1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
|
""" This sub-module contains functions for importing and analyzing
experimental IF power measurements.
The "IF data" is the IF output power from the SIS device versus bias voltage.
The term "DC IF data" is used for IF power with no LO injection, and "IF data"
is used for IF power with LO injection.
Note:
The IF data is expected either in the form of a CSV file or a Numpy
array. Either way the data should have two columns: the first for voltage
and the second for current.
"""
from collections import namedtuple
import numpy as np
from scipy import stats
from scipy.signal import savgol_filter
import scipy.constants as sc
from qmix.exp.clean_data import remove_doubles_matrix, remove_nans_matrix
from qmix.exp.parameters import params as PARAMS
from qmix.mathfn import slope_span_n
from qmix.mathfn.filters import gauss_conv
from qmix.misc.terminal import cprint
_vfmt_dict = {'uV': 1e-6, 'mV': 1e-3, 'V': 1} # Voltage units
# Load IF data and determine noise temperature -------------------------------
DCIFData = namedtuple('DCIFData', ['if_noise', 'corr', 'if_fit', 'shot_slope', 'vmax'])
DCIFData.__doc__ = """\
Struct for DC IF metadata.
Args:
if_noise (float): IF noise in units K, derived from the shot noise.
corr (float): The correction required to transform the measured IF power
(measured in arbitrary units, A.U.) to units K.
if_fit (bool): Is the estimated IF noise a reasonable value?
shot_slope (float): The slope of the line fit to the shot noise.
vmax (float): Maximum bias voltage, in units V.
"""
def dcif_data(ifdata, dc, **kwargs):
"""Analyze DC IF measurements.
This is the IF data that is measured with no LO present. This data is
used to analyze the shot noise, which can then be used to convert the IF
data into units 'K' and estimate the IF noise component.
Args:
ifdata: IF data. Either a CSV data file or a Numpy array. The data
should have two columns: the first for voltage, and the second
for IF power. If you are passing a CSV file, the properties of
the CSV file can be set through additional keyword arguments
(see below).
dc (qmix.exp.iv_data.DCIVData): DC I-V metadata.
Keyword Args:
delimiter (str): Delimiter for CSV files.
usecols (tuple): List of columns to import (tuple of length 2).
skip_header (int): Number of rows to skip, used to skip the header.
v_fmt (str): Units for voltage ('uV', 'mV', or 'V').
i_fmt (str): Units for current ('uA', 'mA', or 'A').
rseries (float): Series resistance in experimental measurement
system, in units [ohms].
v_multiplier (float): Multiply the imported voltage by this value.
ifdata_npts (int): Number of points for interpolation.
ifdata_sigma (float): Standard deviation of Gaussian used for
filtering, in units [V]
vshot (list): Voltage range over which to fit shot noise slope, in
units [V]. Can be a list of lists to define multiple ranges.
verbose (bool): Print to terminal.
Returns:
tuple: DC IF data, IF noise contribution, A.U. to K correction factor,
shot noise slope data, good fit to IF noise?
"""
ifdata = _load_if(ifdata, dc, **kwargs)
if_noise, corr, i_slope, if_fit = _find_if_noise(ifdata, dc, **kwargs)
ifdata[:, 1] *= corr
vmax = ifdata[:, 0].max() * dc.vgap
shot_noise = np.vstack((ifdata[:, 0], i_slope)).T
dcif = DCIFData(if_noise=if_noise, corr=corr, if_fit=if_fit,
shot_slope=shot_noise, vmax=vmax)
return ifdata, dcif
def if_data(if_hot, if_cold, dc, **kwargs):
"""Analyze IF measurements from a hot/cold load experiment.
Args:
if_hot: Hot IF data. Either a CSV data file or a Numpy array. The data
should have two columns: the first for voltage, and the second
for IF power.
if_cold: Cold IF data. Either a CSV data file or a Numpy array. The
data should have two columns: the first for voltage, and the
second for IF power.
dc (qmix.exp.iv_data.DCIVData): DC I-V metadata.
Keyword Args:
delimiter (str): Delimiter for CSV files.
usecols (tuple): List of columns to import (tuple of length 2).
skip_header (int): Number of rows to skip, used to skip the header.
v_fmt (str): Units for voltage ('uV', 'mV', or 'V').
i_fmt (str): Units for current ('uA', 'mA', or 'A').
rseries (float): Series resistance in experimental measurement
system, in units [ohms].
v_multiplier (float): Multiply the imported voltage by this value.
ifdata_max (float): Maximum IF voltage to import.
ifdata_npts (int): Number of points for interpolation.
ifdata_sigma (float): Standard deviation of Gaussian used for
filtering, in units [V]
t_cold (float): Temperature of cold blackbody load.
t_hot (float): Temperature of hot blackbody load.
vbest (float): Bias voltage for best results (best temperature and
gain).
verbose (bool): Print to terminal.
Returns:
tuple: Hot IF data, Cold IF data, Noise temperature, Gain, Index of
best noise temperature, IF noise contribution, Good fit to IF
noise?, shot noise slope
"""
print("\033[95m -> Analyze IF data:\033[0m")
verbose = kwargs.get('verbose', PARAMS['verbose'])
dcif = kwargs.get('dcif', None)
# Load IF data
if_hot = _load_if(if_hot, dc, **kwargs)
if_cold = _load_if(if_cold, dc, **kwargs)
# Correct data based on shot noise slope
if dcif is None or dcif.corr is None:
if_average = (if_hot + if_cold) / 2.
if_noise, corr, i_slope, if_fit = _find_if_noise(if_average, dc, **kwargs)
shot_slope = np.vstack((if_cold[:, 0], i_slope)).T
else:
if_noise = dcif.if_noise
corr = dcif.corr
shot_slope = dcif.shot_slope
if_fit = dcif.if_fit
if_hot[:, 1] *= corr
if_cold[:, 1] *= corr
# Calculate noise temperature + gain
tn, gain, idx_best = _find_tn_gain(if_hot, if_cold, dc, **kwargs)
results = np.vstack((if_hot[:,0], if_hot[:,1], if_cold[:,1], tn, gain)).T
vmax = if_hot[:,0].max() * dc.vgap
dcif_out = DCIFData(if_noise=if_noise, corr=corr, if_fit=if_fit,
shot_slope=shot_slope, vmax=vmax)
if verbose:
print("\t- IF noise:\t{0:+6.2f} K".format(if_noise))
return results, idx_best, dcif_out
# Calculate noise temperature ------------------------------------------------
def _find_tn_gain(if_data_hot, if_data_cold, dc, **kw):
"""Find the noise temperature and gain from IF data.
This function will search for the best noise temperature, but it makes an
effort to not take noise temperatures that are found in narrow dips.
Note: IF data must be corrected using Woody's method (i.e., using the shot
noise slope) prior to being used in this function.
Args:
if_data_hot: Hot IF data
if_data_cold: Cold IF data
dc: DC I-V metadata
Keyword Args:
freq: Frequency in GHz
t_hot (float): hot load temperature
t_cold (float): cold load temperature
verbose (bool): print to terminal
vbest (float): Bias voltage with best results (best noise temperature
and gain)
Returns:
tuple: noise temperature, gain, and best index
"""
# Unpack keyword arguments
freq = kw.get('freq', PARAMS['freq'])
t_hot = kw.get('t_hot', PARAMS['t_hot'])
t_cold = kw.get('t_cold', PARAMS['t_cold'])
verbose = kw.get('verbose', PARAMS['verbose'])
vbest = kw.get('vbest', PARAMS['vbest'])
best_pt = kw.get('best_pt', PARAMS['best_pt'])
# Unpack
vnorm = if_data_hot[:, 0]
p_hot = if_data_hot[:, 1]
p_cold = if_data_cold[:, 1]
# Callen-Welton
t_hot = _temp_cw(freq*1e9, t_hot)
t_cold = _temp_cw(freq*1e9, t_cold)
assert (vnorm == if_data_cold[:, 0]).all(), \
"Voltages of hot and cold measurements must match."
# Calculate y-factor and remove impossible values (y<1)
y = p_hot / p_cold
y[y <= 1. + 1e-10] = 1. + 1e-10
# Calculate noise temperature and gain
tn = (t_hot - t_cold * y) / (y - 1)
gain = (p_hot - p_cold) / (t_hot - t_cold)
# Best bias point
if vbest is not None:
idx_out = np.abs(vnorm * dc.vgap - vbest).argmin()
elif best_pt.lower() == 'max gain':
idx_out = gain.argmax()
elif best_pt.lower() == 'min tn':
idx_out = tn.argmin()
else:
raise ValueError("best_pt not recognized")
if verbose:
tn_best = tn[idx_out]
gain_best = 10 * np.log10(gain[idx_out])
print("\t- noise temp:\t{0:6.1f} K".format(tn_best))
print("\t- gain:\t\t{0:+6.2f} dB".format(gain_best))
return tn, gain, idx_out
def _temp_cw(freq, tphys):
"""Callen-Welton equations. Uses Planck distribution with half photon."""
freq = float(freq)
tphys = float(tphys)
return sc.h * freq / 2 / sc.k / np.tanh(sc.h * freq / 2 / sc.k / tphys)
# Determine if noise ---------------------------------------------------------
def _find_if_noise(if_data, dc, **kw):
"""Determine IF noise from shot noise slope.
Uses Woody's method (Woody 1985).
Args:
if_data: IF data, 2-column numpy array: voltage x power
dc: DC I-V metadata
Keyword Args:
vshot (list): Voltage range over which to fit shot noise slope, in
units [V]. Can be a list of lists to define multiple ranges.
Returns:
tuple: IF noise, correction factor, linear fit
"""
# Unpack keyword arguments
vshot = kw.get('vshot', PARAMS['vshot'])
# This is relatively tricky to automate
# It still makes mistakes occasionally, make sure to check/plot your data
# TODO: Sort out this function
# Unpack
x = if_data[:, 0]
y = if_data[:, 1]
# DEBUG
# import matplotlib.pyplot as plt
# plt.plot(x, y)
# plt.show()
if vshot is None:
# Find linear region where spikes due to Josephson effect are not present
# Begin by filtering and calculating the first/second derivative
y_filt = savgol_filter(y, 21, 3)
first_der = slope_span_n(x, y_filt, 11)
first_der = savgol_filter(first_der, 51, 3)
second_der = slope_span_n(x, first_der, 11)
second_der = savgol_filter(np.abs(second_der), 51, 3)
# First criteria: x>1.7 and second derivative must be small
condition1 = np.max(np.abs(second_der)) * 1e-2
mask = (x > 1.7) & (np.abs(second_der) < condition1)
# Second criteria: first derivative must be similar to bulk value
med_der = np.median(first_der[mask])
mask_tmp = (0. < first_der) & (first_der < med_der * 2)
mask = mask & mask_tmp
# Third criteria: must be at least two values clumped together
mask_tmp = np.zeros_like(mask, dtype=bool)
mask_tmp[:-1] = mask[:-1] & mask[1:]
mask = mask & mask_tmp
else:
# Make vshot a list of lists
assert isinstance(vshot, tuple) or isinstance(vshot, list)
if not isinstance(vshot[0], tuple) and not isinstance(vshot[0], list):
vshot = (vshot,)
# Build mask
mask = np.zeros_like(x, dtype=bool)
for vrange in vshot:
mask_tmp = (vrange[0] < x * dc.vgap) & (x * dc.vgap < vrange[1])
mask = mask | mask_tmp
if np.sum(mask) < 5: # pragma: no cover
cprint('\t\tShot noise fit failed.', 'RED')
cprint('\t\tSelecting all voltages above 2*Vgap.', 'RED')
mask = x > 2.
# Combine criteria
x_red, y_red = x[mask], y[mask]
# Find slope of shot noise
slope, intercept, _, _, _ = stats.linregress(x_red, y_red)
i_slope = slope * x + intercept
# # Normal resistance in this region
# volt_v = x_red * dc.vgap
# curr_a = np.interp(x_red, dc.vnorm, dc.inorm) * dc.igap
# rn_slope = (curr_a[-1] - curr_a[0]) / (volt_v[-1] - volt_v[0])
# vint = curr_a[0] - rn_slope * volt_v[0]
# if vint < 0:
# vint = 0
# # Plot for debugging
# import matplotlib.pyplot as plt
# plt.figure()
# plt.plot(x, y, 'k')
# plt.plot(x_red, y_red, 'r')
# plt.plot(x, i_slope, 'g--')
# plt.ylim([0, i_slope.max() * 1.05])
# plt.show()
# Correct shot noise slope to 5.8/mV
# gamma = (dc.rn - 50.) / (dc.rn + 50.)
# trans = (1 - gamma**2)
corr = 5.8 / slope * dc.vgap * 1e3 # * trans
i_slope *= corr
# IF noise contribution
if_noise = np.interp(dc.vint / dc.vgap, x, i_slope)
# if_noise = np.interp(vint, x, i_slope)
# Is it a reasonable IF noise estimate?
good_if_noise_fit = 0 < if_noise < 50
return if_noise, corr, i_slope, good_if_noise_fit
# Import IF data -------------------------------------------------------------
def _load_if(ifdata, dc, **kwargs):
"""Import IF data.
Args:
ifdata: IF data. Either a CSV data file or a Numpy array. The data
should have two columns: the first for voltage, and the second
for IF power. If you are using a CSV file, the properties of
the CSV file can be set through additional keyword arguments
(see below).
dc (qmix.exp.iv_data.DCIVData): DC I-V metadata.
Keyword arguments:
delimiter (str): delimiter used in data files
v_fmt (str): units for voltage ('V', 'mV', 'uV')
usecols (tuple): columns for voltage and current (e.g., ``(0,1)``)
ifdata_sigma (float): Standard deviation of Gaussian used for
filtering, in units [V]
ifdata_npts (float): evenly interpolate data to have this many data
points
rseries (float): series resistance of measurement system
skip_header: number of rows to skip at the beginning of the file
Returns: IF data (in matrix form)
"""
# Unpack keyword arguments
v_multiplier = kwargs.get('v_multiplier', PARAMS['v_multiplier'])
skip_header = kwargs.get('skip_header', PARAMS['skip_header'])
sigma = kwargs.get('ifdata_sigma', PARAMS['ifdata_sigma'])
vmax = kwargs.get('vmax', PARAMS['vmax'])
npts = kwargs.get('ifdata_npts', PARAMS['ifdata_npts'])
delim = kwargs.get('delimiter', PARAMS['delimiter'])
usecols = kwargs.get('usecols', PARAMS['usecols'])
rseries = kwargs.get('rseries', PARAMS['rseries'])
v_fmt = kwargs.get('v_fmt', PARAMS['v_fmt'])
# Import raw IF data
if isinstance(ifdata, str): # assume CSV data file
ifdata = np.genfromtxt(ifdata, delimiter=delim, usecols=usecols,
skip_header=skip_header)
elif isinstance(ifdata, np.ndarray): # Numpy array
ifdata = ifdata.copy()
assert ifdata.ndim == 2, 'I-V data should be 2-dimensional.'
assert ifdata.shape[1] == 2, 'I-V data should have 2 columns.'
else:
raise ValueError("Input data type not recognized.")
# Units for voltage
ifdata[:, 0] *= _vfmt_dict[v_fmt]
# Clean
ifdata = remove_nans_matrix(ifdata)
ifdata = ifdata[np.argsort(ifdata[:, 0])]
ifdata = remove_doubles_matrix(ifdata)
# Correct errors in experimental system
ifdata[:, 0] *= v_multiplier
# Correct for offset
ifdata[:, 0] = ifdata[:, 0] - dc.offset[0]
# Correct for series resistance
if rseries is not None:
v = ifdata[:, 0]
rstatic = dc.vraw / dc.iraw
rstatic[rstatic < 0] = 0.
rstatic = np.interp(v, dc.vraw, rstatic)
iraw = np.interp(v, dc.vraw, dc.iraw)
rj = rstatic - rseries
v0 = iraw * rj
ifdata[:, 0] = v0
# Normalize voltage to gap voltage
ifdata[:, 0] /= dc.vgap
# Set to common voltage (so that data can be stacked)
v, p = ifdata[:, 0], ifdata[:, 1]
assert v.max() > vmax / dc.vgap, \
'vmax ({0}) outside data range ({1})'.format(vmax / dc.vgap, v.max())
assert v.min() < 0., 'V=0 not included in IF data'
v_out = np.linspace(0, vmax / dc.vgap, npts)
p_out = np.interp(v_out, v, p)
ifdata = np.vstack((v_out, p_out)).T
# Smooth IF data
if sigma is not None:
step = (ifdata[1, 0] - ifdata[0, 0]) * dc.vgap
# Backwards compatibility
if sigma > 0.5:
sigma = sigma * step
ifdata[:, 1] = gauss_conv(ifdata[:, 1], sigma / step)
return ifdata
|