1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
|
"""This sub-module contains functions for importing and analyzing
experimental current-voltage (I-V) data.
"I-V data" is the DC tunneling current versus DC bias voltage that is measured
from an SIS junction. In general, the term "DC I-V data" is used for I-V data
that is collected with no local-oscillator (LO) injection, and "I-V data" is
used for I-V data that is collected with LO injection (also known as the
"pumped I-V curve").
Note:
The I-V data is expected either in the form of a CSV file or a Numpy
array. Either way the data should have two columns: the first for voltage
and the second for current.
"""
from collections import namedtuple
from warnings import filterwarnings
import matplotlib.pyplot as plt
import numpy as np
import scipy.constants as sc
from scipy.signal import savgol_filter
from qmix.exp.clean_data import remove_doubles_xy, remove_nans_xy, sort_xy
from qmix.exp.parameters import params as PARAMS
from qmix.mathfn.filters import gauss_conv
from qmix.mathfn.misc import slope
from qmix.misc.terminal import cprint
filterwarnings(action="ignore", module="scipy", message="^internal gelsd")
_vfmt_dict = {'uV': 1e-6, 'mV': 1e-3, 'V': 1} # Voltage units
_ifmt_dict = {'uA': 1e-6, 'mA': 1e-3, 'A': 1} # Current units
# Import and analyze I-V data ------------------------------------------------
DCIVData = namedtuple('DCIVData', ['vraw', 'iraw', 'vnorm', 'inorm', 'vgap',
'igap', 'fgap', 'rn', 'rsg', 'offset',
'vint', 'rseries'])
DCIVData.__doc__ = """\
Struct for DC I-V curve metadata.
Args:
vraw (ndarray): DC bias voltage in units [V]. This data has been filtered
and the offset has been corrected.
iraw (ndarray): DC tunneling current in units [A]. This data has been
filtered and the offset has been corrected.
vnorm (ndarray): DC bias voltage, normalized to the gap voltage.
inorm (ndarray): DC tunneling current, normalized to the gap current.
vgap (float): Gap voltage in units [V].
igap (flaot): Gap current in units [A].
fgap (float): Gap frequency in units [Hz].
rn (float): Normal-state resistance in units [ohms].
rsg (float): Sub-gap resistance in units [ohms].
offset (tuple): Voltage and current offset in the raw measured data, in
units [V] and [A], respectively.
vint (float): If you fit a line to the normal-state resistance (i.e., the
DC I-V curve above the gap), the line will intercept the x-axis at
``vint``. This is given in units [V].
rseries (float): The series resistance to remove from the I-V data. Given
in units [ohms].
"""
def dciv_curve(ivdata, **kwargs):
"""Import and analyze DC I-V data (a.k.a., the unpumped I-V curve).
Args:
ivdata: DC I-V data. Either a CSV data file or a Numpy array. The data
should have two columns: the first for voltage, and the second
for current. If you are using CSV files, the properties of
the CSV file can be set through additional keyword arguments.
(See below).
Keyword Args:
delimiter (str): Delimiter for CSV files.
usecols (tuple): List of columns to import (tuple of length 2).
skip_header (int): Number of rows to skip, used to skip the header.
v_fmt (str): Units for voltage ('uV', 'mV', or 'V').
i_fmt (str): Units for current ('uA', 'mA', or 'A').
vmax (float): Maximum voltage to import in units [V].
npts (int): Number of points to have in I-V interpolation.
debug (bool): Plot each step of the I-V processing procedure.
voffset (float): Voltage offset, in units [V].
ioffset (float): Current offset, in units [A].
voffset_range (list): Voltage range over which to search for offset,
in units [V].
voffset_sigma (float): Standard deviation of Gaussian filter when
searching for offset.
rseries (float): Series resistance in experimental measurement
system, in units [ohms].
i_multiplier (float): Multiply the imported current by this value.
v_multiplier (float): Multiply the imported voltage by this value.
filter_data (bool): Filter data
vgap_guess (float): Guess of gap voltage. Used to temporarily
normalize while filtering. Given in units [V].
igap_guess (float): Guess of gap current. Used to temporarily
normalize while filtering. Given in units [A].
filter_theta (float): Angle by which to the rotate data while
filtering. Given in radians.
filter_nwind (int): Window size for Savitsky-Golay filter.
filter_npoly (int): Order of Savitsky-Golay filter.
vgap_threshold (float): The current to measure the gap voltage at.
vrn (list): Voltage range over which to calculate the normal
resistance, in units [V]
rn_vmin (float): Lower voltage range to determine the normal
resistance, in units [V] (DEPRECATED)
rn_vmax (float): Upper voltage range to determine the normal
resistance, in units [V] (DEPRECATED)
vrsg (float): The voltage at which to calculate the subgap
resistance.
vleak (float): The voltage at which to calculate the subgap leakage
current.
Returns:
tuple: normalized voltage, normalized current, DC I-V metadata
"""
# Unpack keyword arguments
# Use default values from qmix.exp.parameters if they aren't provided
v_multiplier = kwargs.get('v_multiplier', PARAMS['v_multiplier'])
i_multiplier = kwargs.get('i_multiplier', PARAMS['i_multiplier'])
rseries = kwargs.get('rseries', PARAMS['rseries'])
debug = kwargs.get('debug', PARAMS['debug'])
vmax = kwargs.get('vmax', PARAMS['vmax'])
npts = kwargs.get('npts', PARAMS['npts'])
# Import and do some basic cleaning (voltage in V, current in A)
volt_v, curr_a = _load_iv(ivdata, **kwargs)
if debug: # pragma: no cover
plt.figure()
plt.plot(volt_v, curr_a)
plt.title('Initial import')
plt.show()
# Correct for DC gain errors in experimental system (if needed)
volt_v *= v_multiplier
curr_a *= i_multiplier
# Correct offsets in I-V data
volt_v, curr_a, offset = _correct_offset(volt_v, curr_a, **kwargs)
if debug: # pragma: no cover
plt.figure()
plt.plot(volt_v, curr_a)
plt.grid()
plt.title('After correcting for the offset')
plt.show()
# Filter I-V data
volt_v, curr_a = _filter_iv_data(volt_v, curr_a, **kwargs)
if debug: # pragma: no cover
plt.figure()
plt.plot(volt_v, curr_a)
plt.title('After filtering')
plt.show()
# Save uncorrected data
vraw, iraw = volt_v.copy(), curr_a.copy()
# Correct for series resistances in DC biasing system
volt_v, curr_a = _correct_series_resistance(volt_v, curr_a, **kwargs)
if debug: # pragma: no cover
plt.figure()
plt.plot(volt_v, curr_a)
plt.grid()
plt.title('After fixing the series resistance')
plt.show()
# Analyze properties of DC I-V curve
rn, vint = _find_normal_resistance(volt_v, curr_a, **kwargs)
rsg = _find_subgap_resistance(volt_v, curr_a, **kwargs)
vgap = _find_gap_voltage(volt_v, curr_a, **kwargs)
fgap = sc.e * vgap / sc.h
igap = vgap / rn
# Warnings
if rn < 1:
cprint('\nWarning: Normal resistance is very low...', 'RED')
cprint(' Are you sure you have the right units?\n', 'RED')
if rn > 50:
cprint('\nWarning: Normal resistance is very high...', 'RED')
cprint(' Are you sure you have the right units?\n', 'RED')
# Normalize I-V curve
voltage = volt_v / vgap
current = curr_a / igap
# Resample I-V curve
v_temp = np.linspace(-vmax, vmax, npts) / vgap
current = np.interp(v_temp, voltage, current)
voltage = v_temp
# Save DC I-V curve metadata
dc = DCIVData(vraw=vraw, iraw=iraw,
vnorm=voltage, inorm=current,
vgap=vgap, igap=igap,
fgap=fgap, rn=rn,
rsg=rsg, offset=offset,
vint=vint, rseries=rseries)
return voltage, current, dc
def iv_curve(ivdata, dc, **kwargs):
"""Load and analyze pumped I-V curve data.
Args:
ivdata: I-V data. Either a CSV data file or a Numpy array. The data
should have two columns: the first for voltage, and the second
for current. If you are using a CSV file, the properties of
the CSV file can be set through additional keyword arguments
(see below).
dc (qmix.exp.iv_data.DCIVData): DC I-V data metadata. Generated
previously by ``dciv_curve``.
Keyword Args:
delimiter (str): Delimiter for CSV files.
usecols (tuple): List of columns to import (tuple of length 2).
skip_header (int): Number of rows to skip, used to skip the header.
v_fmt (str): Units for voltage ('uV', 'mV', or 'V').
i_fmt (str): Units for current ('uA', 'mA', or 'A').
vmax (float): Maximum voltage to import in units [V].
npts (int): Number of points to have in I-V interpolation.
debug (bool): Plot each step of the I-V processing procedure.
voffset (float): Voltage offset, in units [V].
ioffset (float): Current offset, in units [A].
voffset_range (list): Voltage range over which to search for offset,
in units [V].
voffset_sigma (float): Standard deviation of Gaussian filter when
searching for offset.
rseries (float): Series resistance in experimental measurement
system, in units [ohms].
i_multiplier (float): Multiply the imported current by this value.
v_multiplier (float): Multiply the imported voltage by this value.
filter_data (bool): Filter data
vgap_guess (float): Guess of gap voltage. Used to temporarily
normalize while filtering. Given in units [V].
igap_guess (float): Guess of gap current. Used to temporarily
normalize while filtering. Given in units [A].
filter_theta (float): Angle by which to the rotate data while
filtering. Given in radians.
filter_nwind (int): Window size for Savitsky-Golay filter.
filter_npoly (int): Order of Savitsky-Golay filter.
Returns:
tuple: normalized voltage, normalized current
"""
# Unpack keyword arguments
v_multiplier = kwargs.get('v_multiplier', PARAMS['v_multiplier'])
i_multiplier = kwargs.get('i_multiplier', PARAMS['i_multiplier'])
voffset = kwargs.get('voffset', PARAMS['voffset'])
ioffset = kwargs.get('ioffset', PARAMS['ioffset'])
debug = kwargs.get('debug', PARAMS['debug'])
vmax = kwargs.get('vmax', PARAMS['vmax'])
npts = kwargs.get('npts', PARAMS['npts'])
# Import and do some basic cleaning
volt_v, curr_a = _load_iv(ivdata, **kwargs)
if debug: # pragma: no cover
plt.figure()
plt.plot(volt_v, curr_a)
plt.title('Initial import')
plt.show()
# Correct for DC gain errors in experimental system (if needed)
volt_v *= v_multiplier
curr_a *= i_multiplier
# Correct offset
if voffset is not None and ioffset is not None:
volt_v -= voffset
curr_a -= ioffset
else:
volt_v -= dc.offset[0]
curr_a -= dc.offset[1]
if debug: # pragma: no cover
plt.figure()
plt.plot(volt_v, curr_a)
plt.title('After correcting offset')
plt.show()
# Filter I-V data
volt_v, curr_a = _filter_iv_data(volt_v, curr_a, **kwargs)
if debug: # pragma: no cover
plt.figure()
plt.plot(volt_v, curr_a)
plt.title('After filtering')
plt.show()
# Correct for series resistances in DC biasing system
volt_v, curr_a = _correct_series_resistance(volt_v, curr_a, **kwargs)
if debug: # pragma: no cover
plt.figure()
plt.plot(volt_v, curr_a)
plt.grid()
plt.title('After fixing the series resistance')
plt.show()
# Normalize
voltage = volt_v / dc.vgap
current = curr_a / dc.igap
# Resample I-V curve
v_temp = np.linspace(-vmax, vmax, npts) / dc.vgap
current = np.interp(v_temp, voltage, current)
voltage = v_temp
return voltage, current
# Load I-V data -------------------------------------------------------------
def _load_iv(ivdata, **kw):
"""Import I-V data and do some basic cleaning.
Args:
ivdata: I-V data. Either a CSV data file or a Numpy array. The data
should have two columns: the first for voltage, and the second
for current.
Keyword Arguments:
v_fmt: voltage units ('uV', 'mV', 'V')
i_fmt: current units ('uA', 'mA', 'A')
usecols: list of columns to use (tuple of length 2)
skip_header: number of rows to skip at the beginning of the file
delimiter: delimiter for CSV files
Returns:
tuple: voltage in units V, current in units A
"""
# Unpack keyword arguments
skip_header = kw.get('skip_header', PARAMS['skip_header'])
delimiter = kw.get('delimiter', PARAMS['delimiter'])
usecols = kw.get('usecols', PARAMS['usecols'])
v_fmt = kw.get('v_fmt', PARAMS['v_fmt'])
i_fmt = kw.get('i_fmt', PARAMS['i_fmt'])
# Import raw I-V data
if isinstance(ivdata, str): # input: CSV file
vraw, iraw = np.genfromtxt(ivdata, delimiter=delimiter,
usecols=usecols, skip_header=skip_header).T
elif isinstance(ivdata, np.ndarray): # input: Numpy array
assert isinstance(ivdata, np.ndarray), \
'I-V data should be a Numpy array.'
assert ivdata.ndim == 2, 'I-V data should be 2-dimensional.'
assert ivdata.shape[1] == 2, 'I-V data should have 2 columns.'
vraw, iraw = ivdata.T
else:
raise ValueError("Input data type not recognized.")
# Set units
volt_v = vraw * _vfmt_dict[v_fmt]
curr_a = iraw * _ifmt_dict[i_fmt]
# Basic cleaning
volt_v, curr_a = remove_nans_xy(volt_v, curr_a)
volt_v, curr_a = _take_one_pass(volt_v, curr_a)
volt_v, curr_a = sort_xy(volt_v, curr_a)
volt_v, curr_a = remove_doubles_xy(volt_v, curr_a)
return volt_v, curr_a
# Filter I-V data ------------------------------------------------------------
def _filter_iv_data(volt_v, curr_a, **kw):
"""Filter I-V data.
Rotate, use Savitzky-Golay (SG) filter, then rotate back.
This is similar to the technique described in:
P. K. Grimes, S. Withington, G. Yassin, and P. Kittara, “Quantum
multitone simulations of saturation in SIS mixers,” in Millimeter and
Submillimeter Detectors for Astronomy II, 2004, vol. 5498, p. 158-167.
Args:
volt_v (ndarray): voltage in units V
curr_a (ndarray): current in units A
Keyword Args:
filter_data: filter data
filter_nwind: SG filter window size
filter_npoly: SG filter order
filter_theta: angle to rotate data by during filtering
npts: number of points to output
Returns:
tuple: filtered voltage, filtered current
"""
# Unpack keyword arguments
filter_nwind = kw.get('filter_nwind', PARAMS['filter_nwind'])
filter_npoly = kw.get('filter_npoly', PARAMS['filter_npoly'])
filter_theta = kw.get('filter_theta', PARAMS['filter_theta'])
filter_data = kw.get('filter_data', PARAMS['filter_data'])
npts = kw.get('npts', PARAMS['npts'])
if not filter_data: # pragma: no cover
return volt_v, curr_a
# Normalize (temporary)
vmax = volt_v.max()
imax = curr_a.max()
vnorm, inorm = volt_v / vmax, curr_a / imax
# Rotate I-V curve
x, y = _rotate(vnorm, inorm, -filter_theta)
# Resample rotated curve
x_resampled = np.linspace(x.min(), x.max(), npts)
y_resampled = np.interp(x_resampled, x, y)
# Filter using Savitsky-Golay filter
y_filtered = savgol_filter(y_resampled, filter_nwind, filter_npoly)
# Rotate back to starting position
x, y = _rotate(x_resampled, y_filtered, filter_theta)
# Resample
xtmp = np.linspace(x.min(), x.max(), npts)
y = np.interp(xtmp, x, y)
x = xtmp
# Go back to units [V] and [A]
volt_v, curr_a = x * vmax, y * imax
return volt_v, curr_a
def _rotate(x, y, theta):
"""Rotate x/y data by angle theta (in radians)."""
x_out = np.cos(theta) * x - np.sin(theta) * y
y_out = np.sin(theta) * x + np.cos(theta) * y
return x_out, y_out
# Helper functions to analyze iv data ----------------------------------------
def _take_one_pass(v, i):
"""Take one pass from experimental data.
When I-V curves are measured, the voltage typically sweeps up from zero,
then all the way down, then back up to zero. Since hysteretic effects
cause the gap voltage to change, this script will automatically grab a
single pass. It selects the portion of the sweep where the voltage is
sweeping away from zero. This is when the largest gap voltages are
measured.
The data will need to be sorted afterwards!
Args:
v (ndarray): voltage
i (ndarray): current
Returns:
tuple: voltage, current
"""
# TODO: Update -- make more general
idx_min, idx_max = v.argmin(), v.argmax()
# If data is already sorted
if idx_min == 0 and idx_max == len(i) - 1: # pragma: no cover
return v, i
# If data is already sorted, but in reverse order
if idx_max == 0 and idx_min == len(i) - 1: # pragma: no cover
return v, i
# If the sweep starts in the middle.
if idx_max < idx_min:
idx_start = np.abs(v[idx_max:idx_min+1] - v[0]).argmin() + idx_max
xout = np.r_[v[idx_start:idx_min+1][::-1], v[0:idx_max+1]]
yout = np.r_[i[idx_start:idx_min+1][::-1], i[0:idx_max+1]]
return xout, yout
else:
idx_start = np.abs(v[idx_min:idx_max+1] - v[0]).argmin() + idx_min
xout = np.r_[v[0:idx_min+1][::-1], v[idx_start:idx_max+1]]
yout = np.r_[i[0:idx_min+1][::-1], i[idx_start:idx_max+1]]
return xout, yout
def _correct_offset(volt_v, curr_a, **kw):
"""Find and correct any I/V offset.
The experimental data often has an offset in both V and I. This can be
corrected by using the leakage current. This is found by looking at the
derivative and correcting based on where the peak of the derivative is.
Args:
volt_v (ndarray): voltage, in V
curr_a (ndarray): current, in A
Keyword Args:
voffset: voltage offset, in V
ioffset: current offset, in A
voffset_range (list): Voltage range over which to search for offset,
in units [V].
voffset_sigma: std dev of Gaussian filter when searching for offset
Returns:
tuple: corrected voltage, corrected current, I/V offset
"""
# Unpack keyword arguments
voffset_range = kw.get('voffset_range', PARAMS['voffset_range'])
voffset_sigma = kw.get('voffset_sigma', PARAMS['voffset_sigma'])
voffset = kw.get('voffset', PARAMS['voffset'])
ioffset = kw.get('ioffset', PARAMS['ioffset'])
if voffset is None: # Find voffset and ioffset
# Search over a limited voltage range
if isinstance(voffset_range, tuple):
mask = (voffset_range[0] < volt_v) & (volt_v < voffset_range[1])
else: # if int or float
mask = (-voffset_range < volt_v) & (volt_v < voffset_range)
v = volt_v[mask]
i = curr_a[mask]
# Find derivative of I-V curve
vstep = v[1] - v[0]
sigma = voffset_sigma / vstep
der = slope(v, i)
der_smooth = gauss_conv(der, sigma=sigma)
# Offset is at max derivative
idx = der_smooth.argmax()
voffset = v[idx]
# ioffset = np.interp(voffset, v, i)
ioffset = (np.interp(voffset - 0.1e-3, v, i) +
np.interp(voffset + 0.1e-3, v, i)) / 2
if ioffset is None: # Find ioffset
ioffset = np.interp(voffset, volt_v, curr_a)
# Correct for the offset
volt_v -= voffset
curr_a -= ioffset
return volt_v, curr_a, (voffset, ioffset)
def _find_normal_resistance(volt_v, curr_a, **kw):
"""Determine the normal resistance of the DC I-V curve.
Args:
volt_v (ndarray): voltage, in V
curr_a (ndarray): current, in A
Keyword Args:
vrn (list): Voltage range over which to calculate the normal
resistance, in units [V]
rn_vmin (float): Lower voltage range to determine the normal
resistance, in units [V] (DEPRECATED)
rn_vmax (float): Upper voltage range to determine the normal
resistance, in units [V] (DEPRECATED)
Returns:
tuple: normal resistance, intercept voltage
"""
# Range of voltages over which to calculate the normal resistance
rn_vmin = kw.get('rn_vmin', None) # DEPRECATED argument
rn_vmax = kw.get('rn_vmax', None) # DEPRECATED argument
vrn = kw.get('vrn', None) # voltage range (list)
if vrn is not None:
# Try to use new argument first
rn_vmin = vrn[0]
rn_vmax = vrn[1]
elif rn_vmin is None or rn_vmax is None:
# Use default values if neither are defined
rn_vmin = PARAMS['vrn'][0]
rn_vmax = PARAMS['vrn'][1]
# Range over which to fit normal resistance
mask = (rn_vmin < volt_v) & (volt_v < rn_vmax)
v, i = volt_v[mask], curr_a[mask]
# Fit normal-state resistance
p = np.polyfit(v, i, 1)
rnslope = p[0]
rn = 1 / rnslope
vint = -p[1] / rnslope
return rn, vint
def _find_gap_voltage(volt_v, curr_a, **kw):
"""Find gap voltage.
Args:
volt_v (ndarray): voltage, in V
curr_a (ndarray): current, in A
Keyword Args:
vgap_threshold (float): the current at the gap voltage
Returns:
float: gap voltage
"""
# Unpack keyword arguments
vgap_threshold = kw.get('vgap_threshold', PARAMS['vgap_threshold'])
# Method 1: current threshold
if vgap_threshold is not None:
idx = np.abs(curr_a - vgap_threshold).argmin()
vgap = volt_v[idx]
return vgap
# Method 2: max derivative
vstep = volt_v[1] - volt_v[0]
mask = (1.5e-3 < volt_v) & (volt_v < 3.5e-3)
der = slope(volt_v[mask], curr_a[mask])
der = gauss_conv(der, sigma=0.2e-3 / vstep)
vgap = volt_v[mask][der.argmax()]
return vgap
def _find_subgap_resistance(volt_v, curr_a, **kw):
"""Find subgap resistance of DC I-V curve.
Args:
volt_v (ndarray): voltage, in V
curr_a (ndarray): current, in A
Keyword Args:
vrsg: the voltage to calculate the subgap resistance at
Returns:
float: subgap resistance
"""
# Unpack keyword arguments
vrsg = kw.get('vrsg', PARAMS['vrsg'])
mask = (vrsg - 1e-4 < volt_v) & (volt_v < vrsg + 1e-4)
p = np.polyfit(volt_v[mask], curr_a[mask], 1)
return 1 / p[0]
def _correct_series_resistance(vmeas, imeas, **kw):
"""Remove series resistance from exp data.
Args:
vmeas (ndarray): measured voltage, in V
imeas (ndarray): measured current, in A
Keyword Args:
rseries (float): series resistance, in ohms
Returns:
ndarray: corrected voltage, in V
ndarray: corrected current, in A
"""
# Unpack keyword arguments
rseries = kw.get('rseries', PARAMS['rseries'])
if rseries is None:
return vmeas, imeas
rstatic = vmeas / imeas
rstatic[rstatic < 0] = 0.
mask = np.invert(np.isnan(rstatic))
rj = rstatic - rseries
v0 = imeas[mask] * rj[mask]
idc = imeas.copy()[mask]
return v0, idc
|