1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
|
""" This module contains classes and functions to describe the embedding
circuit.
**Description:**
In experimental systems, SIS junctions are embedded within complex RF
networks. These networks are referred to as the embedding circuit. Since
all of the components in these embedding circuits are **linear**, the
embedding circuit can be reduced to a **Thevenin equivalent circuit**, with
one for **each tone and harmonic.**
To fully describe the embedding circuit, 3 bits of information are needed
for each signal that is applied to the junction:
1. the frequency of the applied signal,
2. the Thevenin voltage of the embedding circuit at this freq., and
3. the Thevenin impedance of the embedding circuit at this freq.
The main class in this module (``EmbeddingCircuit``) allows the user to
build an embedding circuit in the proper format.
"""
import re
import numpy as np
import scipy.constants as sc
from qmix.misc.terminal import cprint
# EMBEDDING CIRCUIT CLASS ----------------------------------------------------
# TODO: Use @property decorators to avoid setters/getters
class EmbeddingCircuit(object):
"""Class for building and describing the embedding circuit.
This includes the frequencies, Thevenin voltages and Thevenin impedances
of all signals applied to the junction.
Note:
Unless specified otherwise, **all input values are normalized**. The
voltages are normalized to the gap voltage, resistances are normalized
to the normal-state resistance, currents are normalized to gap current,
and frequencies are normalized to the gap frequency. Refer to the
argument descriptions below to see if the value should be normalized or
not.
Creating an instance of this class will set the sizes and data types
of all of the class attributes, but the actual values will need to be
set manually. In this way, this class is sort of like a fancy struct.
The class attributes that have to be set manually are:
- ``freq``: frequencies (normalized to the gap frequency)
- ``vt``: Thevenin voltage (normalized to the gap voltage)
- ``zt``: Thevenin impedance (normalized to the normal resistance)
See the attribute descriptions below for information about how to do
this.
Example:
Here we will create an instance of the embedding circuit class with
2 tones and 3 harmonics:
>>> cct1 = EmbeddingCircuit(2, 3, name='Test 1')
>>> print(cct1)
Embedding circuit (Tones:2, Harmonics:3): Test 1
Once initialized, we can begin defining the properties of the
embedding circuit. I normally start with the frequencies:
>>> cct1.freq[1] = 0.30 # first tone
>>> cct1.freq[2] = 0.32 # second tone
Then, we have to set the voltages and impedances for all of the
different signals. For example, for the 1st harmonic of the 1st tone:
>>> cct1.vt[1,1] = 0.5 # Thevenin voltage
>>> cct1.zt[1,1] = 0.3 + 1j * 0.1 # Thevenin impedance
This has to be done for each signal (a total of 6 times in this case).
In order to use non-normalized values (e.g., set the available power of
a signal in units [W]), we need to define the electrical properties of
the junction during initialization. For example:
>>> cct2 = EmbeddingCircuit(1, 1, vgap=2.8e-3, rn=14.)
You can now set the frequencies. E.g.:
>>> cct2.set_freq(250, f=1, units='GHz')
>>> round(cct2.freq[1], 4)
0.3693
Once an impedance has been set, you can also set the power of the
signal using absolute units. Here we will set the available power for
the first harmonic of the first tone to 10 nW (10e-9 W).
>>> cct2.zt[1,1] = 0.5
>>> cct2.set_available_power(10, 1, 1, 'nW')
And we can then display this power in units [dBm].
>>> cct2.available_power(1, 1, 'dBm')
-50.0
Args:
num_f (int, optional, default is 1): Number of fundamental frequencies
(tones) applied to the junction.
num_p (int, optional, default is 1): Number of harmonics included for
each tone.
vb_min (float, optional, default is 0): Minimum bias voltage.
vb_max (float, optional, default is 2): Maximum bias voltage.
vb_npts (int, optional, default is 201): Number of points in bias
voltage sweep.
fgap (float, optional): Gap frequency of the junction in units [Hz].
This is equal to ``e*Vgap/h``, where ``e`` is the charge of an
electron, ``Vgap`` is the gap voltage, and ``h`` is the Planck
constant. ``fgap`` is used to normalize and de-normalize frequency
values (that't it!).
vgap (float, optional): Gap voltage of the junction in units [V]. This is the
voltage where the sharp non-linearity in the DC I-V curve occurs
(a.k.a., the transition voltage).
rn (float, optional): Normal-state resistance of the junction in units [ohms].
This is the resistance of the junction at a temperature slight
above the critical temperature. It is found by calculating the
dynamic resistance of the DC I-V curve above the gap voltage.
name (str, optional): Name used to describe this specific instance.
Attributes:
freq (numpy.ndarray): An array for the frequencies normalized to the
gap frequency. This is a 1-dimensional array of real numbers. It
contains the frequencies of all of the fundamental tones that
are applied to the junction. The normalized frequency is
equivalent to the normalized photon voltage. The photon voltage is
defined as ``hf/e``, where ``h`` is the Planck constant, ``f`` is
the frequency of the fundamental tone, and ``e`` is the charge of
an electron. Note that this array is 1-based, meaning that the
frequency of the 1st tone is found in ``.freq[1]``. (The index
represents the tone number.) **This attribute must be set after
initialization!**
vt (numpy.ndarray): An array for the Thevenin voltage normalized to the
gap voltage. This is a 2-dimensional array of complex values. It
contains the voltages for all of the Thevenin equivalent circuits
(which describe the embedding circuit). In order, the indices are:
``.vt[f,p]`` for tone ``f`` and harmonic ``p``. Note that this
array is 1-based, meaning that the voltage for tone number 2 /
harmonic number 3 is stored in ``vt[2,3]``. **This attribute must
be set after initialization!**
zt (numpy.ndarray): An array for the Thevenin impedance array
normalized to the normal-state resistance. This is a 2-dimensional
array of complex values. It contains the impedances of all of the
Thevenin equivalent circuits (which describe the embedding
circuit). In order, the indices are: ``.zt[f,p]``, for tone
``f`` and harmonic ``p``. Note that this array is 1-based, meaning
that the impedance for tone number 2, and harmonic number 3 is
stored in ``zt[2,3]``. **This attribute must be set after
initialization!**
num_f (int): Number of fundamental frequencies (tones) applied to the
junction.
num_p (int): Number of harmonics included for each tone.
num_n (int): Total number of signals. This is equal to ``num_f*num_p``.
fgap (float): Gap frequency of the junction in units [Hz]. This is
equal to ``e*Vgap/h``, where ``e`` is the charge of an electron,
``Vgap`` is the gap voltage, and ``h`` is the Planck constant. Note
that ``E=fgap*e`` is the energy required to break Cooper pairs, so
at frequencies above the ``fgap`` the superconductors will begin to
become lossy. Here, ``fgap`` is used to normalize and de-normalize
frequency values (that't it).
vgap (float): Gap voltage of the junction in units [V]. This is the
voltage where the sharp non-linearity in the DC I-V curve occurs
(i.e., the transition voltage). This value is used to normalize
and de-normalize voltages.
igap (float): Gap current of the junction in units [A]. This is equal
to ``vgap/rn``. This value is used to normalize and de-normalize
currents.
rn (float): Normal-state resistance of the junction in units [ohms].
This is the resistance of the junction at a temperature slightly
above the critical temperature. It is found by calculating the
dynamic resistance of the DC I-V curve above the gap voltage. This
value is used to normalize and de-normalize resistances.
vb (numpy.ndarray): Array for the DC bias voltage sweep. This value is
normalized to the gap voltage.
vb_npts (int): Number of points in the bias voltage sweep.
name (str): A name to describe this instance of the embedding circuit
class.
comment (list): A list of comments to describe the different signals.
For example, to describe tone 1/harmonic 1 as the local-oscillator
signal, you might use ``cct.comment[1][1] = "LO"``. This has to be
set after the initialization of the EmbeddingCircuit class.
"""
def __init__(self, num_f=1, num_p=1, vb_min=0, vb_max=2, vb_npts=201, fgap=None, vgap=None, rn=None, name=''):
self.name = name # used to identify the instance
# Check input
assert num_f in [1, 2, 3, 4], \
"Number of tones (num_f) must be equal to 1, 2, 3, or 4."
assert num_p >= 1 and isinstance(num_p, int), \
"Number of harmonics (num_p) must be an integer equal or greater than 1."
assert isinstance(vb_npts, int) and vb_npts >= 1, \
"Number of bias points (vb_npts) must be an integer greater or equal to 1."
assert vb_max >= vb_min, \
"Maximum voltage (vb_max) must be larger than the minimum voltage (vb_min)."
# Number of tones/harmonics
self.num_f = int(num_f)
self.num_p = int(num_p)
self.num_n = self.num_f * self.num_p
# Junction properties (optional)
self.fgap = None
self.vgap = None
self.igap = None
self.rn = None
# Gap voltage
if vgap is not None:
self.vgap = float(vgap)
elif fgap is not None:
self.vgap = float(fgap) * sc.h / sc.e
# Gap frequency
if fgap is not None:
self.fgap = float(fgap)
elif vgap is not None:
self.fgap = float(vgap) * sc.e / sc.h
# Normal-state resistance
if rn is not None:
self.rn = float(rn)
if vgap is not None and rn is not None:
self.igap = vgap / rn
# Initialize embedding circuit
self.freq = np.zeros((num_f + 1), dtype=float)
self.vt = np.zeros((num_f + 1, num_p + 1), dtype=complex)
self.zt = np.zeros((num_f + 1, num_p + 1), dtype=complex)
# Set up bias voltage sweep
self.vb_npts = vb_npts
self.vb = np.linspace(vb_min, vb_max, vb_npts)
# Initialize comment list to label tones/harmonics (optional)
self.comment = []
for f in range(num_f + 1):
self.comment.append(['' for _ in range(num_p + 1)])
def __str__(self):
if self.name != '':
name = ": " + self.name
else:
name = ""
return "Embedding circuit (Tones:{}, Harmonics:{}){}".format(self.num_f, self.num_p, name)
def __repr__(self): # pragma: no cover
return self.__str__()
def initialize_vj(self):
"""Initialize junction voltage array.
Returns an empty matrix that is the shape that ``vj`` should be (the
voltage across the junction). Strictly speaking, ``vj`` shouldn't be
saved within this class, but it is okay for this class to initialize
``vj`` since it has all the data about what the matrix sizes should be.
This function is useful when you want to set the voltage across the
junction directly (skipping the harmonic balance procedure).
Returns:
ndarray: An empty matrix for the junction voltage
"""
return np.zeros((self.num_f + 1, self.num_p + 1, self.vb_npts), dtype=complex)
def available_power(self, f=1, p=1, units='W'):
"""Return available power of tone ``f`` and harmonic ``p``.
Note:
Gap voltage and normal resistance must be set prior to using this
method. If they are not, an error will be raised.
Args:
f (int, optional, default is 1): Tone index number.
p (int, optional, default is 1): Harmonic index number.
units (str, optional, default is 'W'): Units for power. One of 'W',
'mW', 'uW', 'nW', 'pW', 'fW', 'dBm', or 'dBW'.
Returns:
float: Available power in specified units
"""
assert self.vgap is not None, 'Gap voltage not set'
assert self.rn is not None, 'Normal resistance not set'
v_v = self.vt[f, p] * self.vgap
r_ohms = self.zt[f, p].real * self.rn
if r_ohms != 0.:
power = np.abs(v_v) ** 2 / r_ohms / 8.
else:
power = 0
if units.lower() == 'w':
return power
elif units.lower() == 'mw':
return power / sc.milli
elif units.lower() == 'uw':
return power / sc.micro
elif units.lower() == 'nw':
return power / sc.nano
elif units.lower() == 'pw':
return power / sc.pico
elif units.lower() == 'fw':
return power / sc.femto
elif units.lower() == 'dbm':
return 10 * np.log10(power * 1e3)
elif units.lower() == 'dbw':
return 10 * np.log10(power)
else:
raise ValueError('Not a recognized unit for power.')
def set_available_power(self, power, f=1, p=1, units='W'):
"""Set available power of tone ``f`` and harmonic ``p``.
This method will set the Thevenin voltage in order to provide the
correct power level.
Note:
The gap voltage, normal resistance and Thevenin impedance must be
set prior to using this method. Otherwise, an assertion error will
be raised.
Args:
power (float): power, in given units
f (int, optional, default is 1): tone
p (int, optional, default is 1): harmonic
units (str, optional, default is 'W'): units for power. One of 'W',
'mW', 'uW', 'nW', 'pW', 'fW', 'dBm', or 'dBW'.
"""
assert self.vgap is not None, 'Gap voltage not set'
assert self.rn is not None, 'Normal resistance not set'
assert self.zt[f, p] != 0, 'Embedding impedance not set'
if units.lower() == 'w':
pass
elif units.lower() == 'mw':
power *= sc.milli
elif units.lower() == 'uw':
power *= sc.micro
elif units.lower() == 'nw':
power *= sc.nano
elif units.lower() == 'pw':
power *= sc.pico
elif units.lower() == 'fw':
power *= sc.femto
elif units.lower() == 'dbm':
power = 10 ** (power / 10) * 1e-3
elif units.lower() == 'dbw':
power = 10 ** (power / 10)
else:
raise ValueError('Unit not recognized.')
# Thevenin resistance, in units [ohms]
r_ohms = self.zt[f, p].real * self.rn
# Thevenin voltage, in units [V]
volt_v = np.sqrt(8 * power * r_ohms)
self.vt[f, p] = volt_v / self.vgap
def set_alpha(self, alpha, f=1, p=1, zj=0.66):
"""Set the drive level of tone ``f`` and harmonic ``p`` (approximate).
This method guesses what the Thevenin voltage should be in order to get
the desired drive level, but you won't actually know what the drive
level is until you run the simulation.
Note:
Frequency and Thevenin impedance must be set prior to using
this method. Otherwise, an assertion error will be raised.
Args:
alpha (float): drive level, alpha = voltage / vph
f (int, optional, default is 1): tone
p (int, optional, default is 1): harmonic
zj (float, optional, default is 0.66): the impedance to assume for
the junction (normalized to the normal-state resistance). This
value will depend on frequency and pump level.
"""
assert self.zt[f, p] != 0, 'Embedding impedance must be defined!'
assert self.freq[f] != 0, 'Frequency must be defined!'
self.vt[f, p] = alpha * self.freq[f] * (self.zt[f, p] / zj + 1)
def set_freq(self, value, f=1, units='Hz'):
"""Set the frequency of tone ``f``.
Normally, this can be done by setting the value of the attribute
directly. E.g.:
>>> cct = EmbeddingCircuit(1, 1, vgap=2.8e-3, rn=14.)
>>> cct.freq[1] = 0.5
However, if you would instead like to use non-normalized units, this
method can be very handy. E.g.:
>>> cct.set_freq(350, f=1, units='GHz')
>>> round(cct.freq[1], 2)
0.52
Note:
The gap frequency or the gap voltage must be defined in order to
use this method.
Args:
value (float): value to set using given units
f (int, optional, default is 1): tone number
units (str, optional, default is 'Hz'): units for input value, 'Hz'
for frequency in units Hz, 'V' for photon voltage in units V,
and 'norm' for either normalized photon voltage or normalized
frequency. SI prefixes can also be included: 'MHz', 'GHz',
'THz', and 'mV'.
"""
if units.lower != 'norm':
assert self.fgap is not None, 'Gap frequency must be defined!'
if units.lower() == 'hz':
self.freq[f] = value / self.fgap
elif units.lower() == 'mhz':
self.freq[f] = value * sc.mega / self.fgap
elif units.lower() == 'ghz':
self.freq[f] = value * sc.giga / self.fgap
elif units.lower() == 'thz':
self.freq[f] = value * sc.tera / self.fgap
elif units.lower() == 'v':
self.freq[f] = value / self.vgap
elif units.lower() == 'mv':
self.freq[f] = value * sc.milli / self.vgap
elif units.lower() == 'norm':
self.freq[f] = value
else:
raise ValueError('Units not recognized.')
def set_name(self, name, f=1, p=1):
""" Set a name for a given tone and harmonic combination.
This has no effect on the simulation. It's just nice for keeping track
of the different signals.
Args:
name (str): name of tone/harmonic
f (int, optional, default is 1): frequency number to set
p (int, optional, default is 1): harmonic number to set
"""
self.comment[f][p] = name
def print_info(self):
"""Print information about the embedding circuit to the terminal."""
print(self)
str1 = " f={0}, p={1}\t\t\tfreq = {2:.4f} x {1}\t\t{3}"
str2 = " f={0}, p={1}\t\t\t{2:.1f} GHz x {1}\t\t{3}"
str3 = "\tThev. voltage:\t\t{:.4f} * Vgap"
str6 = "\t \t\t{:.4f} * Vph"
str4 = "\tThev. impedance:\t{:.2f} * Rn"
str7 = "\tAvail. power: \t{:.2E} W"
str8 = "\t \t{:.3f} dBm"
if self.fgap is None or self.vgap is None or self.rn is None:
for f in range(1, self.num_f + 1):
for p in range(1, self.num_p + 1):
freq = self.freq[f]
vt = self.vt[f, p]
zt = self.zt[f, p]
cprint(str1.format(f, p, freq, self.comment[f][p]), 'GREEN')
print(str3.format(float(vt.real)))
print(str4.format(zt))
else:
for f in range(1, self.num_f + 1):
for p in range(1, self.num_p + 1):
fq = self.freq[f] * self.fgap / 1e9
vt = self.vt[f, p]
zt = self.zt[f, p]
with np.errstate(divide='ignore'):
power_w = self.available_power(f, p, units='W')
power_dbm = self.available_power(f, p, units='dBm')
cprint(str2.format(f, p, fq, self.comment[f][p]), 'GREEN')
print(str3.format(float(vt.real)))
print(str6.format(float(vt.real / (self.freq[f] * p))))
print(str4.format(zt))
print(str7.format(power_w))
print(str8.format(power_dbm))
print("")
def save_info(self, filename='embedding-circuit.txt'):
"""Save this embedding circuit to a text file.
This text file can then be read in by ``read_circuit`` in order to
regenerate the embedding circuit.
Args:
filename (string): Filename for embedding circuit file
"""
str1 = " f={0}, p={1}\t\t\tfreq = {2:.4f} x {1}\n"
str2 = "\tThev. voltage:\t\t{:.4f} V / V_gap\n"
str3 = "\tThev. impedance:\t{:.2f} ohms / R_N\n"
with open(filename, 'w') as fout:
fout.write("Embedding Circuit:\n")
fout.write("\tNumber of tones: {0}\n".format(self.num_f))
fout.write("\tNumber of harmonics: {0}\n".format(self.num_p))
for f in range(1, self.num_f + 1):
for p in range(1, self.num_p + 1):
freq = self.freq[f]
vt = self.vt[f, p]
zt = self.zt[f, p]
fout.write(str1.format(f, p, freq))
fout.write(str2.format(vt))
fout.write(str3.format(zt))
def lock(self):
"""Make all Numpy arrays contained within this class unwriteable.
This can be useful for debugging. An error will be raised if you try to
change the values of the Numpy arrays while they are locked.
"""
self.freq.flags.writeable = False
self.vt.flags.writeable = False
self.zt.flags.writeable = False
self.vb.flags.writeable = False
def unlock(self):
"""Make all Numpy arrays contained within this class writeable.
This can be useful for debugging.
"""
self.freq.flags.writeable = True
self.vt.flags.writeable = True
self.zt.flags.writeable = True
self.vb.flags.writeable = True
@property
def vph(self):
"""Get photon voltage.
For backwards compatibility.
"""
return self.cct
def read_circuit(filename):
"""Build an embedding circuit from an embedding circuit file.
This function will build an instance of the ``EmbeddingCircuit`` class
based on a file previously generated by the
``EmbeddingCircuit.save_info`` method.
Args:
filename (str): filename of the embedding circuit file
Returns:
qmix.circuit.EmbeddingCircuit: instance of the embedding circuit class
"""
with open(filename, 'r') as fin:
data = fin.readlines()
num_f = int(data[1].split()[-1])
num_p = int(data[2].split()[-1])
cct = EmbeddingCircuit(num_f, num_p)
data = data[3:]
for i, line in enumerate(data):
split_line = line.split()
if split_line[0][0] == 'f':
f = int(re.search(r'\d+', split_line[0]).group())
p = int(re.search(r'\d+', split_line[1]).group())
freq = float(split_line[4])
vt = complex(data[i + 1].split()[2])
zt = complex(data[i + 2].split()[2])
cct.freq[f] = freq
cct.vt[f, p] = vt
cct.zt[f, p] = zt
return cct
|