File: harmonic_balance.py

package info (click to toggle)
python-qmix 1.0.6-11
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 9,460 kB
  • sloc: python: 4,312; makefile: 215
file content (411 lines) | stat: -rw-r--r-- 16,034 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
""" This module contains functions to perform harmonic balance of non-linear 
SIS mixer circuits. 

**Description**

    Each signal that is applied to an SIS junction can be represented by a 
    Thevenin equivalent circuit (see qmix.circuit). This circuit will then 
    induce a voltage across the SIS junction. The exact voltage that is 
    induced depends on the impedance of the SIS junction. However, this 
    impedance changes depending on the other signals that are applied to 
    the junction. 

    Harmonic balance is a procedure to solve for the voltage across the SIS
    junction for each signal that is applied to the junction. This techniques 
    uses Newton's method to find the solution numerically.

"""

import qmix
import numpy as np
from timeit import default_timer as timer
from qmix.misc.progbar import progress_bar
from qmix.qtcurrent import interpolate_respfn, qtcurrent


# minimum Thevenin voltage (required to avoid div by 0 errors)
MIN_VT = 1e-10
# voltage step for numerical derivatives
DV = 1e-3
# round frequency values to this number of decimal places when comparing
ROUND_FREQ = 4


# Harmonic Balance ----------------------------------------------------------

# This is the main harmonic balance function. It uses the Newton-Raphson
# method to find the solution to the highly non-linear equation.


def harmonic_balance(cct, resp, num_b=15, max_it=10, stop_rerror=0.001, vj_initial=None, damp_coeff=1., mode="o", verbose=True, zj_guess=0.67,):
    """Perform harmonic balance.

    Determine the harmonic balance of the junction + embedding circuit system. 
    Uses Newton's method to find the solution. For more information, see 
    Garrett (2018); Kittara (2002); Kittara, Winthington & Yassin (2007); or 
    Withington, Kittara & Yassin (2003). [Full references in online docs.]

    Args:
        cct (qmix.circuit.EmbeddingCircuit): Embedding circuit
        resp (qmix.respfn.RespFn): Response function
        num_b (int/tuple, optional): Summation limits for phase factor
            coefficients, default is 15
        max_it (int, optional): Maximum number of iterations, default is 10
        stop_rerror (float, optional): Maximum acceptable relative error,
            default is 0.001
        vj_initial (ndarray, optional): Initial guess of junction voltage
            (vj), default is None
        damp_coeff (float, optional): Dampening coefficient for correction
            factor (0-1), default is 1
        mode (string, optional): output vj ('o'), print ('p'), output extra
            data ('x'), default is "o"
        verbose (bool, optional): print info to terminal if true, default is
            True

    Returns:
        ndarray: junction voltage that satisfies the circuit

    """

    if verbose:
        print("Running harmonic balance:")

    start_time = timer()

    # Check input data ------------------------------------------------------

    num_f = cct.num_f
    num_p = cct.num_p
    num_n = cct.num_n
    npts = cct.vb_npts

    vt = cct.vt
    zt = cct.zt

    # Harmonic balance isn't required if all zt are equal to zero
    if (zt == 0).all():
        if verbose:
            print("Done.\n")
        return vt[:, :, None] * np.ones(npts, dtype=complex)

    # Check whether any Thevenin voltages are zero (prevents div0 errors) ----

    vt[np.abs(vt) < MIN_VT] = MIN_VT
    vt[0, :] = 0  # TODO: is this needed?
    vt[:, 0] = 0

    # Initial guess of the junction voltage (vj) -----------------------------

    if vj_initial is None:

        vj_initial = vt[:, :, None] * \
                     zj_guess / (zj_guess + zt[:, :, None]) * \
                     np.ones(npts, dtype=complex)

    # Prepare input data ----------------------------------------------------

    # Note on matrix shapes: Most of the circuit parameters are stored in a
    # [f, p, vb] format. I.e., the first index is for the tone, the second is
    # for the harmonic and the third is for the bias voltage. In the harmonic
    # balance function, I change these to [k, vb] to make the matrix
    # manipulation easier to understand. Therefore, a 3 tone, 2 harmonic
    # variable (with shape (3+1) x (2+1) x npts, where npts = length of bias
    # voltage) will be transformed into a matrix with shape 6 x npts.

    # Change format of data from [f, p] to [p] (reduce by one dimension)
    vj_2d = vj_initial[1:, 1:, :].reshape((num_n, npts))
    vt_2d = vt[1:, 1:].reshape(num_n)
    zt_2d = zt[1:, 1:].reshape(num_n)

    if verbose:
        print((" - {0} tone(s) and {1} harmonic(s)".format(num_f, num_p)))
        msg = " - {0} calls to the quasiparticle tunneling current (qtc) function per iteration"
        print((msg.format(num_n * 2 + 1)))
        print(" - max. iterations: {}".format(max_it))

    # Interpolate response function for all required voltages
    respfn_interp = interpolate_respfn(cct, resp, num_b)

    # Perform harmonic balance -----------------------------------------------

    iteration = 0
    for iteration in range(max_it + 1):

        # Current vector (junction current)
        time_current = timer()
        ij_2d = _qt_current_for_hb(vj_2d, cct, resp, num_b, resp_matrix=respfn_interp)
        if iteration == 0 and verbose:
            print("Estimated time:")
            call_time = timer() - time_current
            msg = ' - time per qtc call:  {:7.2f} s / {:6.2f} min / {:5.2f} hrs'
            print((msg.format(call_time, call_time/60., call_time/3600.)))
            it_time = call_time * (num_n * 2 + 1)
            msg = ' - time per iteration: {:7.2f} s / {:6.2f} min / {:5.2f} hrs'
            print((msg.format(it_time, it_time/60., it_time/3600.)))
            max_time = it_time * max_it
            msg = ' - max sim time:       {:7.2f} s / {:6.2f} min / {:5.2f} hrs'
            print((msg.format(max_time, max_time/60., max_time/3600.)))

        # Error vector
        err_all = vt_2d[:, None] - zt_2d[:, None] * ij_2d - vj_2d

        # Check error at each tone and harmonic
        if verbose:
            print(("Error after {0} iteration(s):".format(iteration)))
        max_rel_error = 0.  # initialize maximum relative error of all signals
        msg = "\tf:{:d}, p:{:d},   med. rel. error: {:9.3f},   max. rel. error: {:9.3f},   {:5.1f} % complete"
        finished_points = np.ones(npts, dtype=bool)
        for k in range(num_n):
            with np.errstate(divide='ignore'):
                # Check relative error at k
                abs_error = np.abs(err_all[k, :])
                rel_error = abs_error / np.abs(vj_2d[k, :])
                max_rel_error = max(np.max(rel_error), max_rel_error)
                med_rel_error = np.median(abs_error / np.abs(vj_2d[k, :]))
                good_points = rel_error < stop_rerror
                finished_points = finished_points & good_points
                complete = float(np.sum(good_points)) / npts

            # Print to terminal
            if verbose:
                f, p = _k_to_fp(k, num_p)

                if med_rel_error > 99999.999:
                    _med_rel_error = 99999.999
                else:
                    _med_rel_error = med_rel_error

                if np.max(rel_error) > 99999.999:
                    _rel_error = 99999.999
                else:
                    _rel_error = np.max(rel_error)
                    
                print((msg.format(int(f), int(p), _med_rel_error, _rel_error, complete * 100)))

        # Exit if the error is good enough
        if max_rel_error <= stop_rerror:
            if verbose:
                print("Done: Minimum error target was achieved.")
            break

        # Exit if this is the last iteration
        if max_rel_error > stop_rerror and iteration == max_it:
            print("*** DID NOT ACHIEVE TARGET ERROR VALUE ***\n")
            break

        # Update junction voltages (i.e., the business end of this function)
        inv_j = _inv_jacobian(err_all, vj_2d, vt_2d, zt_2d, cct, resp, num_b, resp_matrix=respfn_interp, verbose=verbose)
        if verbose:
            print("Applying correction")
        corr = np.zeros((num_n, npts), dtype=complex)
        for p in range(num_n):
            for q in range(num_n):
                corr[p, :] -=      (inv_j[p * 2,     q * 2    ] * np.real(err_all[q]) +
                                    inv_j[p * 2,     q * 2 + 1] * np.imag(err_all[q]))
                corr[p, :] -= 1j * (inv_j[p * 2 + 1, q * 2    ] * np.real(err_all[q]) +
                                    inv_j[p * 2 + 1, q * 2 + 1] * np.imag(err_all[q]))
        vj_2d += corr * damp_coeff

    # Format results (from [k,vb] to [f,p,vb])
    vj_out = np.zeros((num_f + 1, num_p + 1, npts), dtype=complex)
    vj_out[1:, 1:, :] = vj_2d.reshape((num_f, num_p, npts))

    time = timer() - start_time
    if verbose:
        print((" - sim time:\t\t{:7.2f} s / {:6.2f} min / {:5.2f} hrs".format(time, time/60., time/3600.)))
        if iteration >= 1:
            tit = time / iteration  # time per iteration
            msg = " - {} iterations required"
            print((msg.format(iteration)))
            print((" - time per iteration:\t{:7.2f} s / {:6.2f} min / {:5.2f} hrs".format(tit, tit/60., tit/3600.)))

    if mode == "o":  # return vj
        return vj_out
    elif mode == "x":  # return vj, number of iterations, and if converged
        did_not_hit_max_it = iteration != max_it
        return vj_out, iteration, did_not_hit_max_it
    elif mode == "m":  # return vj and mask
        return vj_out, finished_points


# Check results -------------------------------------------------------------

# Double check the error from the harmonic balance function. This is mainly
# for debugging purposes to ensure that everything was done properly.


def check_hb_error(vj_check, cct, resp, num_b=15, stop_rerror=0.001):
    """Check the results from the `harmonic_balance` function.

    Just to double check. Mostly for debugging purposes.

    Args:
        vj_check (ndarray): The voltage across junction to check
        cct (qmix.circuit.EmbeddingCircuit): Embedding circuit
        resp (qmix.respfn.RespFn): Response function
        num_b (optional): Summation limits for phase factor coefficients,
            default is 15
        stop_rerror (float, optional): Maximum acceptable relative error,
            default is 0.001

    Raises:
        AssertionError: If the stop error is not met

    """

    # Note: speed is not important here...

    print("Double-checking harmonic balance error:")

    # Tunnelling current for all tones/harmonics (see below)
    ij_all = _qtcurrent_all_freq(vj_check, cct, resp, num_b)

    for f in range(1, cct.num_f + 1):
        for p in range(1, cct.num_p + 1):
            error_fp = cct.vt[f, p] - \
                cct.zt[f, p] * ij_all[f, p, :] - \
                vj_check[f, p, :]
            max_rel_error = np.max(np.abs(error_fp) /
                                   np.abs(vj_check[f, p, :]))
            good_error = max_rel_error < stop_rerror
            if good_error:
                err_str = 'Yes'
            else:
                err_str = 'No'
            msg = "\tf:{0},\tp:{1},\tmax rel. error: {2:.2E},\tPass? {3}"
            print((msg.format(f, p, max_rel_error, err_str)))
            assert good_error
    print("")


def _qtcurrent_all_freq(vj, cct, resp, num_b=15):
    """Calculate the AC tunneling current for all tones and all harmonics.

    This function will return the tunneling current in a 3-D array: 
    (num_f+1) x (num_p+1) x (npts).

    This is used in the harmonic balance procedure.

    Args:
        vj (ndarray): Voltage across the junction
        cct (qmix.circuit.EmbeddingCircuit): Embedding circuit class
        resp (qmix.respfn.RespFn): Response function
        num_b (int/tuple, optional): Summation limits for phase factor 
            coefficients, default is 15

    Returns:
        ndarray: Quasiparticle tunneling current

    """

    num_f = cct.num_f
    num_p = cct.num_p
    npts = cct.vb_npts

    # Get frequency list with all tones/harmonics represented
    freq_list = (cct.freq[1:, None] * np.arange(1, num_p + 1)).flatten()

    current = qtcurrent(vj, cct, resp, freq_list, num_b, verbose=False)

    # Arrange back into a 3D matrix (f x p x vb)
    current_out = np.zeros((num_f + 1, num_p + 1, npts), dtype=complex)
    current_out[1:, 1:] = current.reshape((num_f, num_p, npts))

    return current_out


# Calculate Jacobian matrix and its inverse ----------------------------------

# Calculate the Jacobian matrix and invert it. This is the function that
# takes the bulk of the computing time. This requires num_n*2+1 calls to the
# non-linear tunneling current calculations.


def _inv_jacobian(error_all, vj_2d, vt_2d, zt_2d, cct, resp, num_b, resp_matrix=None, verbose=True):
    """ Find the inverse Jacobian matrix. Used to update vj."""

    num_n = cct.num_n
    npts = cct.vb_npts

    jacobian = np.zeros((num_n * 2, num_n * 2, npts), dtype=float)
    for q in range(num_n):

        if verbose:
            progress_bar(q, num_n, prefix="Calculating inverse Jacobian")

        dvj = np.zeros((num_n, npts), dtype=float)
        dvj[q, :] = DV

        # The current at vj+dv (vj for signal 'q' increased by dv)
        ij_drev = _qt_current_for_hb(vj_2d + dvj, cct, resp, num_b, resp_matrix=resp_matrix)
        error_drev = vt_2d[:, None] - zt_2d[:, None] * ij_drev - (vj_2d + dvj)

        # The current at vj+dv (vj for signal 'q' increased by 1j*dv)
        ij_dimv = _qt_current_for_hb(vj_2d + 1j * dvj, cct, resp, num_b, resp_matrix=resp_matrix)
        error_dimv = vt_2d[:, None] - zt_2d[:, None] * ij_dimv - (vj_2d + 1j * dvj)

        # Calculate the 2x2 Jacobian block
        block = np.zeros((2, 2, npts), dtype=float)
        for p in range(num_n):
            block[0, 0, :] = np.real((error_drev - error_all) / DV)[p]
            block[0, 1, :] = np.real((error_dimv - error_all) / DV)[p]
            block[1, 0, :] = np.imag((error_drev - error_all) / DV)[p]
            block[1, 1, :] = np.imag((error_dimv - error_all) / DV)[p]
            jacobian[p * 2:p * 2 + 2, q * 2:q * 2 + 2, :] = block

    if verbose:
        progress_bar(num_n, num_n, prefix="Calculating inverse Jacobian")

    # Invert the Jacobian matrix
    # See: https://stackoverflow.com/a/49582794
    inv_jacobian = np.linalg.inv(jacobian.transpose(2,0,1)).transpose(1,2,0)

    return inv_jacobian


# Determine mixer current (2D) ------------------------------------------------

def _qt_current_for_hb(vj_2d, cct, resp, num_b, resp_matrix=None):
    """Calculate the DC and AC tunneling currents required for the harmonic
     balance function.

    This function will return the tunneling current for all of the tones and
    all of the harmonics in a 2-D array. This function is used by the harmonic
    balance module.

    Args:
        vj_2d (ndarray): Junction voltage in a 2-D matrix
        cct (class): Embedding circuit
        resp (class): Response function
        num_b (int/tuple): Summation limits for phase factor coefficients
        resp_matrix (ndarray): The interpolate response function matrix

    Returns:
        ndarray: AC tunneling currents in a matrix

    """

    # 2d [k, i] -> 3d [f, p, i]
    vj = np.zeros((cct.num_f + 1, cct.num_p + 1, cct.vb_npts), dtype=complex)
    vj[1:, 1:, :] = vj_2d.reshape((cct.num_f, cct.num_p, cct.vb_npts))

    freq_list = []
    for ft in range(1, cct.num_f + 1):
        for pt in range(1, cct.num_p + 1):
            freq_list.append(round(cct.freq[ft] * pt, ROUND_FREQ))

    current_out = qtcurrent(vj, cct, resp, freq_list, num_b, verbose=False, resp_matrix=resp_matrix)

    return current_out


# General helper functions --------------------------------------------------

def _k_to_fp(k, num_p):
    """ Given the index 'k' (i.e., the 1-d index), find the equivalent index
    in '[f,p]' (i.e., the 2-d index). """

    p = (k % num_p) + 1
    f = (k + num_p - p + 1) / num_p

    return f, p