1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341
|
""" This module contains classes for importing, filtering and
analyzing raw I-V and IF data obtained from SIS mixer experiments.
Two classes (``RawData0`` and ``RawData``) are provided to help manage the
data. ``RawData0`` is intended for data that was collected with no LO
injection (i.e., unpumped data), and ``RawData`` is intended for data that was
collected with LO injection (i.e., pumped data).
Note:
Experimental data can be passed to these classes either in the form of CSV
data files or Numpy arrays. In both bases, the data should have two
columns: the first for voltage, and the second for current or IF power,
depending on the file type.
For CSV files, you can define the delimiter using the keyword
argument ``delimiter=','``, the number of rows to skip for the header
using ``skip_header=1``, and which columns to import using
``usecols=(0,1)``. Take a look at the data in
``QMix/notebooks/eg-230-data/`` for an example. Also, take a look at
``QMix/notebooks/analyze-experimental-data.ipynb`` for an example of how
to use this module.
"""
import glob
import os
from copy import deepcopy
import matplotlib.pyplot as plt
import numpy as np
import scipy.constants as sc
from scipy import special
from scipy.interpolate import UnivariateSpline
import qmix
from qmix.exp.if_data import dcif_data, if_data
from qmix.exp.if_response import if_response
from qmix.exp.iv_data import dciv_curve, iv_curve
from qmix.exp.parameters import params as PARAMS
from qmix.harmonic_balance import harmonic_balance
from qmix.mathfn.filters import gauss_conv
from qmix.mathfn.misc import slope_span_n
from qmix.misc.terminal import cprint
from qmix.qtcurrent import qtcurrent
from qmix.respfn import RespFnFromIVData
# Colors for plotting
_pale_blue = '#6ba2f9'
_pale_green = '#42b173'
_pale_red = '#f96b6b'
_red = 'r'
_blue = '#1f77b4'
_dark_blue = '#1f77b4'
# Impedance recovery parameters
_good_error = 7e-7
_step = 1e-5
# Parameters for saving figures
_plot_params = {'dpi': 500, 'bbox_inches': 'tight'}
# Note: All plotting functions are excluded from coverage tests
# by using: "# pragma: no cover"
# FILE HIERARCHY -------------------------------------------------------------
_file_structure = {'DC IV data': '01_dciv/',
'Pumped IV data': '02_iv_curves/',
'IF data': '03_if_data/',
'Impedance recovery': '04_impedance/',
'IF noise': '05_if_noise/',
'Noise temperature': '06_noise_temp/',
'IF spectrum': '07_spectrum/',
'Overall performance': '08_overall_performance/',
'CSV data': '09_csv_data/'}
"""Default file hierarchy to use when plotting experimental data."""
# CLASSES FOR RAW DATA -------------------------------------------------------
class RawData0(object):
"""Class for importing and analyzing experimental DC data (with no LO).
Note:
Experimental data can be passed to this class either in the form of
CSV data files or Numpy arrays. In both cases, the data should have
two columns: the first for voltage, and the second for current or IF
power, depending on the file type.
For CSV files, you can define the delimiter using the keyword
argument ``delimiter=','``, the number of rows to skip for the header
using ``skip_header=1``, and which columns to import using
``usecols=(0,1)``. Take a look at the data in
``QMix/notebooks/eg-230-data/`` for an example. Also, take a look at
``QMix/notebooks/analyze-experimental-data.ipynb`` for an example of
how to use this module.
See ``qmix.exp.parameters.params`` for all possible keyword arguments.
These parameters control how the data is imported and analyzed.
Args:
dciv: DC I-V curve. Either a CSV data file or a Numpy array. The data
should have two columns: the first for voltage, and the second
for current. If you are using CSV files, the properties of
the CSV file can be set through additional keyword arguments
(see below).
dcif: DC IF data. Either a CSV data file or a Numpy array. The
data should have two columns: the first for voltage, and the
second for IF power. If you are using CSV files, the properties of
the CSV file can be set through additional keyword arguments
(see below).
Keyword arguments:
delimiter (str): Delimiter for CSV files.
usecols (tuple): List of columns to import (tuple of length 2).
skip_header (int): Number of rows to skip, used to skip the header.
v_fmt (str): Units for voltage ('uV', 'mV', or 'V').
i_fmt (str): Units for current ('uA', 'mA', or 'A').
vmax (float): Maximum voltage to import in units [V].
npts (int): Number of points to have in I-V interpolation.
debug (bool): Plot each step of the I-V processing procedure.
voffset (float): Voltage offset, in units [V].
ioffset (float): Current offset, in units [A].
voffset_range (float): Voltage range over which to search for offset,
in units [V].
voffset_sigma (float): Standard deviation of Gaussian filter when
searching for offset.
rseries (float): Series resistance in experimental measurement
system, in units [ohms].
i_multiplier (float): Multiply the imported current by this value.
v_multiplier (float): Multiply the imported voltage by this value.
ifdata_vmax (float): Maximum IF voltage to import.
ifdata_npts (int): Number of points for interpolation.
filter_data (bool): Filter data
vgap_guess (float): Guess of gap voltage. Used to temporarily
normalize while filtering. Given in units [V].
igap_guess (float): Guess of gap current. Used to temporarily
normalize while filtering. Given in units [A].
filter_theta (float): Angle by which to the rotate data while
filtering. Given in radians.
filter_nwind (int): Window size for Savitsky-Golay filter.
filter_npoly (int): Order of Savitsky-Golay filter.
ifdata_sigma (float): Standard deviation of Gaussian used for
filtering, in units [V]
area (float): Area of the junction in um^2.
vgap_threshold (float): The current to measure the gap voltage at.
rn_vmin (float): Lower voltage range to determine the normal resistance
rn_vmax (float): Upper voltage range to determine the normal resistance
vrsg (float): The voltage at which to calculate the subgap
resistance.
vleak (float): The voltage at which to calculate the subgap leakage
current.
vshot (list): Voltage range over which to fit shot noise slope, in
units [V]. Can be a list of lists to define multiple ranges.
comment (str): Comment to describe this instance.
verbose (bool): Print to terminal.
"""
def __init__(self, dciv, dcif=None, **kw):
# Import keyword arguments
tmp = deepcopy(PARAMS)
tmp.update(kw)
kw = tmp
# Unpack keyword arguments
comment = kw['comment']
v_smear = kw['v_smear']
vleak = kw['vleak']
area = kw['area']
verbose = kw['verbose']
self.kwargs = kw
self.comment = comment
self.vleak = vleak
if isinstance(dciv, str): # input type: CSV file
self.file_path = dciv
elif isinstance(dciv, np.ndarray): # input type: Numpy array
self.file_path = 'Numpy array'
else:
raise ValueError('Input data type not recognized.')
# Get DC I-V data
self.voltage, self.current, self.dc = dciv_curve(dciv, **kw)
# Unpack DC I-V metadata
self.vgap = self.dc.vgap
self.igap = self.dc.igap
self.fgap = self.dc.fgap
self.rn = self.dc.rn
self.rsg = self.dc.rsg
self.q = self.rsg / self.rn
self.rna = self.rn * area * 1e-12
self.jc = self.vgap / self.rna
self.offset = self.dc.offset
self.vint = self.dc.vint
self.ileak = np.interp(vleak / self.vgap,
self.voltage,
self.current) * self.igap
# Generate response function from DC I-V curve
self.resp = RespFnFromIVData(self.voltage, self.current,
check_error=False, verbose=False,
v_smear=None)
# Generate smeared response function from DC I-V curve
self.resp_smear = RespFnFromIVData(self.voltage, self.current,
check_error=False, verbose=False,
v_smear=v_smear)
# Import DC IF data (if it exists)
if dcif is not None:
# Import
self.if_data, dcif = dcif_data(dcif, self.dc, **kw)
# Unpack DC IF metadata
self.dcif = dcif
self.if_noise = dcif.if_noise
self.corr = dcif.corr
self.shot_slope = dcif.shot_slope
self.if_fit = dcif.if_fit
else: # pragma: no cover
self.dcif = None
self.if_data = None
self.if_noise = None
self.corr = None
self.shot_slope = None
self.if_fit = None
if verbose:
print(self)
def __str__(self): # pragma: no cover
message = "\033[35m\nDC I-V data:\033[0m {0}\n".format(self.comment)
message += "\tVgap: \t\t{:6.2f}\tmV\n".format(self.vgap * 1e3)
message += "\tfgap: \t\t{:6.2f}\tGHz\n".format(self.fgap / 1e9)
message += "\n"
message += "\tRn: \t\t{:6.2f}\tohms\n".format(self.rn)
message += "\tRsg: \t\t{:6.2f}\tohms\n".format(self.rsg)
message += "\tQ: \t\t{:6.2f}\n".format(self.q)
message += "\n"
message += "\tJc: \t\t{:6.2f}\tkA/cm^2\n".format(self.jc / 1e7)
message += "\tIleak: \t\t{:6.2f}\tuA\n".format(self.ileak * 1e6)
message += "\n"
message += "\tOffset:\t\t{:6.2f}\tmV\n".format(self.offset[0] * 1e3)
message += "\t \t\t{:6.2f}\tuA\n".format(self.offset[1] * 1e6)
message += "\n"
message += "\tVint: \t\t{:6.2f}\tmV\n".format(self.vint * 1e3)
if self.if_noise is not None:
message += "\tIF noise:\t{:6.2f}\tK\n".format(self.if_noise)
return message
def __repr__(self): # pragma: no cover
msg = "DC I-V curve: Vgap = {:.2f} mV, Rn = {:.2f} ohms"
return msg.format(self.vgap / 1e-3, self.rn)
def print_info(self): # pragma: no cover
"""Print information about the DC I-V curve.
This method is deprecated. Just use ``print(dciv)`` instead, assuming
that ``dciv`` is an instance of this class.
"""
print(self)
def plot_dciv(self, fig_name=None, ax=None, vmax_plot=4., **kw): # pragma: no cover
"""Plot DC I-V curve.
Some additional labels will be added as well, including normal-state
resistance, subgap resistance, gap voltage, and gap current.
Note: If ``fig_name`` is provided, this method will save the plot
to the specified folder and then close the plot. This means
that the Matplotlib axis object will not be returned in this
case. This is done to prevent too many plots from being open
at the time.
Args:
fig_name (str): figure filename
ax: Matplotlib axis
vmax_plot (float): max voltage to include in plot (in mV)
kw: keyword arguments (not used)
"""
# Check plotting arguments
# assert fig_name is None or ax is None
# Unnormalize the data
mv = self.vgap * 1e3 # norm -> mV
ua = self.vgap / self.rn * 1e6 # norm -> uA
v_mv = self.voltage * mv
i_ua = self.current * ua
v_v = v_mv / 1000
# Other values to plot
rn_slope = -self.vint / self.rn * 1e6 + self.voltage * ua
i_at_gap = np.interp([1.], self.voltage, self.current) * ua
i_leak = np.interp(self.vleak / self.vgap, self.voltage, self.current)
# Fit sub-gap resistance
mask = (self.vleak - 0.2e-3 < v_v) & (v_v < self.vleak + 0.2e-3)
psg = np.polyfit(v_mv[mask], i_ua[mask], 1)
# Strings for legend labels
lgd_str1 = 'DC I-V'
lgd_str2 = r'$R_\mathrm{{n}}$ = %.2f $\Omega$' % self.rn
lgd_str3 = r'$V_\mathrm{{gap}}$ = %.2f mV' % (self.vgap * 1e3)
lgd_str4 = r'$I_\mathrm{{leak}}$ = %.2f $\mu$A' % (i_leak * ua)
lgd_str5 = r'$R_\mathrm{{sg}}$ = %.1f $\Omega$' % self.rsg
# Plot DC I-V curve
if ax is None:
fig, ax = plt.subplots()
else:
fig = ax.get_figure()
ax.plot(v_mv, i_ua, label=lgd_str1)
# Label gap
ax.plot(self.vgap * 1e3, i_at_gap,
marker='o', ls='None', color='r', mfc='None',
markeredgewidth=1, label=lgd_str3)
# Label leakage current
ax.plot(2, i_leak * ua,
marker='o', ls='None', color='g', mfc='None',
markeredgewidth=1, label=lgd_str4)
# Fit line to normal resistance slope
ax.plot(v_mv, rn_slope, 'k--', label=lgd_str2)
# Fit line to sub-gap resistance
ax.plot(v_mv, np.polyval(psg, v_mv), 'k:', label=lgd_str5)
# Set max voltage
idx = np.abs(vmax_plot - v_mv).argmin()
ax.set_xlim([0, v_mv[idx]])
ax.set_ylim([0, i_ua[idx]])
# Set figure properties
ax.set_xlabel(r'Bias Voltage (mV)')
ax.set_ylabel(r'Current ($\mu$A)')
ax.minorticks_on()
ax.legend(loc=2)
if fig_name is not None:
fig.savefig(fig_name, **_plot_params)
plt.close(fig)
return
else:
return ax
def plot_offset(self, fig_name=None, ax=None, **kw): # pragma: no cover
"""Plot DC I-V curve at the origin to see if there is an offset.
Note: If ``fig_name`` is provided, this method will save the plot
to the specified folder and then close the plot. This means
that the Matplotlib axis object will not be returned in this
case. This is done to prevent too many plots from being open
at the time.
Args:
fig_name (str): figure filename
ax: Matplotlib axis
kw: keyword arguments (not used)
"""
# Check arguments
# assert fig_name is None or ax is None
# Unnormalize the data
mv = self.vgap * 1e3 # norm -> mV
ua = self.vgap / self.rn * 1e6 # norm -> uA
v_mv = self.voltage * mv
i_ua = self.current * ua
# Only plot around the origin
mask = (-0.2 < v_mv) & (v_mv < 0.2)
# Plot offset (to make sure it was corrected properly)
if ax is None:
fig, ax = plt.subplots()
else:
fig = ax.get_figure()
ax.plot(v_mv[mask], i_ua[mask])
ax.set_xlim([-0.2, 0.2])
ax.set_xlabel(r'Bias Voltage (mV)')
ax.set_ylabel(r'Current ($\mu$A)')
ax.minorticks_on()
ax.grid()
if fig_name is not None:
fig.savefig(fig_name, **_plot_params)
plt.close(fig)
return
else:
return ax
def plot_rdyn(self, fig_name=None, ax=None, vmax_plot=4., **kw): # pragma: no cover
"""Plot dynamic resistance of the DC I-V curve.
The dynamic resistance is the derivative of the I-V data, inverted to
get resistance.
Note: If ``fig_name`` is provided, this method will save the plot
to the specified folder and then close the plot. This means
that the Matplotlib axis object will not be returned in this
case. This is done to prevent too many plots from being open
at the time.
Args:
fig_name: figure filename
ax: Matplotlib axis
vmax_plot: max voltage to include in plot (in mV)
kw (dict): keyword arguments (not used)
"""
# Check arguments
# assert not fig_name is not None and ax is not None
# De-normalize
v_mv = self.voltage * self.vgap * 1e3
i_ma = self.current * self.igap * 1e3
# Calculate dynamic resistance
rdyn = slope_span_n(v_mv, i_ma, 11)
# Plot dynamic resistance
if ax is None:
fig, ax = plt.subplots()
else:
fig = ax.get_figure()
ax.semilogy(v_mv, 1 / rdyn)
ax.set_xlabel(r'Bias Voltage (mV)')
ax.set_ylabel(r'Dynamic Resistance ($\Omega$)')
ax.set_xlim([0, vmax_plot])
ax.minorticks_on()
if fig_name is not None:
fig.savefig(fig_name, **_plot_params)
plt.close(fig)
return
else:
return ax
def plot_rstat(self, fig_name=None, ax=None, vmax_plot=4., **kw): # pragma: no cover
"""Plot static resistance of DC I-V data.
The static resistance is the DC voltage divided by the DC current.
Note: If ``fig_name`` is provided, this method will save the plot
to the specified folder and then close the plot. This means
that the Matplotlib axis object will not be returned in this
case. This is done to prevent too many plots from being open
at the time.
Args:
fig_name: figure filename
ax: Matplotlib axis
vmax_plot: max voltage to include in plot (in mV)
kw (dict): keyword arguments (not used)
"""
# Check arguments
# assert fig_name is not None and ax is not None
# De-normalize
v_mv = self.voltage * self.vgap * 1e3
i_ma = self.current * self.igap * 1e3
# Only plot up to a given voltage
mask = (0 < v_mv) & (v_mv < vmax_plot)
v_mv, i_ma = v_mv[mask], i_ma[mask]
# Calculate static resistance
r_stat = v_mv / i_ma
# Plot static resistance
if ax is None:
fig, ax = plt.subplots()
else:
fig = ax.get_figure()
ax.plot(v_mv, r_stat)
ax.set_xlabel(r'Bias Voltage (mV)')
ax.set_ylabel(r'Static Resistance ($\Omega$)')
ax.set_xlim([0, vmax_plot])
ax.set_ylim(bottom=0)
ax.minorticks_on()
if fig_name is not None:
fig.savefig(fig_name, **_plot_params)
plt.close(fig)
return
else:
return ax
def plot_if_noise(self, fig_name=None, ax=None, **kw): # pragma: no cover
"""Plot IF noise.
The IF noise is calculated from the slope of the shot noise.
Note: If ``fig_name`` is provided, this method will save the plot
to the specified folder and then close the plot. This means
that the Matplotlib axis object will not be returned in this
case. This is done to prevent too many plots from being open
at the time.
Args:
fig_name: figure filename
ax: Matplotlib axis (should be tuple with two axes)
kw (dict): keyword arguments (not used)
"""
# Check arguments
# assert fig_name is not None and ax is not None
if self.if_data is None:
print('No DC IF data loaded.\n')
return
# Line that fits to normal-state resistance
rslope = (self.voltage * self.vgap /
self.rn - self.vint / self.rn) * 1e6
# Denormalize data
mv = self.vgap * 1e3 # norm -> mV
ua = self.igap * 1e6 # norm -> uA
v_mv = self.voltage * mv
i_ua = self.current * ua
# vmax = v_mv.max()
# imax = i_ua.max()
if ax is None:
fig, (ax1, ax2) = plt.subplots(2, sharex=True, figsize=(6, 9))
else:
ax1, ax2 = ax
fig = ax1.get_figure()
plt.subplots_adjust(hspace=0., wspace=0.)
# Plot DC I-V curve
ax1.plot(v_mv, i_ua, label='DC I-V')
ax1.plot(v_mv, rslope, 'k--', label=r'$R_\mathrm{{n}}^{{-1}}$ slope')
ax1.axvline(self.vint * 1e3, c='k', ls=':', lw=0.5, label=r'$V_\mathrm{{int}}$')
ax1.set_ylabel(r'Current ($\mu$A)')
ax1.set_ylim(bottom=0)
ax1.set_xlim(left=0)
ax1.legend(loc=4, frameon=False)
# Plot DC IF data
v_mv = self.if_data[:, 0] * mv
ax2.plot(v_mv, self.if_data[:, 1], _pale_red, label='IF (unpumped)')
ax2.plot(self.shot_slope[:, 0] * self.vgap * 1e3,
self.shot_slope[:, 1], 'k--', label='Shot noise slope')
ax2.plot(self.vint * 1e3, self.if_noise,
marker='o', ls='None', color='r',
mfc='None', markeredgewidth=1,
label='IF Noise: {0:.2f} K'.format(self.if_noise))
ax2.axvline(self.vint * 1e3, c='k', ls=':', lw=0.5)
ax2.set_xlabel('Bias Voltage (mV)')
ax2.set_ylabel('IF Power (K)')
ax2.set_xlim([0, v_mv.max()])
ax2.set_ylim(bottom=0)
ax2.legend(loc=4, frameon=False)
if fig_name is not None:
fig.savefig(fig_name, **_plot_params)
plt.close(fig)
return
else:
return ax1, ax2
def plot_all(self, fig_folder, sub_folder=None, **kw): # pragma: no cover
"""Plot all DC data and save it to a specified directory.
This method will call the following methods: ``plot_dciv``,
``plot_offset``, ``plot_rdyn`` and ``plot_if_noise``.
These figures will be put in ``fig_folder/sub_folder``. Note that if
``sub_folder`` is left as ``None``, this method will use the default
file structure (see ``qmix.exp.exp_data._file_structure``). If you
would instead like the figures to go into ``fig_folder``, set this
argument as an empty string ("").
Args:
fig_folder (str): directory where the figures go
sub_folder (str): sub-directory where the DC I-V figures go
kw: keyword arguments that will be passed to the plotting methods
"""
# Folder for DC data
if sub_folder is None:
sub_folder = _file_structure['DC IV data']
folder = os.path.join(fig_folder, sub_folder)
else:
folder = os.path.join(fig_folder, sub_folder)
# Make sure folder exists, create it if not
if not os.path.exists(folder):
os.makedirs(folder)
# Names for figures
fig1 = os.path.join(folder, 'dciv.png')
fig2 = os.path.join(folder, 'dciv-offset.png')
fig3 = os.path.join(folder, 'dciv-rdyn.png')
fig4 = os.path.join(folder, 'dcif-shot-noise.png')
# Generate plots
self.plot_dciv(fig1, **kw)
self.plot_offset(fig2, **kw)
self.plot_rdyn(fig3, **kw)
self.plot_if_noise(fig4, **kw)
class RawData(object):
"""Class for importing and analyzing experimental pumped data (LO present).
Note:
Experimental data can be passed to this class either in the form of
CSV data files or Numpy arrays. In both bases, the data should have
two columns: the first for voltage, and the second for current or IF
power, depending on the file type.
For CSV files, you can define the delimiter using the keyword
argument ``delimiter=','``, the number of rows to skip for the header
using ``skip_header=1``, and which columns to import using
``usecols=(0,1)``. Take a look at the data in
``QMix/notebooks/eg-230-data/`` for an example. Also, take a look at
``QMix/notebooks/analyze-experimental-data.ipynb`` for an example of
how to use this module.
See ``qmix.exp.parameters.params`` for all possible keyword arguments.
These parameters control how the data is imported and analyzed.
Args:
ivdata: I-V data. Either a CSV data file or a Numpy array. The data
should have two columns: the first for voltage, and the second
for current. If you are using CSV files, the properties of
the CSV file can be set through additional keyword arguments
(see below).
dciv (qmix.exp.iv_data.DCIVData): DC I-V metadata
Keyword arguments:
delimiter (str): Delimiter for CSV files.
usecols (tuple): List of columns to import (tuple of length 2).
skip_header (int): Number of rows to skip, used to skip the header.
v_fmt (str): Units for voltage ('uV', 'mV', or 'V').
i_fmt (str): Units for current ('uA', 'mA', or 'A').
vmax (float): Maximum voltage to import in units [V].
npts (int): Number of points to have in I-V interpolation.
debug (bool): Plot each step of the I-V processing procedure.
voffset (float): Voltage offset, in units [V].
ioffset (float): Current offset, in units [A].
voffset_range (float): Voltage range over which to search for offset,
in units [V].
voffset_sigma (float): Standard deviation of Gaussian filter when
searching for offset.
rseries (float): Series resistance in experimental measurement
system, in units [ohms].
i_multiplier (float): Multiply the imported current by this value.
v_multiplier (float): Multiply the imported voltage by this value.
ifdata_vmax (float): Maximum IF voltage to import.
ifdata_npts (int): Number of points for interpolation.
filter_data (bool): Filter data
vgap_guess (float): Guess of gap voltage. Used to temporarily
normalize while filtering. Given in units [V].
igap_guess (float): Guess of gap current. Used to temporarily
normalize while filtering. Given in units [A].
filter_theta (float): Angle by which to the rotate data while
filtering. Given in radians.
filter_nwind (int): Window size for Savitsky-Golay filter.
filter_npoly (int): Order of Savitsky-Golay filter.
ifdata_sigma (float): Standard deviation of Gaussian used for
filtering, in units [V]
analyze_iv (bool): Analyze I-V data?
analyze_if (bool): Analyze IF data?
area (float): Area of the junction in um^2.
freq (float): Frequency of LO signal.
cut_low (float): only fit over first photon step,
start at Vgap - vph + vph * cut_low
cut_high: only fit over first photon step,
finish at Vgap - vph * cut_high
remb_range (tuple): range of embedding resistances to check,
normalized to the normal-state resistance
xemb_range (tuple): range of embedding reactances to check,
normalized to the normal-state resistance
alpha_max (float): Maximum drive level.
num_b (int): Summation limits for Bessel functions.
t_cold (float): Temperature of cold blackbody load.
t_hot (float): Temperature of hot blackbody load.
vmax_plot (float): Maximum bias voltage for plots.
comment (str): Comment to describe this instance.
verbose (bool): Print to terminal.
"""
def __init__(self, ivdata, dciv, if_hot=None, if_cold=None, **kw):
# Import keyword arguments
tmp = deepcopy(PARAMS)
tmp.update(kw)
kw = tmp
self.kwargs = kw
# Unpack keyword arguments
comment = kw['comment']
freq = kw['freq']
analyze = kw['analyze']
analyze_if = kw['analyze_if']
analyze_iv = kw['analyze_iv']
verbose = kw['verbose']
# Analyze data? (deprecated, set individually)
if analyze is not None: # pragma: no cover
analyze_iv = analyze
analyze_if = analyze
# Sort out file paths
if isinstance(ivdata, str): # input type: CSV file
self.iv_file = ivdata
self.directory = os.path.dirname(ivdata)
self.iv_filename = os.path.basename(ivdata)
if if_hot is not None and if_cold is not None:
self.filename_hot = os.path.basename(if_hot)
self.filename_cold = os.path.basename(if_cold)
else:
self.filename_hot = None
self.filename_cold = None
elif isinstance(ivdata, np.ndarray): # input type: Numpy array
self.iv_file = 'Numpy array'
self.directory = 'Numpy array'
self.iv_filename = 'Numpy array'
if if_hot is not None and if_cold is not None:
self.filename_hot = 'Numpy array'
self.filename_cold = 'Numpy array'
else:
self.filename_hot = None
self.filename_cold = None
else:
raise ValueError("Input data type not recognized.")
# Unpack DC I-V metadata
self.dciv = dciv
self.vgap = dciv.dc.vgap
self.igap = dciv.dc.igap
self.fgap = dciv.dc.fgap
self.rn = dciv.rn
self.offset = dciv.offset
self.vint = dciv.vint
self.dc = dciv.dc
self.voltage_dc = dciv.voltage
self.current_dc = dciv.current
# Get LO frequency
if isinstance(ivdata, np.ndarray) and freq is None:
str1 = 'If input data is in the form of Numpy arrays, '
str2 = 'you must define the frequency of the LO signal.'
raise ValueError(str1 + str2)
self.freq, self.freq_str = _get_freq(freq, ivdata)
kw['freq'] = self.freq
self.vph = self.freq / self.fgap * 1e9 # photon voltage
# Print to terminal
if verbose:
cprint('Importing: {}'.format(comment), 'HEADER')
print(" -> Files:")
print("\tI-V file: \t{}".format(self.iv_file))
if self.filename_hot is not None:
print("\tIF hot file: \t{}".format(self.filename_hot))
if self.filename_cold is not None:
print("\tIF cold file:\t{}".format(self.filename_cold))
print(" -> Frequency: {:.1f} GHz".format(self.freq))
# Import pumped I-V curve
self.voltage, self.current = iv_curve(ivdata, self.dc, **kw)
# Dynamic resistance of I-V curve
self.rdyn = slope_span_n(self.current, self.voltage, 21)
# Impedance recovery
if analyze_iv:
self._recover_zemb()
else: # pragma: no cover
self.zt = None
self.vt = None
self.fit_good = None
self.zw = None
self.alpha = None
# Import and analyze IF data from hot/cold loads
self.good_if_noise_fit = True
if if_hot is not None and if_cold is not None and analyze_if:
# Import and analyze IF data
results, self.idx_best, dcif = if_data(if_hot, if_cold, self.dc,
dcif=dciv.dcif, **kw)
# Unpack results
self.if_hot = results[:, :2]
self.if_cold = np.vstack((results[:, 0], results[:, 2])).T
self.tn = results[:, 3]
self.gain = results[:, 4]
# DC IF values
self.if_noise = dcif.if_noise
self.corr = dcif.corr
self.shot_slope = dcif.shot_slope
self.good_if_noise_fit = dcif.if_fit
# Best values
self.tn_best = self.tn[self.idx_best]
self.gain_best = self.gain[self.idx_best]
self.g_db = 10 * np.log10(self.gain[self.idx_best])
self.v_best = self.if_hot[self.idx_best, 0]
# Dynamic resistance at optimal bias voltage
i = np.abs(self.voltage - self.v_best).argmin()
p = np.polyfit(self.voltage[i:i + 10], self.current[i:i + 10], 1)
self.zj_if = self.rn / p[0]
else: # pragma: no cover
self.filename_hot = None
self.filename_cold = None
self.if_hot = None
self.if_cold = None
self.tn = None
self.gain = None
self.idx_best = None
self.if_noise = None
self.good_if_noise_fit = None
self.shot_slope = None
self.tn_best = None
self.g_db = None
if verbose:
print("")
def _recover_zemb(self):
"""Recover the embedding circuit (i.e., the Thevenin eqiv. circuit).
The technique used here is the RF voltage match method described by
Skalare (1989) and Withington et al. (1995).
Note:
All currents and voltages are normalized to the gap voltage and
to the normal resistance, respectively.
Keyword Args:
fit_range (list): Fit interval for impedance recovery, normalized
to the width of the first photon step.
cut_low (float): only fit over first photon step,
start at Vgap - vph + vph * cut_low (DEPRECATED)
cut_high: only fit over first photon step,
finish at Vgap - vph * cut_high (DEPRECATED)
remb_range (tuple): range of embedding resistances to check,
normalized to the normal-state resistance
xemb_range (tuple): range of embedding reactances to check,
normalized to the normal-state resistance
Returns: thevenin impedance, voltage, and fit (boolean)
"""
# Fit interval for impedance recovery
fit_range = self.kwargs.get('fit_range', None)
if fit_range is not None:
fit_low = fit_range[0]
fit_high = fit_range[1]
else:
fit_low = self.kwargs.get('cut_low', None)
fit_high = 1 - self.kwargs.get('cut_high', None)
if fit_low is None or fit_high is None:
fit_low = PARAMS['fit_range'][0]
fit_high = PARAMS['fit_range'][1]
fit_high = 1 - fit_high
# Range of impedance values to test
remb_range = self.kwargs.get('remb_range', PARAMS['remb_range'])
xemb_range = self.kwargs.get('xemb_range', PARAMS['xemb_range'])
# Force certain value
zemb = self.kwargs.get('zemb', PARAMS['zemb'])
cprint(" -> Impedance recovery:")
# Unpack
vgap = self.vgap # mV
rn = self.rn # ohms
vph = self.freq * sc.giga / self.fgap
resp = self.dciv.resp
# Only consider linear region of first photon step
# Ratio removed at either end of step
v_low = 1 - vph + vph * fit_low
v_high = 1 - vph * fit_high
mask = (v_low <= self.voltage) & (self.voltage <= v_high)
exp_voltage = self.voltage[mask]
exp_current = self.current[mask]
idx_middle = np.abs(exp_voltage - (1 - vph / 2.)).argmin()
# Calculate alpha for every bias voltage
alpha = _find_alpha(self.dciv, exp_voltage, exp_current, vph, **self.kwargs)
ac_voltage = alpha * vph
# Calculate AC junction impedance
ac_current = _find_ac_current(resp, exp_voltage, vph, alpha, **self.kwargs)
ac_impedance = ac_voltage / ac_current
zw = ac_impedance[idx_middle]
# Calculate error at every embedding impedance in given range
zt_real = np.linspace(remb_range[0], remb_range[1], 101)
zt_imag = np.linspace(xemb_range[0], xemb_range[1], 201)
err_surf = np.empty((len(zt_real), len(zt_imag)), dtype=float)
for i in range(len(zt_real)):
for j in range(len(zt_imag)):
err_surf[i, j] = _error_function(ac_voltage, ac_impedance,
zt_real[i] + 1j * zt_imag[j])
ibest, jbest = np.unravel_index(err_surf.argmin(), err_surf.shape)
zt_real_best, zt_imag_best = zt_real[ibest], zt_imag[jbest]
if zemb is None:
zt_best = zt_real_best + 1j * zt_imag_best
else:
zt_best = zemb
vt_best = _find_source_voltage(ac_voltage, ac_impedance, zt_best)
err_best = err_surf[ibest, jbest]
# Determine whether or not it was a good fit
good_fit = err_best <= _good_error
# Print to terminal
if good_fit:
cprint('\t- good fit', 'OKGREEN')
else:
cprint('\t- bad fit', 'WARNING')
print("\t- embedding circuit:")
print("\t\t- voltage: \t{:+6.2f}\t\t* Vgap".format(vt_best))
print("\t\t- impedance: \t{:+12.2f}\t* Rn".format(zt_best))
with np.errstate(divide='ignore', invalid='ignore'):
power_avail = np.abs(vt_best * vgap)**2 / 8 / np.real(zt_best * rn)
print("\t\t- avail. power:\t{:+7.2f}\t\tnW".format(power_avail / 1e-9))
print("\t- junction:")
print("\t\t- drive level:\t{:+6.2f}".format(alpha[idx_middle]))
print("\t\t- impedance:\t{:+12.2f}\t* Rn".format(zw))
with np.errstate(divide='ignore', invalid='ignore'):
power_delivered = np.abs(ac_voltage[idx_middle] * vgap)**2 / 2 / np.real(zw * rn)
print("\t\t- deliv. power:\t{:+7.2f}\t\tnW".format(power_delivered / 1e-9))
# Save values as attributes
self.zt = zt_best
self.vt = vt_best
self.fit_good = good_fit
self.zw = zw
self.alpha = alpha[idx_middle]
self.err_surf = err_surf
def plot_iv(self, fig_name=None, ax=None, vmax_plot=4.): # pragma: no cover
"""Plot pumped I-V curve.
Note: If ``fig_name`` is provided, this method will save the plot
to the specified folder and then close the plot. This means
that the Matplotlib axis object will not be returned in this
case. This is done to prevent too many plots from being open
at the time.
Args:
fig_name: figure filename
ax: Matplotlib axis
vmax_plot: max voltage to include in plot (in mV)
"""
# Check arguments
# assert fig_name is not None and ax is not None
# DC I-V curve
dciv = self.dciv
# De-normalize
vmv = dciv.vgap * 1e3 # norm -> mV
iua = dciv.igap * 1e6 # norm -> uA
imax = np.interp(vmax_plot, dciv.voltage * vmv, dciv.current * iua)
if ax is None:
fig, ax = plt.subplots()
else:
fig = ax.get_figure()
ax.plot(dciv.voltage * vmv, dciv.current * iua, label="Unpumped")
ax.plot(self.voltage * vmv, self.current * iua, 'r', label="Pumped")
ax.set_xlabel(r'Bias Voltage (mV)')
ax.set_ylabel(r'DC Current (uA)')
ax.set_xlim([0, vmax_plot])
ax.set_ylim([0, imax])
msg = 'LO: {:.1f} GHz'.format(self.freq)
ax.legend(loc=2, title=msg, frameon=False)
ax.minorticks_on()
if fig_name is not None:
fig.savefig(fig_name, **_plot_params)
plt.close(fig)
return
else:
return ax
def plot_if(self, fig_name=None, ax=None, vmax_plot=4.): # pragma: no cover
"""Plot IF power from hot and cold loads.
Note: If ``fig_name`` is provided, this method will save the plot
to the specified folder and then close the plot. This means
that the Matplotlib axis object will not be returned in this
case. This is done to prevent too many plots from being open
at the time.
Args:
fig_name: figure filename
ax: Matplotlib axis
vmax_plot: max voltage to include in plot (in mV)
"""
# Check arguments
# assert fig_name is not None and ax is not None
# De-normalize voltage
v_mv = self.if_hot[:, 0] * self.vgap * 1e3
# Plot IF data
if ax is None:
fig, ax = plt.subplots()
else:
fig = ax.get_figure()
ax.plot(v_mv, self.if_hot[:, 1], _pale_red, label='Hot')
ax.plot(v_mv, self.if_cold[:, 1], _pale_blue, label='Cold')
if self.dciv.if_data is not None:
v_tmp = self.dciv.if_data[:, 0] * self.vgap * 1e3
ax.plot(v_tmp, self.dciv.if_data[:, 1], 'k--', label='No LO')
ax.set_xlabel('Bias Voltage (mV)')
ax.set_ylabel('IF Power (K)')
ax.set_ylim(bottom=0)
ax.set_xlim([0, vmax_plot])
msg = 'LO: {:.1f} GHz'.format(self.freq)
ax.legend(loc=1, title=msg, frameon=False)
ax.minorticks_on()
if fig_name is not None:
fig.savefig(fig_name, **_plot_params)
plt.close(fig)
return
else:
return ax
def plot_ivif(self, fig_name=None, ax=None, vmax_plot=4.): # pragma: no cover
"""Plot IV and IF data on same plot.
Note: If ``fig_name`` is provided, this method will save the plot
to the specified folder and then close the plot. This means
that the Matplotlib axis object will not be returned in this
case. This is done to prevent too many plots from being open
at the time.
Args:
fig_name: figure filename
ax: Matplotlib axis (should be tuple with two axes)
vmax_plot: max voltage to include in plot (in mV)
"""
# Check arguments
# assert fig_name is not None and ax is not None
# De-normalize
mv = self.vgap * 1e3
ua = self.vgap / self.rn * 1e6
imax = np.interp(vmax_plot, self.voltage_dc * mv, self.current_dc * ua)
if ax is None:
fig, ax1 = plt.subplots()
else:
ax1, ax2 = ax
fig = ax1.get_figure()
# Plot I-V data
ax1.plot(self.voltage_dc * mv, self.current_dc * ua,
'#8c8c8c', label="Unpumped")
ax1.plot(self.voltage * mv, self.current * ua,
'k', label="Pumped")
ax1.set_xlabel('Bias Voltage (mV)')
ax1.set_ylabel(r'DC Current ($\mu$A)')
ax1.set_ylim([0, imax])
ax1.legend(loc=2, frameon=True, framealpha=1.)
ax1.grid(False)
# Plot IF data
mv = self.if_hot[:, 0] * self.vgap * 1e3
ax2 = ax1.twinx()
ax2.plot(mv, self.if_hot[:, 1], '#f96b6b', label='Hot')
ax2.plot(mv, self.if_cold[:, 1], '#6ba2f9', label='Cold')
ax2.set_ylabel('IF Power (K)')
ax2.legend(loc=1, framealpha=1., frameon=True)
ax2.grid(False)
ax2.set_ylim(bottom=0)
ax2.set_xlim([0, vmax_plot])
ax1.minorticks_on()
ax2.minorticks_on()
if fig_name is not None:
fig.savefig(fig_name, **_plot_params)
plt.close(fig)
return
else:
return ax1, ax2
def plot_shapiro(self, fig_name=None, ax=None): # pragma: no cover
"""Plot Shapiro steps.
Note: If ``fig_name`` is provided, this method will save the plot
to the specified folder and then close the plot. This means
that the Matplotlib axis object will not be returned in this
case. This is done to prevent too many plots from being open
at the time.
Args:
fig_name: figure filename
ax: Matplotlib axis
"""
# Check arguments
# assert fig_name is not None and ax is not None
# De-normalize voltage
v_mv = self.if_hot[:, 0] * self.vgap * 1e3
# Calculate Shaprio voltage separation
f_hz = float(self.freq) * 1e9
vshapiro = f_hz * sc.h / sc.e / 2 / sc.milli
mask = (0. < v_mv) & (v_mv < 3.5 * vshapiro)
if ax is None:
fig, ax = plt.subplots()
else:
fig = ax.get_figure()
ax.plot(v_mv[mask], self.if_hot[mask, 1], '#f96b6b', label='Hot')
ax.plot(v_mv[mask], self.if_cold[mask, 1], '#6ba2f9', label='Cold')
ax.axvline(vshapiro, label=r'$\omega_\mathrm{LO}h/2e$', c='k', ls='--')
ax.axvline(2 * vshapiro, c='k', ls='--')
ax.axvline(3 * vshapiro, c='k', ls='--')
ax.set_xlim([0, 3.5 * vshapiro])
ax.set_xlabel('Bias Voltage (mV)')
ax.set_ylabel('IF Power (K)')
ax.minorticks_on()
ax.legend()
if fig_name is not None:
fig.savefig(fig_name, **_plot_params)
plt.close(fig)
return
else:
return ax
def plot_if_noise(self, fig_name=None, ax=None): # pragma: no cover
"""Plot IF noise.
Note: If ``fig_name`` is provided, this method will save the plot
to the specified folder and then close the plot. This means
that the Matplotlib axis object will not be returned in this
case. This is done to prevent too many plots from being open
at the time.
Args:
fig_name: figure filename
ax: Matplotlib axis (should be tuple with two axes)
"""
# Check arguments
# assert fig_name is not None and ax is not None
rslope = (self.voltage_dc * self.vgap /
self.rn - self.vint / self.rn) * 1e6
vmax = self.voltage.max() * self.vgap * 1e3
imax = self.current.max() * self.igap * 1e6
if ax is None:
fig, (ax1, ax2) = plt.subplots(2, sharex=True, figsize=(6, 9))
else:
ax1, ax2 = ax
fig = ax1.get_figure()
plt.subplots_adjust(hspace=0., wspace=0.)
ax1.plot(self.dciv.voltage * self.vgap * 1e3,
self.dciv.current * self.igap * 1e6, label='Unpumped')
ax1.plot(self.voltage * self.vgap * 1e3,
self.current * self.igap * 1e6, 'r', label='Pumped')
ax1.plot(self.voltage * self.vgap * 1e3,
rslope, 'k--', label=r'$R_\mathrm{{n}}^{{-1}}$ slope')
ax1.plot(self.vint * 1e3, 0, 'ro', label=r'$V_\mathrm{{int}}$')
ax1.set_ylabel(r'Current ($\mu$A)')
ax1.set_ylim([0, imax])
ax1.set_xlim([0, vmax])
ax1.legend()
v_mv = self.if_hot[:, 0] * self.vgap * 1e3
ax2.plot(v_mv, self.if_hot[:, 1], _pale_red, label='Hot')
ax2.plot(v_mv, self.if_cold[:, 1], _pale_blue, label='Cold')
ax2.plot(self.shot_slope[:, 0] * self.vgap * 1e3,
self.shot_slope[:, 1], 'k--', label='Shot noise slope')
ax2.plot(self.vint * 1e3, self.if_noise, 'ro',
label='IF Noise: {:.2f} K'.format(self.if_noise))
ax2.set_xlabel('Bias Voltage (mV)')
ax2.set_ylabel('IF Power (K)')
ax2.set_xlim([0, v_mv.max()])
ax2.set_ylim([0, np.max(self.shot_slope) * 1.1])
ax2.legend(loc=0)
if fig_name is not None:
fig.savefig(fig_name, **_plot_params)
plt.close(fig)
return
else:
return ax1, ax2
def plot_noise_temp(self, fig_name=None, ax=None, vmax_plot=4.): # pragma: no cover
"""Plot noise temperature.
Note: If ``fig_name`` is provided, this method will save the plot
to the specified folder and then close the plot. This means
that the Matplotlib axis object will not be returned in this
case. This is done to prevent too many plots from being open
at the time.
Args:
fig_name: figure filename
ax: Matplotlib axis (should be tuple with two axes)
vmax_plot: max voltage to include in plot (in mV)
"""
# Check arguments
# assert fig_name is not None and ax is not None
v_mv = self.if_hot[:, 0] * self.vgap * 1e3
hot = gauss_conv(self.if_hot[:, 1], 5)
cold = gauss_conv(self.if_cold[:, 1], 5)
if ax is None:
fig, ax1 = plt.subplots()
ax2 = ax1.twinx()
else:
ax1, ax2 = ax
fig = ax1.get_figure()
# Plot IF power from hot/cold loads
l1 = ax1.plot(v_mv, hot, _pale_red, label='Hot IF')
l2 = ax1.plot(v_mv, cold, _pale_blue, label='Cold IF')
ax1.set_xlabel('Bias Voltage (mV)')
ax1.set_ylabel('IF Power (K)')
ax1.set_xlim([1, 3.5])
ax1.set_ylim([0, hot.max() * 1.3])
ax1.grid(False)
# Plot noise temperature
l3 = ax2.plot(v_mv, self.tn, _pale_green, ls='--', label='Noise Temp.')
l4 = ax2.plot(v_mv[self.idx_best], self.tn_best,
label=r'$T_\mathrm{{n}}={:.1f}$ K'.format(self.tn_best),
marker='o', ls='None', color='k',
mfc='None', markeredgewidth=1)
ax2.set_ylabel('Noise Temperature (K)', color='g')
ax2.set_ylim([0, self.tn_best * 5])
ax2.set_xlim([0., vmax_plot])
for tl in ax2.get_yticklabels():
tl.set_color('g')
ax2.grid(False)
# Build legend
lns = l1 + l2 + l3 + l4
labs = [l.get_label() for l in lns]
ax2.legend(lns, labs, loc=2, frameon=True, framealpha=1.)
if fig_name is not None:
fig.savefig(fig_name, **_plot_params)
plt.close(fig)
return
else:
return ax1, ax2
def plot_yfac_noise_temp(self, fig_name=None, ax=None, vmax_plot=4.): # pragma: no cover
"""Plot Y-factor and noise temperature.
Note: If ``fig_name`` is provided, this method will save the plot
to the specified folder and then close the plot. This means
that the Matplotlib axis object will not be returned in this
case. This is done to prevent too many plots from being open
at the time.
Args:
fig_name: figure filename
ax: Matplotlib axis
vmax_plot: max voltage to include in plot (in mV)
"""
# Check arguments
# assert fig_name is not None and ax is not None
# Plot y-factor and noise temperature
v_mv = self.if_hot[:, 0] * self.vgap * 1e3
hot = gauss_conv(self.if_hot[:, 1], 5)
cold = gauss_conv(self.if_cold[:, 1], 5)
yfac = hot / cold
if ax is None:
fig, ax1 = plt.subplots()
ax2 = ax1.twinx()
else:
ax1, ax2 = ax
fig = ax1.get_figure()
# Plot y factor
ax1.plot(v_mv, yfac, _dark_blue, label='Y-factor')
ax1.axhline(293. / 77., c=_dark_blue, ls=':')
ax1.set_xlabel('Bias Voltage (mV)')
ax1.set_ylabel('Y-factor', color=_dark_blue)
for tl in ax1.get_yticklabels():
tl.set_color(_dark_blue)
ax1.set_ylim([1., 4.])
# Plot noise temperature
ax2.plot(v_mv, self.tn, _red, label='Noise Temp.')
ax2.plot(v_mv[self.idx_best], self.tn_best,
marker='o', ls='None', color='k',
mfc='None', markeredgewidth=1)
msg = '{0:.1f} K'.format(self.tn_best)
ax2.annotate(msg,
xy=(v_mv[self.idx_best], self.tn_best),
xytext=(v_mv[self.idx_best] + 0.5, self.tn_best + 50),
bbox=dict(boxstyle="round", fc="w", alpha=0.5),
arrowprops=dict(color='black', arrowstyle="->", lw=1),
)
ax2.set_ylabel('Noise Temperature (K)', color=_red)
for tl in ax2.get_yticklabels():
tl.set_color(_red)
ax2.set_ylim([0, 300.])
ax2.set_xlim([0., vmax_plot])
if fig_name is not None:
fig.savefig(fig_name, **_plot_params)
plt.close(fig)
return
else:
return ax1, ax2
def plot_gain_noise_temp(self, fig_name=None, ax=None, vmax_plot=4.): # pragma: no cover
"""Plot gain and noise temperature.
Note: If ``fig_name`` is provided, this method will save the plot
to the specified folder and then close the plot. This means
that the Matplotlib axis object will not be returned in this
case. This is done to prevent too many plots from being open
at the time.
Args:
fig_name: figure filename
ax: Matplotlib axis
vmax_plot: max voltage to include in plot (in mV)
"""
# Check arguments
# assert fig_name is not None and ax is not None
# De-normalize voltage
v_mv = self.if_hot[:, 0] * self.vgap * 1e3
if ax is None:
fig, ax1 = plt.subplots()
ax2 = ax1.twinx()
else:
ax1, ax2 = ax
fig = ax1.get_figure()
# Plot gain
ax1.plot(v_mv, self.gain, label=r'Gain', color=_dark_blue)
ax1.plot(v_mv[self.idx_best], self.gain[self.idx_best],
marker='o', ls='None', color='k',
mfc='None', markeredgewidth=1)
msg = r'$G_\mathrm{{c}}={0:.2f}$'.format(self.gain[self.idx_best])
ax1.annotate(msg,
xy=(v_mv[self.idx_best], self.gain[self.idx_best]),
xytext=(v_mv[self.idx_best] + 0.75,
self.gain[self.idx_best] - 0.1),
arrowprops=dict(color='black', arrowstyle="->", lw=0.5),
va="center", ha="left", fontsize=16,
)
ax1.set_xlabel('Bias Voltage (mV)')
ax1.set_ylabel('Gain', color=_dark_blue)
for tl in ax1.get_yticklabels():
tl.set_color(_dark_blue)
ax1.set_ylim(bottom=0)
ax1.minorticks_on()
# Plot noise temperature
ax2.plot(v_mv, self.tn, _red, label='Noise Temp.')
ax2.plot(v_mv[self.idx_best], self.tn_best, marker='o', ls='None',
color='k', mfc='None', markeredgewidth=1)
msg = r'$T_\mathrm{{N}}={0:.1f}$ K'.format(self.tn_best)
ax2.annotate(msg, xy=(v_mv[self.idx_best], self.tn_best),
xytext=(v_mv[self.idx_best] + 0.75, self.tn_best + 50),
arrowprops=dict(color='black', arrowstyle="->", lw=0.5),
va="center", ha="left", fontsize=16)
ax2.set_ylabel('Noise Temperature (K)', color=_red)
for tl in ax2.get_yticklabels():
tl.set_color(_red)
ax2.set_ylim([0, self.tn_best * 5])
ax2.set_xlim([0., vmax_plot])
ax2.minorticks_on()
if fig_name is not None:
fig.savefig(fig_name, **_plot_params)
plt.close(fig)
return
else:
return ax1, ax2
def plot_rdyn(self, fig_name=None, ax=None, vmax_plot=4.): # pragma: no cover
"""Plot dynamic resistance.
Note: If ``fig_name`` is provided, this method will save the plot
to the specified folder and then close the plot. This means
that the Matplotlib axis object will not be returned in this
case. This is done to prevent too many plots from being open
at the time.
Args:
fig_name: figure filename
ax: Matplotlib axis
vmax_plot: max voltage to include in plot (in mV)
"""
# Check arguments
# assert fig_name is not None and ax is not None
# Unnormalize current/voltage
v_mv = self.voltage * self.vgap * 1e3
# Determine dynamic resistance (remove 0 values to avoid /0 errors)
rdyn = self.rdyn * self.rn
# Position of steps
steps = np.r_[-1 + self.vph * np.arange(-3, 4, 1),
1 - self.vph * np.arange(3, -4, -1)]
v_steps = steps * self.vgap * 1e3
r_steps = np.interp(v_steps, v_mv, rdyn)
# Dynamic resistance at 'best' bias point (where TN is best)
vb_best = (self.if_hot[:, 0] * self.vgap * 1e3)[self.idx_best]
rdyn_bias = np.interp(vb_best, v_mv, rdyn)
if ax is None:
fig, ax = plt.subplots()
else:
fig = ax.get_figure()
ax.plot(v_mv, rdyn, label=r'$R_\mathrm{dyn}$')
ax.plot(vb_best, rdyn_bias, 'r^', label=r'%.1f $\Omega$' % rdyn_bias)
ax.plot(v_steps, r_steps, 'k+',
label=r'$V_\mathrm{gap} + nV_\mathrm{ph}$')
plt.axvline(-1 * self.vgap * 1e3, c='k', ls='--', lw=0.5)
plt.axvline(0, c='k', ls='--', lw=0.5)
plt.axvline(1 * self.vgap * 1e3, c='k', ls='--', lw=0.5)
ax.set_xlabel('Bias Voltage (mV)')
ax.set_ylabel(r'Dynamic Resistance ($\Omega$)')
ax.set_xlim([0, vmax_plot])
ax.set_ylim(bottom=0)
ax.legend(loc=0, title='LO: ' + str(self.freq) + ' GHz')
ax.minorticks_on()
if fig_name is not None:
fig.savefig(fig_name, **_plot_params)
plt.close(fig)
return
else:
return ax
def plot_gain(self, fig_name=None, ax=None, vmax_plot=4.): # pragma: no cover
"""Plot gain.
Note: If ``fig_name`` is provided, this method will save the plot
to the specified folder and then close the plot. This means
that the Matplotlib axis object will not be returned in this
case. This is done to prevent too many plots from being open
at the time.
Args:
fig_name: figure filename
ax: Matplotlib axis
vmax_plot: max voltage to include in plot (in mV)
"""
# Check arguments
# assert fig_name is not None and ax is not None
# De-normalize voltage
v_mv = self.if_hot[:, 0] * self.vgap * 1e3
if ax is None:
fig, ax = plt.subplots()
else:
fig = ax.get_figure()
ax.plot(v_mv, self.gain*100, label=r'$G_{{c}}$')
ax.set_xlabel('Bias Voltage (mV)')
ax.set_ylabel('Gain (%)')
ax.set_xlim([0, vmax_plot])
ax.set_ylim([0, self.gain.max() * 105])
ax.minorticks_on()
if fig_name is not None:
fig.savefig(fig_name, **_plot_params)
plt.close(fig)
return
else:
return ax
def plot_error_surface(self, fig_name=None, ax=None): # pragma: no cover
"""Plot error surface (from impedance recovery).
Note: If ``fig_name`` is provided, this method will save the plot
to the specified folder and then close the plot. This means
that the Matplotlib axis object will not be returned in this
case. This is done to prevent too many plots from being open
at the time.
Args:
fig_name: figure filename
ax: Matplotlib axis
"""
# Check arguments
# assert fig_name is not None and ax is not None
# Range of impedance values (normalized)
remb_range = self.kwargs.get('remb_range', PARAMS['remb_range'])
xemb_range = self.kwargs.get('xemb_range', PARAMS['xemb_range'])
# Range of impedance values (de-normalized)
zt_real = np.linspace(remb_range[0], remb_range[1], 101) * self.rn
zt_imag = np.linspace(xemb_range[0], xemb_range[1], 201) * self.rn
zt_real_range = zt_real[-1] - zt_real[0]
zt_imag_range = zt_imag[-1] - zt_imag[0]
# Recovered impedance
zt_best = self.zt * self.rn
zt_re_best, zt_im_best = zt_best.real, zt_best.imag
# Mesh (for plotting)
xx, yy = np.meshgrid(zt_real, zt_imag)
zz = np.log10(self.err_surf)
if ax is None:
fig, ax = plt.subplots()
else:
fig = ax.get_figure()
pc = ax.pcolor(xx, yy, zz.T, cmap='viridis')
# Add color bar
cbar = plt.colorbar(pc, ax=ax)
cbar.ax.set_ylabel(r'$\log_{10}(\varepsilon)$', rotation=90)
# Left or right half of plot?
zt_re_mid = (zt_real[0] + zt_real[-1]) / 2.
if zt_re_best > zt_re_mid:
text_posx = zt_re_best - zt_real_range / 10.
text_ha = "right"
else:
text_posx = zt_re_best + zt_real_range / 10.
text_ha = "left"
# Top or bottom half of plot?
zt_im_mid = (zt_imag[0] + zt_imag[-1]) / 2.
if zt_im_best > zt_im_mid:
text_posy = zt_im_best - zt_imag_range / 10.
text_va = "top"
else:
text_posy = zt_im_best + zt_imag_range / 10.
text_va = "bottom"
# Annotate best value
err_str1 = 'Minimum Error at\n'
err_str2 = r'$Z_\mathrm{{T}}$={0:.2f} $\Omega$'.format(zt_best)
err_str = err_str1 + err_str2
text_pos = text_posx, text_posy
bbox_props = dict(boxstyle="round", fc="w", alpha=0.5)
ax.annotate(err_str, xy=(zt_re_best, zt_im_best),
xytext=text_pos, bbox=bbox_props,
va=text_va, ha=text_ha,
fontsize=16,
arrowprops=dict(color='black', arrowstyle="->", lw=2))
ax.set_xlabel(r'$R_\mathrm{{T}}$ ($\Omega$)')
ax.set_ylabel(r'$X_\mathrm{{T}}$ ($\Omega$)')
# Add text box
textstr1 = 'Embedding impedance:\n'
textstr2 = r'$Z_\mathrm{{T}}=R_\mathrm{{T}}+j\,X_\mathrm{{T}}$'
textstr = textstr1 + textstr2
ax.text(0.05, 0.95, textstr, transform=ax.transAxes,
verticalalignment='top', bbox=bbox_props)
if fig_name is not None:
fig.savefig(fig_name, **_plot_params)
plt.close(fig)
return
else:
return ax
def plot_simulated(self, fig_name=None, ax=None, vmax_plot=4.): # pragma: no cover
"""Plot simulated I-V curve (from impedance recovery).
Note: If ``fig_name`` is provided, this method will save the plot
to the specified folder and then close the plot. This means
that the Matplotlib axis object will not be returned in this
case. This is done to prevent too many plots from being open
at the time.
Args:
fig_name: figure filename
ax: Matplotlib axis
vmax_plot: max voltage to include in plot (in mV)
"""
# Check arguments
# assert fig_name is not None and ax is not None
# Unpack
vph = self.freq * sc.giga / self.dciv.fgap
resp = self.dciv.resp_smear
# Fit interval for impedance recovery
fit_range = self.kwargs.get('fit_range', None)
if fit_range is not None:
fit_low = fit_range[0]
fit_high = fit_range[1]
else:
fit_low = self.kwargs.get('cut_low', None)
fit_high = self.kwargs.get('cut_high', None)
if fit_low is None or fit_high is None:
fit_low = PARAMS['fit_range'][0]
fit_high = PARAMS['fit_range'][1]
fit_high = 1 - fit_high
v_min = (1 - vph + vph * fit_low) * self.vgap * 1e3
v_max = (1 - vph * fit_high) * self.vgap * 1e3
# Build embedding circuit
cct = qmix.circuit.EmbeddingCircuit(1, 1)
cct.freq[1] = vph
cct.zt[1, 1] = self.zt
cct.vt[1, 1] = self.vt
# Simulate pumped I-V curve
vj = harmonic_balance(cct, resp, num_b=30, verbose=False)
vph_list = [0, cct.freq[1]]
current = qtcurrent(vj, cct, resp, vph_list, num_b=30, verbose=False)
# De-normalize
mv = self.vgap * 1e3 # norm -> mV
ua = self.igap * 1e6 # norm -> uA
if ax is None:
fig, ax = plt.subplots()
else:
fig = ax.get_figure()
ax.plot(self.dciv.voltage * mv, self.dciv.current * ua,
label='Unpumped', c='gray')
ax.plot(self.voltage * mv, self.current * ua,
label='Pumped')
ax.plot(cct.vb * mv, current[0].real * ua,
label='Simulated', c='r', ls='--')
ax.plot([v_min, v_max],
np.interp([v_min, v_max],
cct.vb * mv, current[0].real * ua),
'k+', label='Fit Interval')
ax.set_xlim([0, vmax_plot])
ax.set_ylim([0, np.interp(vmax_plot, self.dciv.voltage * mv,
self.dciv.current * ua)])
ax.set_xlabel(r'Bias Voltage (mV)')
ax.set_ylabel(r'DC Current (uA)')
msg1 = 'LO: {:.1f} GHz'.format(self.freq)
msg2 = r'$V_T$ = {:.2f} mV'.format(self.vt * self.vgap * 1e3)
msg3 = r'$Z_T$ = {:.2f} $\Omega$'.format(self.zt * self.rn)
msg = msg1 + '\n' + msg2 + '\n' + msg3
ax.legend(title=msg, frameon=False)
if fig_name is not None:
fig.savefig(fig_name, **_plot_params)
plt.close(fig)
return
else:
return ax
def plot_all(self, fig_folder, file_struc=None, **kw): # pragma: no cover
"""Plot all pumped data and save to specified directory.
This method will call the following methods: ``plot_iv``,
``plot_ivif``, ``plot_error_surface``, ``plot_simulated``,
``plot_simulated``, ``plot_noise_temp``, and ``plot_gain_noise_temp``.
The plots generated by the different methods will be placed in
different sub-directories. This is set by the ``file_struc`` argument.
This argument is a dictionary with the following keys:
``'Pumped IV data'``, ``'IF data'``, ``'Impedance recovery'``, and
``'Noise temperature'``. Set ``file_struc`` to an empty string ("") if
you want all the figures to go into ``fig_folder``.
Args:
fig_folder (str): folder where the figures go
file_struc (dict): dictionary listing all the sub-folders
kw: keyword arguments that will be passed to the plotting methods
"""
# Folders for new plots
if file_struc is None:
iv_folder = _file_structure['Pumped IV data']
if_folder = _file_structure['IF data']
zr_folder = _file_structure['Impedance recovery']
tn_folder = _file_structure['Noise temperature']
elif isinstance(file_struc, str) and file_struc == '':
iv_folder = ''
if_folder = ''
zr_folder = ''
tn_folder = ''
elif isinstance(file_struc, dict):
iv_folder = file_struc['Pumped IV data']
if_folder = file_struc['IF data']
zr_folder = file_struc['Impedance recovery']
tn_folder = file_struc['Noise temperature']
else:
raise ValueError
iv_folder = os.path.join(fig_folder, iv_folder)
if_folder = os.path.join(fig_folder, if_folder)
zr_folder = os.path.join(fig_folder, zr_folder)
tn_folder = os.path.join(fig_folder, tn_folder)
# Make sure folders exist, create them if not
if not os.path.exists(iv_folder):
os.makedirs(iv_folder)
if not os.path.exists(if_folder):
os.makedirs(if_folder)
if not os.path.exists(zr_folder):
os.makedirs(zr_folder)
if not os.path.exists(tn_folder):
os.makedirs(tn_folder)
# Names for figures
f = str(self.freq)
fig1 = os.path.join(iv_folder, f + '-iv.png')
fig2 = os.path.join(if_folder, f + '-ivif.png')
fig3 = os.path.join(zr_folder, f + '-err-surf.png')
fig4 = os.path.join(zr_folder, f + '-sim.png')
fig5 = os.path.join(tn_folder, f + '-tn.png')
fig6 = os.path.join(tn_folder, f + '-tn-gain.png')
# Generate plots
self.plot_iv(fig1, **kw)
self.plot_ivif(fig2, **kw)
self.plot_noise_temp(fig5, **kw)
self.plot_gain_noise_temp(fig6, **kw)
if self.zt is not None:
self.plot_error_surface(fig3)
self.plot_simulated(fig4, **kw)
# ANALYZE IF SPECTRUM DATA ---------------------------------------------------
def plot_if_spectrum(data_folder, fig_folder=None, figsize=None): # pragma: no cover
"""Plot all IF spectra within data_folder.
Args:
data_folder: data folder
fig_folder: figure folder
figsize: figure size, in inches
"""
pstr = "\nImporting and plotting IF data:"
cprint(pstr, 'HEADER')
if_spectra_files = glob.glob(os.path.join(data_folder, '*comb*.dat'))
fig1, ax1 = plt.subplots(figsize=figsize)
fig2, ax2 = plt.subplots(figsize=figsize)
for if_file in if_spectra_files:
filename = os.path.basename(if_file)[:-4]
print(" - {}".format(filename))
base = filename.split('_')[0][1:]
freq, t_n, p_hot_db, p_cold_db = if_response(if_file)
fig2, ax2 = plt.subplots(figsize=figsize)
ax2.plot(freq, t_n)
ax1.plot(freq, t_n, label="{} GHz".format(base))
ax2.plot(freq, gauss_conv(t_n, sigma=1), label="{} GHz".format(base))
ax2.set_ylabel('Noise Temperature (K)')
ax2.set_xlabel('Frequency (GHz)')
ax2.set_ylim([0, 400])
ax2.set_xlim([0, 20])
if fig_folder is not None:
figname = os.path.join(fig_folder, filename)
fig2.savefig(figname + '.png', **_plot_params)
ax2.set_ylim([0, 2000])
fig2.savefig(figname + '2.png', **_plot_params)
else:
fig2.show()
ax1.set_ylabel('Noise Temperature (K)')
ax1.set_xlabel('Frequency (GHz)')
ax1.set_ylim([0, 500])
ax1.set_xlim([0, 20])
ax1.legend()
fig1.savefig(os.path.join(fig_folder, 'if_spectra.png'), **_plot_params)
ax1.set_ylim([0, 2000])
fig1.savefig(os.path.join(fig_folder, 'if_spectra2.png'), **_plot_params)
ax2.set_ylabel('Noise Temperature (K)')
ax2.set_xlabel('Frequency (GHz)')
ax2.set_ylim([0, 500])
ax2.set_xlim([0, 20])
ax2.legend()
fig2.savefig(os.path.join(fig_folder, 'if_spectra_smooth.png'),
**_plot_params)
ax2.set_ylim([0, 2000])
fig2.savefig(os.path.join(fig_folder, 'if_spectra_smooth2.png'),
**_plot_params)
print("")
# Plot overall results -------------------------------------------------------
def plot_overall_results(dciv, data_list, fig_folder, vmax_plot=4.,
figsize=None, tn_max=None,
f_range=None): # pragma: no cover
"""Plot all results.
This function is somewhat messy, but it will take in a list of RawData
class instances, and plot the overall figures of merit (e.g., noise
temperature vs LO frequency).
Args:
dciv: DC I-V data (instance of RawData0)
data_list: list of pumped data (instances of RawData)
fig_folder: figure destination
"""
cprint("\nPlotting results.", 'HEADER')
# Initialize results directory (if needed)
for sub_folder in _file_structure.values():
path = os.path.join(fig_folder, sub_folder)
if not os.path.exists(path):
os.makedirs(path)
plotparam = dict(ls='--', marker='o')
csv_folder = os.path.join(fig_folder, '09_csv_data/')
fig_folder = os.path.join(fig_folder, '08_overall_performance/')
num_data = float(len(data_list))
# Gather data as a function of LO frequency
freq, t_n, gain, rdyn = [], [], [], []
f_z, z, v, aemb = [], [], [], []
f_z_all, z_all, v_all, aemb_all = [], [], [], []
if_noise_f, if_noise = [], []
aj, zj = [], []
for data in data_list:
freq.append(data.freq)
t_n.append(data.tn_best)
gain.append(data.g_db)
aj.append(data.alpha)
zj.append(data.zw)
rdyn.append(data.zj_if)
if data.fit_good:
f_z.append(data.freq)
z.append(data.zt * data.rn)
v.append(data.vt * data.vgap)
aemb.append(data.vt / data.vph)
f_z_all.append(data.freq)
z_all.append(data.zt * data.rn)
v_all.append(data.vt * data.vgap)
aemb_all.append(data.vt / data.vph)
if data.good_if_noise_fit:
if_noise_f.append(data.freq)
if_noise.append(data.if_noise)
f_z = np.array(f_z)
z = np.array(z)
f_z_all = np.array(f_z_all)
z_all = np.array(z_all)
t_n = np.array(t_n)
gain = np.array(gain)
v = np.array(v)
# For normalizing data
mv = dciv.vgap * 1e3
ua = dciv.igap * 1e6
imax_plot = np.interp(vmax_plot, dciv.voltage * mv, dciv.current * ua)
# Save data in text format -----------------------------------------------
# Save DC I-V curve as csv
output_text = np.vstack((dciv.voltage, dciv.current)).T
np.savetxt(os.path.join(csv_folder, 'dciv-data.txt'), output_text)
# Save impedance as csv
with open(os.path.join(csv_folder, 'recovered-emb.txt'), 'w') as fout:
for i in range(len(data_list)):
vt_tmp = data_list[i].vt * dciv.vgap * 1e3
zt_tmp = data_list[i].zt * dciv.rn
zt_fmt = "{:6.2f} + 1j * ({:6.2f})".format(zt_tmp.real,
zt_tmp.imag)
pstring = '{0}\t{1:5.2f}\t{2}\t{3}\n'.format(data_list[i].freq,
vt_tmp,
zt_fmt,
data_list[i].fit_good)
fout.write(pstring)
# Write all DC I-V data to a file
with open(os.path.join(csv_folder, 'dciv-info.txt'), 'w') as fout:
fout.write('Gap voltage \t{:6.2f} [mV]\n'.format(dciv.vgap * 1e3))
fout.write('Normal resistance\t{:6.2f} [ohms]\n'.format(dciv.rn))
fout.write('Gap frequency \t{:6.2f} [GHz]\n'.format(dciv.fgap / 1e9))
# Write all pumped data to a file
with open(os.path.join(csv_folder, 'results.txt'), 'w') as fout:
headers = ['Frequency (GHz)',
'IV Filename',
'IF Filename (Hot)',
'IF Filename (Cold)',
'Noise Temperature (K)',
'Gain (dB)',
'Drive Level',
'Embedding Impedance (ohms)',
'Embedding Voltage (mV)',
'Embedding Circuit Recovered',
'IF Noise (K)',
'IF Noise Recovered']
fout.write(', '.join(headers) + '\n')
for data in data_list:
_list = [data.freq,
data.iv_file,
data.filename_hot,
data.filename_cold,
"{:.2f}".format(data.tn_best),
"{:.2f}".format(data.g_db),
"{:.2f}".format(data.alpha),
"{:.4f}".format(data.zt * dciv.rn),
"{:.4f}".format(data.vt * dciv.vgap * 1e3),
data.fit_good,
data.if_noise,
data.good_if_noise_fit]
string = ', '.join([str(item) for item in _list])
fout.write(string + '\n')
# Plot all pumped iv curves ----------------------------------------------
fig, ax = plt.subplots(figsize=figsize)
ax.plot(dciv.voltage * mv, dciv.current * ua, 'k')
for i, data in enumerate(data_list):
ax.plot(data.voltage * mv, data.current * ua,
color=plt.cm.winter(i / num_data),
label=data.freq)
if f_range is not None:
ax.set_xlim([f_range[0], f_range[1]])
ax.set_xlabel(r'Voltage (mV)')
ax.set_ylabel(r'Current (uA)')
ax.set_xlim([0, vmax_plot])
ax.set_ylim([0, imax_plot])
ax.legend(title='LO (GHz)', frameon=False)
fig.savefig(os.path.join(fig_folder, 'iv_curves.png'), dpi=500)
plt.close(fig)
# Plot dynamic resistance ------------------------------------------------
fig, ax = plt.subplots(figsize=figsize)
ax.plot(freq, rdyn, **plotparam)
if f_range is not None:
ax.set_xlim([f_range[0], f_range[1]])
ax.set_xlabel('Frequency (GHz)')
ax.set_ylabel(r'Dynamic resistance ($\Omega$)')
ax.set_ylim(bottom=0)
fig.savefig(os.path.join(fig_folder, 'rdyn.png'), dpi=500)
plt.close(fig)
# Plot noise temperature results -----------------------------------------
fig, ax = plt.subplots(figsize=figsize)
ax.plot(freq, t_n, color=_blue, **plotparam)
ax.set_xlabel('Frequency (GHz)')
ax.set_ylabel('Noise Temperature (K)')
if f_range is not None:
ax.set_xlim([f_range[0], f_range[1]])
if tn_max is None:
ax.set_ylim(bottom=0)
else:
ax.set_ylim([0, tn_max])
ax.grid()
fig.savefig(os.path.join(fig_folder, 'noise_temperature.png'), dpi=500)
plt.close(fig)
# Plot noise temperature with spline fit ---------------------------------
fig, ax = plt.subplots(figsize=figsize)
freq_t = np.linspace(np.min(freq), np.max(freq), 1001)
sp_1 = UnivariateSpline(freq, t_n)
ax.plot(freq, t_n, 'o', color=_blue)
ax.plot(freq_t, sp_1(freq_t), '--', color=_blue)
ax.set_xlabel('Frequency (GHz)')
ax.set_ylabel('Noise Temperature (K)')
if f_range is not None:
ax.set_xlim([f_range[0], f_range[1]])
if tn_max is None:
ax.set_ylim(bottom=0)
else:
ax.set_ylim([0, tn_max])
ax.grid()
fname = os.path.join(fig_folder, 'noise_temperature_spline_fit.png')
fig.savefig(fname, dpi=500)
plt.close(fig)
# Plot noise temperature results on log scale ----------------------------
fig, ax = plt.subplots(figsize=figsize)
ax.semilogy(freq, t_n, color=_blue, **plotparam)
ax.set_xlabel('Frequency (GHz)')
ax.set_ylabel('Noise Temperature (K)')
if f_range is not None:
ax.set_xlim([f_range[0], f_range[1]])
ax.grid()
fig.savefig(os.path.join(fig_folder, 'noise_temperature_logy.png'), dpi=500)
plt.close(fig)
# Plot noise temperature and gain ----------------------------------------
fig, ax1 = plt.subplots(figsize=figsize)
ax1.plot(freq, t_n, c=_pale_red, **plotparam)
ax1.set_xlabel('Frequency (GHz)')
ax1.set_ylabel('Noise Temperature (K)', color=_pale_red)
if f_range is not None:
ax1.set_xlim([f_range[0], f_range[1]])
if tn_max is None:
ax1.set_ylim(bottom=0)
else:
ax1.set_ylim([0, tn_max])
for tl in ax1.get_yticklabels():
tl.set_color(_pale_red)
ax2 = ax1.twinx()
ax2.plot(freq, gain, c=_blue, **plotparam)
ax2.set_ylabel('Gain (dB)', color=_blue)
for tl in ax2.get_yticklabels():
tl.set_color(_blue)
fig.savefig(os.path.join(fig_folder, 'noise_temperature_and_gain.png'), dpi=500)
plt.close(fig)
# Plot IF noise contribution results -------------------------------------
fig, ax = plt.subplots(figsize=figsize)
ax.plot(if_noise_f, if_noise, 'o--', color=_pale_red)
if f_range is not None:
ax.set_xlim([f_range[0], f_range[1]])
ax.set_xlabel('Frequency (GHz)')
ax.set_ylabel(r'IF Noise Contribution (K)')
ax.set_ylim(bottom=0)
fname = os.path.join(fig_folder, 'if_noise.png')
fig.savefig(fname, dpi=500)
plt.close(fig)
# Plot embedding impedance results ---------------------------------------
fig, ax = plt.subplots(figsize=figsize)
ax.plot(f_z, z.real, c=_pale_blue, label='Real', **plotparam)
ax.plot(f_z, z.imag, c=_pale_red, label='Imaginary', **plotparam)
if f_range is not None:
ax.set_xlim([f_range[0], f_range[1]])
ax.set_xlabel('Frequency (GHz)')
ax.set_ylabel(r'Embedding Impedance ($\Omega$)')
ax.legend(frameon=False)
ax.minorticks_on()
fig.savefig(os.path.join(fig_folder, 'embedding_impedance.png'), dpi=500)
plt.close(fig)
# Plot embedding impedance results ---------------------------------------
fig, ax = plt.subplots(figsize=figsize)
ax.plot(f_z_all, z_all.real, c=_pale_blue, label='Real', **plotparam)
ax.plot(f_z_all, z_all.imag, c=_pale_red, label='Imaginary', **plotparam)
if f_range is not None:
ax.set_xlim([f_range[0], f_range[1]])
ax.set_xlabel('Frequency (GHz)')
ax.set_ylabel(r'Embedding Impedance ($\Omega$)')
ax.legend(frameon=False)
ax.minorticks_on()
fig.savefig(os.path.join(fig_folder, 'embedding_impedance_all.png'), dpi=500)
plt.close(fig)
# Plot embedding impedance results ---------------------------------------
fig, ax = plt.subplots(figsize=figsize)
ax.plot(f_z, v * 1e3, c=_pale_green, ls='--', marker='o')
if f_range is not None:
ax.set_xlim([f_range[0], f_range[1]])
ax.set_xlabel('Frequency (GHz)')
ax.set_ylabel(r'Embedding Voltage (mV)')
ax.set_ylim(bottom=0)
ax.minorticks_on()
fig.savefig(os.path.join(fig_folder, 'embedding_voltage.png'), dpi=500)
plt.close(fig)
# Plot embedding impedance results ---------------------------------------
fig, ax = plt.subplots(figsize=figsize)
ax.plot(freq, aj, c=_pale_green, **plotparam)
if f_range is not None:
ax.set_xlim([f_range[0], f_range[1]])
ax.set_xlabel('Frequency (GHz)')
ax.set_ylabel(r'Drive Level, $\alpha$')
ax.set_ylim([0, 1.2])
ax.minorticks_on()
ax.grid()
fig.savefig(os.path.join(fig_folder, 'drive_level.png'), dpi=500)
plt.close(fig)
# Plot the impedance of the SIS junction ---------------------------------
fig, ax1 = plt.subplots(figsize=figsize)
zj = np.array(zj) * dciv.rn
ax1.plot(freq, zj.real, c=_pale_blue, label=r'Re$\{Z_J\}$', **plotparam)
ax1.plot(freq, zj.imag, c=_pale_red, label=r'Im$\{Z_J\}$', **plotparam)
if f_range is not None:
ax1.set_xlim([f_range[0], f_range[1]])
ax1.set_xlabel('Frequency (GHz)')
ax1.set_ylabel(r'Junction Impedance ($\Omega$)')
ax1.set_ylim()
ax1.legend(loc=0)
ax1.minorticks_on()
plt.savefig(os.path.join(fig_folder, 'junction_impedance.png'), dpi=500)
plt.close(fig)
print(" -> Done\n")
# IMPEDANCE RECOVERY HELPER FUNCTIONS (PRIVATE) ------------------------------
def _error_function(vwi, zwi, zs):
"""Calculate error function.
Equation 26 from:
S. Withington, K. G. Isaak, S. Kovtonyuk, R. Panhuyzen, and T. M.
Klapwijk, "Direct detection at submillimetre wavelengths using
superconducting tunnel junctions," Infrared Phys. Technol., vol. 36,
no. 7, pp. 1059-1075, Dec. 1995.
"""
err1 = np.sum(np.abs(vwi)**2)
err2 = np.sum(np.abs(vwi * zwi / (zs + zwi)))
err3 = np.sum(np.abs(zwi / (zs + zwi))**2)
return (err1 - err2**2 / err3) / len(vwi)
def _find_source_voltage(vwi, zwi, zs):
"""Calculate source voltage (i.e., embedding voltage).
Equation 27 from:
S. Withington, K. G. Isaak, S. Kovtonyuk, R. Panhuyzen, and T. M.
Klapwijk, "Direct detection at submillimetre wavelengths using
superconducting tunnel junctions," Infrared Phys. Technol., vol. 36,
no. 7, pp. 1059-1075, Dec. 1995.
"""
v1 = np.sum(np.abs(vwi * zwi / (zs + zwi)))
v2 = np.sum(np.abs(zwi / (zs + zwi))**2)
return v1 / v2
def _find_ac_current(resp, vb, vph, alpha, num_b=20, **kw):
"""Calculate AC tunneling current.
This is the large-signal equation from Tucker theory.
"""
ac_current = np.zeros_like(vb, dtype=complex)
for n in range(-num_b, num_b + 1):
# Bessel functions
j_n = special.jv(n, alpha)
j_minus = special.jv(n - 1, alpha)
j_plus = special.jv(n + 1, alpha)
ac_current += j_n * (j_minus + j_plus) * resp.idc(vb + n * vph)
ac_current += 1j * j_n * (j_minus - j_plus) * resp.ikk(vb + n * vph)
return ac_current
def _find_pumped_iv_curve(resp, vb, vph, alpha, num_b=20, **kw):
"""Calculate DC tunneling current (from Tucker theory).
"""
dc_current = np.zeros_like(vb, dtype=float)
for n in range(-num_b, num_b + 1):
dc_current += special.jv(n, alpha)**2 * resp.idc(vb + n * vph)
return dc_current
def _find_alpha(dciv, vdc_exp, idc_exp, vph, alpha_max=1.5, num_b=20, **kw):
"""Find the drive level (alpha) at each bias voltage.
"""
resp = dciv.resp
# Guess initial alpha value using the Bisection Method
idc_tmp = _find_pumped_iv_curve(resp, vdc_exp, vph, alpha_max, num_b=num_b, **kw)
idciv = resp.idc(vdc_exp)
alpha = (idc_exp - idciv) / (idc_tmp - idciv) * alpha_max
alpha[alpha < 0] = 0
# Refine alpha using an iterative technique
alpha_step = alpha_max / 4.
for it in range(15):
idc_tmp = _find_pumped_iv_curve(resp, vdc_exp, vph, alpha, num_b=num_b, **kw)
idc_err_tmp = idc_tmp - idc_exp
alpha[idc_err_tmp > 0] -= alpha_step
alpha[idc_err_tmp < 0] += alpha_step
alpha[alpha < 0] = 0
alpha_step /= 2.
return np.array(alpha)
# FILE MANAGEMENT ------------------------------------------------------------
def initialize_dir(fig_folder): # pragma: no cover
"""Initialize a new directory for storing results.
If you use either
Args:
fig_folder: desired location
"""
folder_list = ['']
folder_list += list(_file_structure.values())
for folder in folder_list:
if not os.path.exists(fig_folder + folder):
os.makedirs(fig_folder + folder)
print(' - Created: ' + folder)
print(" ")
# FILE HELPER FUNCTIONS ------------------------------------------------------
def _get_freq_from_filename(file_path):
"""Get frequency from filename.
This is used by the ``RawData`` class if a frequency is not provided
as an argument.
Note:
This function assumes that the only numbers in the filename are there
to represent the frequency. E.g., ``f230_0_iv.csv`` will be analyzed as
230.0 GHz, but ``f230_0_iv12.csv`` will be analyzed as 230.012 GHz.
More importantly, ``no15_f230_iv.csv`` will be analyzed as 152.30 GHz.
This function also assumes that the first digit in the file name
represents the hundreds (x100), so to represent a frequency below
100 GHz, you should use a leading zero. E.g., 85 GHz should be saved as
``f085_0_iv.csv``, or something along those lines.
Args:
file_path: file path
Returns:
float: Frequency, in units [GHz]
"""
filename = os.path.basename(file_path)
freq_nums = [int(s) for s in list(filename) if s.isdigit()]
mult = 100.
freq = 0.
for c in freq_nums:
freq += c * mult
mult /= 10.
return freq
def _get_freq(freq, filepath):
"""Get frequency.
If ``freq`` is not ``None``, return ``freq``. Otherwise, if ``freq`` is
``None``, try to get it from the filename (see
``_get_freq_from_filename()`` function).
Also, return the frequency as a string, so that it can be used to name
output files. But, replace periods with underscores. For example,
represent a frequency of 230.0 GHz as ``230_0``.
Args:
freq: frequency, in units GHz
filepath: filename of pumped I-V data
Returns:
tuple: frequency float and frequency string
"""
if freq is None:
freq = float(_get_freq_from_filename(filepath))
else:
freq = float(freq)
freq_str = "{0:05.1f}".format(freq)
freq_str = freq_str.replace('.', '_')
return freq, freq_str
|