.EQ.-2 .OR. DODEG) THEN
* Write the degree/hour field.
DODEG = .TRUE.
IF (CACHE(4,J).LT.0D0) THEN
* Insert a minus sign.
TEXT(1:1) = '-'
K = 2
END IF
IF (ANGLE) THEN
* Angle.
CALL PGNUMB (LD, 0, 1, TEXT(K:), NCH)
K = K + NCH
TEXT(K:) = ESCAPE // 'uo' // ESCAPE // 'd'
K = K + 5
ELSE
* Time.
IF (LD.LE.9 .AND. INDEX('Ty',FTYPE(IWRLD)).EQ.0) THEN
* Write leading zeroes in the hour field.
WRITE (TEXT(K:), '(I2.2)') LD
K = K + 2
ELSE
CALL PGNUMB (LD, 0, 1, TEXT(K:), NCH)
K = K + NCH
END IF
TEXT(K:) = ESCAPE // 'uh' // ESCAPE // 'd'
K = K + 5
END IF
END IF
IF (L.GE.-1 .AND.
: .NOT.(L.LE.0 .AND. K.GT.1 .AND. LM.EQ.0 .AND. LS.EQ.0)) THEN
* Write arcminute/minute field.
IF (L.EQ.-1 .OR. K.GT.1 .OR. DOMIN) THEN
DOMIN = .TRUE.
IF (ANGLE) THEN
WRITE (TEXT(K:), '(I2.2,A)') LM, ''''
K = K + 3
ELSE
WRITE (TEXT(K:), '(I2.2,A)') LM,
: ESCAPE // 'um' // ESCAPE // 'd'
K = K + 7
END IF
END IF
IF (L.GE.0) THEN
* Arcsec/second field.
IF (ANGLE) THEN
WRITE (TEXT(K:), '(I2.2,A)') LS, '"'
K = K + 3
ELSE
WRITE (TEXT(K:), '(I2.2,A)') LS,
: ESCAPE // 'us' // ESCAPE // 'd'
K = K + 7
END IF
IF (L.GT.0) THEN
* Sub-arcsec/second field.
WRITE (FMT, '(A,I1,A,I1,A)') '(A,I', L, '.', L, ')'
LV = INT(MOD(VS,1D0)*10**L)
WRITE (TEXT(K:), FMT) '.', LV
END IF
END IF
END IF
ELSE IF (FTYPE(IWRLD).EQ.'L') THEN
* Logarithmic.
TMP = MOD(CACHE(4,J),1D0)
IF (TMP.LT.0D0) TMP = TMP + 1D0
MM = NINT(10D0**TMP)
IF (MM.EQ.10) THEN
TMP = TMP - 1D0
MM = 1
END IF
PP = NINT(CACHE(4,J) - TMP)
IF (MM.NE.1) THEN
WRITE (TEXT, '(I1)') MM
ELSE
* FORTRAN is really abysmal sometimes.
WRITE (TEXT, '(I8)') PP
DO 240 K = 1, 8
IF (TEXT(K:K).NE.' ') GO TO 250
240 CONTINUE
250 TEXT = '10' // ESCAPE // 'u' // TEXT(K:8)
LFORCE = .TRUE.
END IF
ELSE IF (FTYPE(IWRLD).EQ.'Y') THEN
* Convert MJD to Gregorian calendar date, YYYY/MM/DD.
CALL PGMJD(0, CACHE(4,J), IY, IM, ID)
DOYEAR = IY.NE.PRVYR(IWRLD)
IF (DOYEAR) THEN
WRITE (TEXT, 260) IY, IM, ID
260 FORMAT (I12,'/',I2.2,'/',I2.2)
DO 270 K = 1, 12
IF (TEXT(K:K).NE.' ') GO TO 280
270 CONTINUE
280 TEXT = TEXT(K:18)
ELSE
WRITE (TEXT, 290) IM, ID
290 FORMAT (I2.2,'/',I2.2)
END IF
ELSE
* Plain number; allow up to six significant digits.
IF (CACHE(4,J).NE.0D0) THEN
PP = INT(LOG10(ABS(CACHE(4,J)))) - 6
MM = NINT(CACHE(4,J)/10D0**PP)
ELSE
PP = 0
MM = 0
END IF
CALL PGNUMB (MM, PP, 0, TEXT, NCH)
END IF
* Write the label if it doesn't overlap the previous one.
CALL PGQTXT (X, Y, 0.0, FJUST, TEXT, XBOX, YBOX)
IF (LFORCE .OR. XBOX(1).GT.XL .OR. YBOX(1).GT.YL) THEN
IF (IWRLD.EQ.1) THEN
CALL PGSCI (CI(3))
ELSE
CALL PGSCI (CI(4))
END IF
CALL PGPTXT (X, Y, 0.0, FJUST, TEXT)
XL = XBOX(4) + 0.5*XCH
YL = YBOX(2) + 0.5*YCH
* Sexagesimal formatting.
IF (SEXA(IWRLD)) THEN
IF (DODEG) PRVDEG(IWRLD) = LD
IF (DOMIN) PRVMIN(IWRLD) = LM
END IF
* Calendar formatting.
IF (FTYPE(IWRLD).EQ.'Y') THEN
IF (DOYEAR) PRVYR(IWRLD) = IY
END IF
* Record the fact.
IF (IWRLD.EQ.1) THEN
SKOP(EDGE) = 2*(SKOP(EDGE)/2) + 1
ELSE
SKOP(EDGE) = 2 + MOD(SKOP(EDGE),2)
END IF
* Boundary within which the numeric labels lie.
IF (YBOX(1).LT.BNDRY(1)) BNDRY(1) = YBOX(1)
IF (XBOX(1).LT.BNDRY(2)) BNDRY(2) = XBOX(1)
IF (YBOX(3).GT.BNDRY(3)) BNDRY(3) = YBOX(3)
IF (XBOX(3).GT.BNDRY(4)) BNDRY(4) = XBOX(3)
* Check the distance to the previous grid line.
TICKIT = .FALSE.
K = J - 1
IF (DOLAB(EDGE).NE.3) THEN
* Only one coordinate element labelled on this edge, no need
* to worry about grid lines belonging to the other.
DO 300 K = J-1, 1, -1
IF (IWRLD.EQ.NINT(CACHE(3,K))) GO TO 310
300 CONTINUE
END IF
310 IF (K.GE.1) THEN
EDJE = ABS(NINT(CACHE(1,K)))
IF (EDJE.EQ.EDGE) THEN
IF (EDGE.EQ.1 .OR. EDGE.EQ.3) THEN
IF (XBOX(1).LT.CACHE(2,K)) TICKIT = .TRUE.
ELSE
IF (YBOX(1).LT.CACHE(2,K)) TICKIT = .TRUE.
END IF
END IF
END IF
* Check the distance to the next grid line.
K = J + 1
IF (DOLAB(EDGE).NE.3) THEN
* Only one coordinate element labelled on this edge, no need
* to worry about grid lines belonging to the other.
DO 320 K = J+1, IC
IF (IWRLD.EQ.NINT(CACHE(3,K))) GO TO 330
320 CONTINUE
END IF
330 IF (K.LE.IC) THEN
EDJE = ABS(NINT(CACHE(1,K)))
IF (EDJE.EQ.EDGE) THEN
IF (EDGE.EQ.1 .OR. EDGE.EQ.3) THEN
IF (XBOX(3).GT.CACHE(2,K)) TICKIT = .TRUE.
ELSE
IF (YBOX(3).GT.CACHE(2,K)) TICKIT = .TRUE.
END IF
END IF
END IF
* Density of grid lines is high.
IF (TICKIT) THEN
* Draw outside pip mark to disambiguate grid lines.
Z = REAL(CACHE(2,J))
IF (EDGE.EQ.1) THEN
CALL PGMOVE (Z, YW1-0.3*YCH)
CALL PGDRAW (Z, YW1)
ELSE IF (EDGE.EQ.2) THEN
CALL PGMOVE (XW1-0.3*XCH, Z)
CALL PGDRAW (XW1, Z)
ELSE IF (EDGE.EQ.3) THEN
CALL PGMOVE (Z, YW2+0.3*YCH)
CALL PGDRAW (Z, YW2)
ELSE IF (EDGE.EQ.4) THEN
CALL PGMOVE (XW2+0.3*XCH, Z)
CALL PGDRAW (XW2, Z)
END IF
END IF
END IF
340 CONTINUE
* Write the identification strings.
* World coordinates.
DO 470 EDGE = 1, 4
TEXT = ' '
DO 440 IWRLD = 1, 2
TXT(IWRLD) = ' '
IF (MOD(SKOP(EDGE)/IWRLD,2).EQ.0) GO TO 440
* Strip off leading blanks.
L = LEN(IDENTS(IWRLD))
DO 350 K = 1, L
IF (IDENTS(IWRLD)(K:K).NE.' ') THEN
TXT(IWRLD) = IDENTS(IWRLD)(K:L)
GO TO 360
END IF
350 CONTINUE
360 IF (IMAG(IWRLD).NE.0 .OR. FTYPE(IWRLD).EQ.'y') THEN
* Find the last non-blank.
DO 370 K = 40, 1, -1
IF (TXT(IWRLD)(K:K).NE.' ') GO TO 380
370 CONTINUE
380 K = K + 1
IF (IMAG(IWRLD).NE.0) THEN
* Add scaling information.
CALL PGNUMB (IMAG(IWRLD), 0, 1, EXPONT, NCH)
TXT(IWRLD)(K:) = ' x10' // ESCAPE // 'u' // EXPONT
ELSE
* Add calendar date range.
CALL PGMJD(0, MJD1(IWRLD), IY, IM, ID)
WRITE (TEXT, 390) IY, IM, ID
390 FORMAT (I12,'/',I2.2,'/',I2.2)
DO 400 L = 1, 12
IF (TEXT(L:L).NE.' ') GO TO 410
400 CONTINUE
410 TXT(IWRLD)(K:) = ' (' // TEXT(L:18)
K = K + 21 - L
CALL PGMJD(0, MJD2(IWRLD), IY2, IM2, ID2)
WRITE (TEXT, 390) IY2, IM2, ID2
IF (IY2.EQ.IY) THEN
IF (IM2.EQ.IM) THEN
IF (ID2.EQ.ID) THEN
TXT(IWRLD)(K:) = ')'
ELSE
TXT(IWRLD)(K:) = ' - ' // TEXT(17:18) // ')'
END IF
ELSE
TXT(IWRLD)(K:) = ' - ' // TEXT(14:18) // ')'
END IF
ELSE
DO 420 L = 1, 12
IF (TEXT(L:L).NE.' ') GO TO 430
420 CONTINUE
430 TXT(IWRLD)(K:) = ' - ' // TEXT(L:18) // ')'
END IF
END IF
END IF
440 CONTINUE
K = 0
IF (TXT(1).NE.' ') THEN
* Identify first world coordinate...
TEXT = TXT(1)
CALL PGSCI (CI(5))
IF (TXT(2).NE.' ') THEN
* ...and also second world coordinate.
DO 450 K = 40, 1, -1
IF (TEXT(K:K).NE.' ') GO TO 460
450 CONTINUE
460 K = K + 1
TEXT(K:) = ', ' // TXT(2)
END IF
ELSE IF (TXT(2).NE.' ') THEN
* Identify second world coordinate only.
TEXT = TXT(2)
CALL PGSCI (CI(6))
ELSE
* No text to write.
GO TO 470
END IF
IF (EDGE.EQ.1) THEN
X = (XW1 + XW2)/2.0
Y = BNDRY(1) - 1.5*YCH
ANGL = 0.0
ELSE IF (EDGE.EQ.2) THEN
IF (TEXT(2:).EQ.' ') THEN
* One character, write upright.
X = BNDRY(2) - 1.0*XCH
Y = (YW1 + YW2)/2.0
ANGL = 0.0
ELSE
X = BNDRY(2) - 0.5*XCH
Y = (YW1 + YW2)/2.0
ANGL = 90.0
END IF
ELSE IF (EDGE.EQ.3) THEN
X = (XW1 + XW2)/2.0
Y = BNDRY(3) + 0.5*YCH
ANGL = 0.0
ELSE IF (EDGE.EQ.4) THEN
IF (TEXT(2:).EQ.' ') THEN
* One character, write upright.
X = BNDRY(4) + 1.0*XCH
Y = (YW1 + YW2)/2.0
ANGL = 0.0
ELSE
X = BNDRY(4) + 0.5*XCH
Y = (YW1 + YW2)/2.0
ANGL = -90.0
END IF
END IF
CALL PGQTXT (X, Y, ANGL, 0.5, TEXT, XBOX, YBOX)
IF (K.EQ.0) THEN
CALL PGPTXT (X, Y, ANGL, 0.5, TEXT)
ELSE
* Two-colour annotation.
CALL PGPTXT (XBOX(1), YBOX(1), ANGL, 0.0, TEXT(:K))
CALL PGSCI (CI(6))
CALL PGPTXT (XBOX(4), YBOX(4), ANGL, 1.0, TEXT(K+1:))
END IF
* Update the boundary.
IF (YBOX(1).LT.BNDRY(1)) BNDRY(1) = YBOX(1)
IF (YBOX(3).LT.BNDRY(1)) BNDRY(1) = YBOX(3)
IF (XBOX(1).LT.BNDRY(2)) BNDRY(2) = XBOX(1)
IF (XBOX(3).LT.BNDRY(2)) BNDRY(2) = XBOX(3)
IF (YBOX(1).GT.BNDRY(3)) BNDRY(3) = YBOX(1)
IF (YBOX(3).GT.BNDRY(3)) BNDRY(3) = YBOX(3)
IF (XBOX(1).GT.BNDRY(4)) BNDRY(4) = XBOX(1)
IF (XBOX(3).GT.BNDRY(4)) BNDRY(4) = XBOX(3)
470 CONTINUE
* Title.
IF (IDENTS(3).NE.' ') THEN
CALL PGSCI (CI(7))
X = (XW1 + XW2)/2.0
Y = BNDRY(3) + 0.5*YCH
CALL PGQTXT (X, Y, 0.0, 0.5, IDENTS(3), XBOX, YBOX)
CALL PGPTXT (X, Y, 0.0, 0.5, IDENTS(3))
* Update the boundary.
IF (XBOX(1).LT.BNDRY(2)) BNDRY(2) = XBOX(1)
IF (YBOX(3).GT.BNDRY(3)) BNDRY(3) = YBOX(3)
IF (XBOX(3).GT.BNDRY(4)) BNDRY(4) = XBOX(3)
END IF
* Return margin widths in Cartesian coordinates.
CACHE(1,NC) = YW1 - BNDRY(1)
CACHE(2,NC) = XW1 - BNDRY(2)
CACHE(3,NC) = BNDRY(3) - YW2
CACHE(4,NC) = BNDRY(4) - XW2
RETURN
END
*=======================================================================
* MJD to/from Gregorian calendar date.
*
* Given:
* CODE I If 1, compute MJD from IY,IM,ID, else vice
* versa.
*
* Given and/or returned:
* MJD D Modified Julian date, (MJD = JD - 2400000.5).
* IY I Year.
* IM I Month (for CODE.EQ.1 may exceed 12, or be zero,
* or negative).
* ID I Day of month (for CODE.EQ.1, may exceed the
* legitimate number of days in the month, or be
* zero, or negative).
*
* Notes:
* These algorithms are from D.A. Hatcher, QJRAS 25, 53-55, as modified
* by P.T. Wallace for use in SLALIB (subroutines CLDJ and DJCL).
*
* Author: Mark Calabretta, Australia Telescope National Facility
*-----------------------------------------------------------------------
SUBROUTINE PGMJD (CODE, MJD, IY, IM, ID)
*-----------------------------------------------------------------------
INTEGER CODE, DD, ID, IM, IY, JD, JM, JY, N4
DOUBLE PRECISION MJD
*-----------------------------------------------------------------------
IF (CODE.EQ.1) THEN
* Calendar date to MJD.
IF (IM.LT.1) THEN
JY = IY - 1 + IM/12
JM = 12 + MOD(IM,12)
ELSE
JY = IY + (IM-1)/12
JM = MOD(IM-1,12) + 1
END IF
MJD =DBLE((1461*(JY - (12-JM)/10 + 4712))/4
: +(306*MOD(JM+9, 12) + 5)/10
: -(3*((JY - (12-JM)/10 + 4900)/100))/4
: + ID - 2399904)
ELSE
* MJD to calendar date.
JD = 2400001 + INT(MJD)
N4 = 4*(JD + ((2*((4*JD - 17918)/146097)*3)/4 + 1)/2 - 37)
DD = 10*(MOD(N4-237, 1461)/4) + 5
IY = N4/1461 - 4712
IM = MOD(2 + DD/306, 12) + 1
ID = MOD(DD, 306)/10 + 1
END IF
RETURN
END
*=======================================================================
* This FORTRAN wrapper on PGSBOX exists solely to define fixed-length
* CHARACTER arguments for cpgsbox().
*
* Author: Mark Calabretta, Australia Telescope National Facility
*-----------------------------------------------------------------------
SUBROUTINE PGSBOK (BLC, TRC, IDENTS, OPT, LABCTL, LABDEN, CI,
: GCODE, TIKLEN, NG1, GRID1, NG2, GRID2, DOEQ, NLFUNC, NLC, NLI,
: NLD, NLCPRM, NLIPRM, NLDPRM, NC, IC, CACHE, IERR)
*-----------------------------------------------------------------------
LOGICAL DOEQ
INTEGER CI(7), GCODE(2), IC, IERR, LABCTL, LABDEN, NC, NG1, NG2,
: NLC, NLD, NLI, NLIPRM(NLI)
REAL BLC(2), TRC(2)
DOUBLE PRECISION CACHE(4,0:NC), GRID1(0:NG1), GRID2(0:NG2),
: NLDPRM(NLD), TIKLEN
CHARACTER IDENTS(3)*80, NLCPRM(NLC)*1, OPT(2)*1
EXTERNAL NLFUNC
*-----------------------------------------------------------------------
CALL PGSBOX (BLC, TRC, IDENTS, OPT, LABCTL, LABDEN, CI, GCODE,
: TIKLEN, NG1, GRID1, NG2, GRID2, DOEQ, NLFUNC, NLC, NLI, NLD,
: NLCPRM, NLIPRM, NLDPRM, NC, IC, CACHE, IERR)
RETURN
END
*=======================================================================
* This FORTRAN wrapper on PGLBOX exists solely to define fixed-length
* CHARACTER arguments for cpglbox().
*
* Author: Mark Calabretta, Australia Telescope National Facility
*-----------------------------------------------------------------------
SUBROUTINE PGLBOK (IDENTS, OPT, LABCTL, LABDEN, CI, GCODE, TIKLEN,
: NG1, GRID1, NG2, GRID2, DOEQ, NC, IC, CACHE, IERR)
*-----------------------------------------------------------------------
LOGICAL DOEQ
INTEGER CI(7), GCODE(2), IC, IERR, LABCTL, LABDEN, NC, NG1, NG2
DOUBLE PRECISION CACHE(4,0:NC), GRID1(0:NG1), GRID2(0:NG2), TIKLEN
CHARACTER IDENTS(3)*80, OPT(2)*1
*-----------------------------------------------------------------------
CALL PGLBOX (IDENTS, OPT, LABCTL, LABDEN, CI, GCODE, TIKLEN, NG1,
: GRID1, NG2, GRID2, DOEQ, NC, IC, CACHE, IERR)
RETURN
END
|