1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872
|
""" This module contains functions to calculate the quasiparticle tunneling
currents passing through an SIS junction.
Description:
Given the voltages applied across an SIS junction, the quasiparticle
tunneling currents can be calculated using multi-tone spectral domain
analysis (MTSDA; see references in online docs).
Note:
This code is largely based on P. Kittara's 2002 DPhil thesis (see
references in online docs). I include some inline comments to refer to
specific equations.
Also, all of the values in this module are normalized, i.e., voltages are
normalized to the gap voltage, frequencies are normalized to the gap
frequency, etc.
"""
from timeit import default_timer as timer
#import numba as nb
import numpy as np
from scipy.special import jv as bessel
# round frequency values to this number of decimal places
# required when comparing frequency to frequency_list
ROUND_FREQ = 4
# Determine the dc/ac tunneling currents -------------------------------------
def qtcurrent(vj, cct, resp, freq_list, num_b=15, verbose=True, resp_matrix=None):
"""Calculate the quasiparticle tunneling current.
This function uses multi-tone spectral domain analysis (MTSDA; see
references in online docs). The current is calculated based on the
voltage applied across the junction (vj).
Note:
This function will return the tunneling current for all of the
frequencies listed in freq_list (normalized to the gap frequency).
E.g., to solve for the dc tunneling current and the ac tunneling
current at 230 GHz, the ``freq_list`` would be ``[0, 230e9 / fgap]``
where ``fgap`` is the gap frequency.
Maximum of 4 non-harmonically related tones.
Args:
vj (ndarray): Voltage across the SIS junction
cct (qmix.circuit.EmbeddingCircuit): Embedding circuit
resp (qmix.respfn.RespFn): Response function
freq_list: Calculate the tunneling currents for these frequencies
(normalized to the gap frequency)
num_b (float/tuple, optional): Summation limits for phase factor
coefficients, default is 15
verbose (bool, optional): Print info to the terminal if true, default
is True
resp_matrix (ndarray, optional): The interpolated response function
matrix, generated by interpolate_respfn(), default is None
Returns:
ndarray: Quasiparticle tunneling current
"""
# Load, prepare and check input data -------------------------------------
num_f = cct.num_f # number of frequencies
num_p = cct.num_p # number of harmonics
npts = cct.vb_npts # number of bias voltages
assert cct.freq[1:].min() > 0., "All freq must be > 0!"
# TODO: there must be a better way...
try:
freq_list = list(freq_list)
freq_is_list = True
except TypeError:
freq_list = [float(freq_list)]
freq_is_list = False
# TODO: there must be a better way...
for i, freq_val in enumerate(freq_list):
freq_list[i] = round(freq_val, ROUND_FREQ)
freq_npts = len(freq_list)
freq = cct.freq
nb_list = _unpack_num_b(num_b, num_f)
if verbose:
print("Calculating tunneling current...")
print(" - {0} tone(s)".format(cct.num_f))
print(" - {0} harmonic(s)".format(cct.num_p))
start_time = timer()
# Convolution coefficients ------------------------------------------------
ccc = calculate_phase_factor_coeff(vj, freq, num_f, num_p, num_b)
# Interpolate response function ------------------------------------------
if resp_matrix is None:
resp_matrix = interpolate_respfn(cct, resp, num_b)
else:
assert resp_matrix.ndim == num_f + 1
assert resp_matrix.shape[-1] == npts
# Call the correct function depending on the number of tones---------------
current_out = np.zeros((freq_npts, cct.vb_npts), dtype=complex)
if num_f == 1:
for i in range(freq_npts):
current_out[i] = _current_1_tone(freq_list[i], ccc, freq, resp_matrix, num_p, npts, *nb_list)
elif num_f == 2:
for i in range(freq_npts):
current_out[i] = _current_2_tones(freq_list[i], ccc, freq, resp_matrix, num_p, npts, *nb_list)
elif num_f == 3:
for i in range(freq_npts):
current_out[i] = _current_3_tones(freq_list[i], ccc, freq, resp_matrix, num_p, npts, *nb_list)
elif num_f == 4:
for i in range(freq_npts):
current_out[i] = _current_4_tones(freq_list[i], ccc, freq, resp_matrix, num_p, npts, *nb_list)
# Done --------------------------------------------------------------------
if verbose:
print("Done.")
print("Time: {0:.4f} s\n".format(timer() - start_time))
if freq_is_list:
return current_out
else:
if freq_list[0] == 0.:
return current_out[0].real
else:
return current_out[0]
# Response function matrices --------------------------------------------------
# The response function (the dc I-V curve and it's KK transform) needs to be
# repeatedly interpolated in this module. The functions below do all of the
# necessary interpolations all at once to save time.
#
# Note: Interpolating the response function is one of the most time consuming
# operations within this module.
#
# Two different methods are used below to generate the interpolation voltages:
# - one using loops
# - one without
# I've spent some time optimizing each and using the correct method for each
# number of tones.
#
# Runs once per qtcurrent function call
# TODO: write better tests for this function
def interpolate_respfn(cct, resp, num_b):
"""Interpolate the response function at all necessary voltages.
I have included this as a stand-alone function because if you are going
to be running ``qtcurrent`` over and over again with the same input
signal frequencies, it can save time by pre-interpolating the response
function.
Args:
cct (qmix.circuit.EmbeddingCircuit): Embedding circuit
resp (qmix.respfn.RespFn): Response function
num_b (int/tuple): Summation limits for phase factor coefficients
Returns:
ndarray: The interpolated response function as a matrix.
"""
nb_list = _unpack_num_b(num_b, cct.num_f)
if cct.num_f == 1:
resp_matrix = _interpolate_respfn_1_tone(resp, cct.vb, cct.freq, *nb_list)
elif cct.num_f == 2:
resp_matrix = _interpolate_respfn_2_tone(resp, cct.vb, cct.freq, *nb_list)
elif cct.num_f == 3:
resp_matrix = _interpolate_respfn_3_tone(resp, cct.vb, cct.freq, *nb_list)
elif cct.num_f == 4:
resp_matrix = _interpolate_respfn_4_tone(resp, cct.vb, cct.freq, *nb_list)
else:
print("num_f must be 1, 2, 3 or 4!")
raise ValueError
return resp_matrix
def _interpolate_respfn_1_tone(resp, vb, freq, num_b1):
"""Interpolate the response function (1 tone).
Args:
resp (qmix.respfn.RespFn): Response function
vb (ndarray): Bias voltages, normalized
freq (ndarray): Frequencies, normalized
num_b1 (int): Summation limits for phase factor coefficients
Returns:
ndarray: Response function, interpolated
"""
npts = len(vb)
k_npts = num_b1 * 2 + 1
vb_tmp = vb[None, :] * np.ones(k_npts)[:, None]
ind = np.r_[np.arange(0, num_b1+1), np.arange(-num_b1, 0)]
k_array = ind[:, None] * np.ones(npts, dtype=int)[None, :]
resp_out = resp(vb_tmp + k_array * freq[1])
# # DEBUG
# print k_array[:,0]
# print len(k_array[0,:])
# print " {} -> {}".format(-num_b1, k_array[-num_b1][0])
# print " 0 -> {}".format(k_array[0][0])
# print " {} -> {}".format(num_b1, k_array[num_b1][0])
return resp_out
def _interpolate_respfn_2_tone(resp, vb, freq, num_b1, num_b2):
"""Interpolate the response function (2 tones).
Args:
resp (qmix.respfn.RespFn): Response function
vb (ndarray): Bias voltages, normalized
freq (ndarray): Frequencies, normalized
num_b1 (int): Summation limits for phase factor coefficients (tone 1)
num_b2 (int): Summation limits for phase factor coefficients (tone 2)
Returns:
ndarray: Response function, interpolated
"""
npts = len(vb)
k_npts = num_b1 * 2 + 1
l_npts = num_b2 * 2 + 1
ind = np.r_[np.arange(0, num_b1 + 1), np.arange(-num_b1, 0)]
k_array = ind[:, None, None] * np.ones((l_npts, npts), dtype=int)[None, :, :]
ind = np.r_[np.arange(0, num_b2 + 1), np.arange(-num_b2, 0)]
l_array = ind[None, :, None] * np.ones((k_npts, npts), dtype=int)[:, None, :]
vb_tmp = vb[None, None, :] * np.ones((k_npts, l_npts))[:, :, None]
resp_out = resp(vb_tmp + k_array * freq[1] + l_array * freq[2])
# # DEBUG
# print k_array[:,0,0]
# print " {} -> {}".format(-num_b1, k_array[-num_b1][0,0])
# print " {} -> {}".format(0, k_array[0][0,0])
# print " {} -> {}".format(num_b1, k_array[num_b1][0,0])
# print l_array[0,:,0]
# print " {} -> {}".format(-num_b2, l_array[:,-num_b2][0,0])
# print " {} -> {}".format(0, l_array[:,0][0,0])
# print " {} -> {}".format(num_b2, l_array[:,num_b2][0,0])
return resp_out
def _interpolate_respfn_3_tone(resp, vb, freq, num_b1, num_b2, num_b3):
"""Interpolate the response function (3 tones).
Args:
resp (qmix.respfn.RespFn): Response function
vb (ndarray): Bias voltages, normalized
freq (ndarray): Frequencies, normalized
num_b1 (int): Summation limits for phase factor coefficients (tone 1)
num_b2 (int): Summation limits for phase factor coefficients (tone 2)
num_b3 (int): Summation limits for phase factor coefficients (tone 3)
Returns:
ndarray: Response function, interpolated
"""
npts = len(vb)
voltage = np.zeros((num_b1 * 2 + 1, num_b2 * 2 + 1, num_b3 * 2 + 1, npts))
for k in range(-num_b1, num_b1 + 1):
for l in range(-num_b2, num_b2 + 1):
for m in range(-num_b3, num_b3 + 1):
voltage[k, l, m] = vb + k * freq[1] + l * freq[2] + m * freq[3]
resp_out = resp(voltage)
return resp_out
def _interpolate_respfn_4_tone(resp, vb, freq, num_b1, num_b2, num_b3, num_b4):
"""Interpolate the response function (3 tones).
Args:
resp (qmix.respfn.RespFn): Response function
vb (ndarray): Bias voltages, normalized
freq (ndarray): Frequencies, normalized
num_b1 (int): Summation limits for phase factor coefficients (tone 1)
num_b2 (int): Summation limits for phase factor coefficients (tone 2)
num_b3 (int): Summation limits for phase factor coefficients (tone 3)
num_b4 (int): Summation limits for phase factor coefficients (tone 4)
Returns:
ndarray: Response function, interpolated
"""
npts = len(vb)
voltage = np.zeros((num_b1 * 2 + 1, num_b2 * 2 + 1, num_b3 * 2 + 1, num_b4 * 2 + 1, npts))
for k in range(-num_b1, num_b1 + 1):
for l in range(-num_b2, num_b2 + 1):
for m in range(-num_b3, num_b3 + 1):
for n in range(-num_b4, num_b4 + 1):
voltage[k, l, m, n, :] = vb + k * freq[1] + l * freq[2] + m * freq[3] + n * freq[4]
resp_out = resp(voltage)
return resp_out
# Calculate the overall phase factor spectrum coefficients -------------------
def calculate_phase_factor_coeff(vj, freq, num_f, num_p, num_b):
"""Calculate the overall phase factor spectrum coefficients.
Runs once per qtcurrent function call.
Eqns. 5.7 and 5.12 in Kittara's thesis.
Args:
vj (ndarray): Voltage across the SIS junction
freq (ndarray): Frequencies
num_f (int): Number of non-harmonically related frequencies
num_p (int): Number of harmonics
num_b (int): Summation limits for phase factor coefficients
Returns:
ndarray: Phase factor spectrum coefficients (C_k(H) in Kittara)
"""
# Number of bias voltage points
npts = len(vj[0, 0, :])
# Summation limits for phase factor coefficients
if isinstance(num_b, int):
num_b = tuple([num_b] * num_f)
# Junction drive level:
# alpha[f, p, i] in R^(num_f+1)(num_p+1)(npts)
# Eqn. 5.5 in Kittara's thesis
alpha = np.zeros_like(vj, dtype=float)
for f in range(1, num_f + 1):
for p in range(1, num_p + 1):
alpha[f, p, :] = np.abs(vj[f, p, :]) / (p * freq[f])
# Junction voltage phase:
# phi[f, p, i] in R^(num_f+1)(num_p+1)(npts)
phi = np.angle(vj) # in radians
# Complex coefficients from the Jacobi-Anger equality:
# jac[f, p, n, i] in C^(num_f+1)(num_p+1)(num_b*2+1)(npts)
# Equation 5.7 in Kittara's thesis
# Note: This chunk of code dominates the computation time of this function
# I tried using the recurrence relation, but ran into numerical errors
jac = np.zeros((num_f + 1, num_p + 1, max(num_b) * 2 + 1, npts), dtype=complex)
for f in range(1, num_f + 1):
for p in range(1, num_p + 1):
jac[f, p, 0] = bessel(0, alpha[f, p])
for n in range(1, num_b[f - 1] + 1):
# using Bessel function identity
jn = bessel(n, alpha[f, p])
jac[f, p, n] = jn * np.exp(-1j * n * phi[f, p])
jac[f, p, -n] = (-1)**n * np.conj(jac[f, p, n])
# Overall phase factor coefficients:
# ckh[f, k, i] in C^(num_f+1)(num_b*2+1)(npts)
ckh = _convolve_coefficients(jac)
return ckh
#@nb.njit("c16[:,:,:](c16[:,:,:,:])")
def _convolve_coefficients(jac): # pragma: no cover
"""Convolve spectrum coefficients (recursively).
See Withington and Kollberg, 1989.
This function is only used if there are higher-order harmonics
(num_p > 1).
Calculation time is proportional to num_p.
Eqn. 5.12 in Kittara's thesis.
Args:
jac (ndarray): Complex coefficients from the Jacobi-Anger equality
(Eqn. 5.7 in Kittara's thesis)
Returns:
ndarray: Overall phase factor spectrum coefficients
"""
_, num_p, num_b, _ = jac.shape
num_p -= 1 # number of harmonics
num_b = (num_b - 1) // 2 # number of bessel functions
ckh_last = jac[:, 1, :, :]
if num_p == 1:
return ckh_last
for p in range(2, num_p + 1):
ckh_next = np.zeros_like(ckh_last)
for k in range(-num_b, num_b + 1):
# Don't exceed indices
l_min = max(-num_b, int((k - num_b) / p))
l_max = min( num_b, int((k + num_b) / p))
for l in range(l_min, l_max + 1):
ckh_next[1:, k] += ckh_last[1:, k - p * l] * jac[1:, p, l]
ckh_last = ckh_next
return ckh_last
# Tunneling current functions ------------------------------------------------
# These are the functions that actually calculate the tunneling current.
# Different functions are provided for different numbers of tones. They are
# all built the same way except that every additional tone will add another
# layer of coefficients and for-loops.
# TODO: optimize further, vectorize for loops (?)
# TODO: write general function, for any number of tones
def _current_1_tone(freq_out, ccc, freq, resp_matrix, num_p, npts, num_b1):
"""Calculate the tunneling current at a specific frequency.
One tone.
Frequency is normalized to the gap frequency.
Args:
freq_out (float): frequencies of output values
ccc (ndarray): convolution coefficients
freq (ndarray): frequencies
resp_matrix (ndarray): Response function matrix, generated by
interpolate_respfn
num_p (int): Number of harmonics
npts (int): Number of bias voltage points
num_b1 (int): Summation limits for phase factor coefficients (tone 1)
Returns:
ndarray: Tunneling current at specified frequency
"""
freq_out = round(freq_out, ROUND_FREQ)
current_out = np.zeros(npts, dtype=complex)
for a in range(num_p, -(num_p + 1), -1):
freq_a = round(a * freq[1], ROUND_FREQ)
if freq_a == freq_out:
current_out += _current_coeff_1_tone(a, ccc, resp_matrix, num_b1, npts)
return current_out
#@nb.njit("c16[:](i4, c16[:,:,:], c16[:,:], i4, i4)")
def _current_coeff_1_tone(a, ccc, resp_matrix, num_b1, npts): # pragma: no cover
"""Calculate the tunneling current coefficient (for 1 tone).
Calculate (I(a)) for a one tone system.
Equations 5.25 and 5.26 in Kittara's thesis.
Args:
a (int): Index a in Eqn. 5.25
ccc (ndarray): Convolution coefficient
resp_matrix (ndarray): Response function matrix, generated by
interpolate_respfn
num_b1 (int): Summation limits for phase factor coefficients (tone 1)
npts (int): Number of bias voltage points
Returns:
ndarray: Tunneling current coefficient
"""
# Equation 5.17
rs_p = np.zeros(npts, dtype=np.complex128) # positive coefficients
rs_m = np.zeros(npts, dtype=np.complex128) # negative coefficients
ccc_conj = np.conj(ccc[1])
for k in range(-num_b1, num_b1 + 1):
if -num_b1 <= k + a <= num_b1:
rs_p += ccc[1, k, :] * ccc_conj[k + a, :] * resp_matrix[k]
if -num_b1 <= k - a <= num_b1:
rs_m += ccc[1, k, :] * ccc_conj[k - a, :] * resp_matrix[k]
# Calculate current coefficient: equation 5.26
if a == 0:
return rs_p.imag + 1j * 0
else:
return (rs_p.imag + rs_m.imag) - 1j * (rs_p.real - rs_m.real)
def _current_2_tones(freq_out, ccc, freq, resp_matrix, num_p, npts, num_b1, num_b2):
"""Calculate the tunneling current at a specific frequency.
Two tones.
Frequency is normalized to the gap frequency.
Args:
freq_out (float): frequency to solve for
ccc (ndarray): convolution coefficients
freq (ndarray): frequencies
resp_matrix (ndarray): Response function matrix, generated by
interpolate_respfn
num_p (int): Number of harmonics
npts (int): Number of bias voltage points
num_b1 (int): Summation limits for phase factor coefficients (tone 1)
num_b2 (int): Summation limits for phase factor coefficients (tone 2)
Returns:
ndarray: Tunneling current at specified frequency
"""
freq_out = round(freq_out, ROUND_FREQ)
current_out = np.zeros(npts, dtype=complex)
for a in range(num_p, -(num_p + 1), -1):
for b in range(num_p, -(num_p + 1), -1):
freq_ab = round(a * freq[1] + b * freq[2], ROUND_FREQ)
if freq_ab == freq_out:
current_out += _current_coeff_2_tones(a, b, ccc, resp_matrix, num_b1, num_b2, npts)
return current_out
#@nb.njit("c16[:](i4, i4, c16[:,:,:], c16[:,:,:], i4, i4, i4)")
def _current_coeff_2_tones(a, b, ccc, resp_matrix, num_b1, num_b2, npts): # pragma: no cover
"""Calculate the tunneling current coefficient (for 2 tones).
Calculate (I(a,b)) for a two tone system (i.e., for an (a,b)
combination versus calculating the entire matrix for every (a,b) pair).
Equations 5.25 and 5.26 in Kittara's thesis.
Args:
a (int): Index a in Eqn. 5.25
b (int): Index b in Eqn. 5.25
ccc (ndarray): Convolution coefficient
resp_matrix (ndarray): Response function matrix, generated by
interpolate_respfn
num_b1 (int): Summation limits for phase factor coefficients (tone 1)
num_b2 (int): Summation limits for phase factor coefficients (tone 2)
npts (int): Number of bias voltage points
Returns:
ndarray: Tunneling current coefficient
"""
# Equation 5.25
rs_p = np.zeros(npts, dtype=np.complex128)
rs_m = np.zeros(npts, dtype=np.complex128)
ccc_conj = np.conj(ccc)
for k in range(-num_b1, num_b1 + 1):
for l in range(-num_b2, num_b2 + 1):
if -num_b1 <= k + a <= num_b1 and \
-num_b2 <= l + b <= num_b2:
rs_p += ccc[1, k, :] * ccc_conj[1, k + a, :] * \
ccc[2, l, :] * ccc_conj[2, l + b, :] * \
resp_matrix[k, l]
if -num_b1 <= k - a <= num_b1 and \
-num_b2 <= l - b <= num_b2:
rs_m += ccc[1, k, :] * ccc_conj[1, k - a, :] * \
ccc[2, l, :] * ccc_conj[2, l - b, :] * \
resp_matrix[k, l]
# Calculate current coefficient: equation 5.26
if a == 0 and b == 0:
return rs_p.imag + 1j * 0.
else:
return (rs_p.imag + rs_m.imag) - 1j * (rs_p.real - rs_m.real)
def _current_3_tones(freq_out, ccc, freq, resp_matrix, num_p, npts, num_b1, num_b2, num_b3):
"""Calculate the tunneling current at a specific frequency.
Three tones.
Frequency is normalized to the gap frequency.
Args:
freq_out (float): frequency to solve for
ccc (ndarray): convolution coefficients
freq (ndarray): frequencies
resp_matrix (ndarray): Response function matrix, generated by
interpolate_respfn
num_p (int): Number of harmonics
npts (int): Number of bias voltage points
num_b1 (int): Summation limits for phase factor coefficients (tone 1)
num_b2 (int): Summation limits for phase factor coefficients (tone 2)
num_b3 (int): Summation limits for phase factor coefficients (tone 3)
Returns:
ndarray: Tunneling current at specified frequency
"""
freq_out = round(freq_out, ROUND_FREQ)
current_out = np.zeros(npts, dtype=complex)
for a in range(num_p, -(num_p + 1), -1):
for b in range(num_p, -(num_p + 1), -1):
for c in range(num_p, -(num_p + 1), -1):
freq_abc = round(a * freq[1] + b * freq[2] + c * freq[3], ROUND_FREQ)
# # Debug
# match = freq_abc == freq_out
# if not match:
# match = ''
# else:
# match = 'match!'
# print "{:+d} {:+d} {:+d} {:+7.4f} {}".format(a, b, c, freq_abc, match)
if freq_abc == freq_out:
# # Debug
# msg = "\t -> {:+d}*{:.4f} {:+d}*{:.4f} {:+d}*{:10.4f} = {:.4f}"
# print msg.format(a, freq[1],
# b, freq[2],
# c, freq[3], freq_out)
current_out += _current_coeff_3_tones(a, b, c, ccc, resp_matrix,
num_b1, num_b2, num_b3)
return current_out
#@nb.njit("c16[:](i4, i4, i4, c16[:,:,:], c16[:,:,:,:], i4, i4, i4)")
def _current_coeff_3_tones(a, b, c, ccc, resp_matrix, num_b1, num_b2, num_b3): # pragma: no cover
"""Calculate the tunneling current coefficient (for 3 tones).
Calculate (I(a,b,c)) for a three tone system (i.e., for an (a,b,c)
combination versus calculating the entire matrix for every (a,b,c) pair).
Equations 5.25 and 5.26 in Kittara's thesis.
Args:
a (int): Index a in Eqn. 5.25
b (int): Index b in Eqn. 5.25
c (int): Index c in Eqn. 5.25
ccc (ndarray): Convolution coefficient
resp_matrix (ndarray): Response function matrix, generated by
interpolate_respfn
num_b1 (int): Summation limits for phase factor coefficients (tone 1)
num_b2 (int): Summation limits for phase factor coefficients (tone 2)
num_b3 (int): Summation limits for phase factor coefficients (tone 3)
Returns:
ndarray: Tunneling current coefficient
"""
# Recast coefficients
ccc1 = ccc[1]
ccc2 = ccc[2]
ccc3 = ccc[3]
# Equation 5.25
rs_p = np.zeros_like(ccc1[0, :], dtype=np.complex128)
rs_m = np.zeros_like(ccc1[0, :], dtype=np.complex128)
for k in range(-num_b1, num_b1 + 1):
for l in range(-num_b2, num_b2 + 1):
for m in range(-num_b3, num_b3 + 1):
c0 = ccc1[k] * ccc2[l] * ccc3[m]
resp_current = resp_matrix[k, l, m]
if -num_b1 <= k + a <= num_b1 and \
-num_b2 <= l + b <= num_b2 and \
-num_b3 <= m + c <= num_b3:
cp = np.conj(ccc1[k + a, :] *
ccc2[l + b, :] *
ccc3[m + c, :]) * c0
rs_p += cp * resp_current
if -num_b1 <= k - a <= num_b1 and \
-num_b2 <= l - b <= num_b2 and \
-num_b3 <= m - c <= num_b3:
cm = np.conj(ccc1[k - a, :] *
ccc2[l - b, :] *
ccc3[m - c, :]) * c0
rs_m += cm * resp_current
# Calculate current coefficient: equation 5.26
if a == 0 and b == 0 and c == 0:
return rs_p.imag + 1j * 0.
else:
return (rs_p.imag + rs_m.imag) - 1j * (rs_p.real - rs_m.real)
# @nb.njit("c16[:](f4, c16[:,:,:], f8[:], c16[:,:,:,:,:], i4, i4, i4, i4, i4, i4)")
def _current_4_tones(freq_out, ccc, freq, resp_matrix, num_p, npts, num_b1, num_b2, num_b3, num_b4): # pragma: no cover
"""Calculate the tunneling current at a specific frequency.
Four tones.
Frequency is normalized to the gap frequency.
Args:
freq_out (float): frequency to solve for
ccc (ndarray): convolution coefficients
freq (ndarray): frequencies
resp_matrix (ndarray): Response function matrix, generated by
interpolate_respfn
num_p (int): Number of harmonics
npts (int): Number of bias voltage points
num_b1 (int): Summation limits for phase factor coefficients (tone 1)
num_b2 (int): Summation limits for phase factor coefficients (tone 2)
num_b3 (int): Summation limits for phase factor coefficients (tone 3)
num_b4 (int): Summation limits for phase factor coefficients (tone 4)
Returns:
ndarray: Tunneling current at specified frequency
"""
freq_out = round(freq_out, ROUND_FREQ)
current_out = np.zeros(npts, dtype=np.complex128)
for a in range(num_p, -(num_p + 1), -1):
for b in range(num_p, -(num_p + 1), -1):
for c in range(num_p, -(num_p + 1), -1):
for d in range(num_p, -(num_p + 1), -1):
freq_abcd = round(a * freq[1] + b * freq[2] + c * freq[3] + d * freq[4], ROUND_FREQ)
if freq_abcd == freq_out:
current_out += _current_coeff_4_tones(a, b, c, d, ccc, resp_matrix,
num_b1, num_b2, num_b3, num_b4, npts)
return current_out
#@nb.njit("c16[:](i4, i4, i4, i4, c16[:,:,:], c16[:,:,:,:,:], i4, i4, i4, i4, i4)")
def _current_coeff_4_tones(a, b, c, d, ccc, resp_matrix, num_b1, num_b2, num_b3, num_b4, npts): # pragma: no cover
"""Calculate the tunneling current coefficient (for 4 tones).
Calculate (I(a,b,c,d)) for a four tone system (i.e., for an (a,b,c,d)
combination versus calculating the entire matrix for every (a,b,c) pair).
Equations 5.25 and 5.26 in Kittara's thesis.
Args:
a (int): Index a in Eqn. 5.25
b (int): Index b in Eqn. 5.25
c (int): Index c in Eqn. 5.25
d (int): Index d in Eqn. 5.25
ccc (ndarray): Convolution coefficient
resp_matrix (ndarray): Response function matrix, generated by
interpolate_respfn
num_b1 (int): Summation limits for phase factor coefficients (tone 1)
num_b2 (int): Summation limits for phase factor coefficients (tone 2)
num_b3 (int): Summation limits for phase factor coefficients (tone 3)
num_b4 (int): Summation limits for phase factor coefficients (tone 4)
npts (int): Number of bias voltage points
Returns:
ndarray: Tunneling current coefficient
"""
# Recast coefficients (saves a bit of time)
ccc1 = ccc[1]
ccc2 = ccc[2]
ccc3 = ccc[3]
ccc4 = ccc[4]
# Calculate Rabcd+j*Sabcd: quation 5.25
rs_p = np.zeros(npts, dtype=np.complex128) # positive abcd indices
rs_m = np.zeros(npts, dtype=np.complex128) # negative abcd indices
for k in range(-num_b1, num_b1 + 1):
for l in range(-num_b2, num_b2 + 1):
for m in range(-num_b3, num_b3 + 1):
for n in range(-num_b4, num_b4 + 1):
c0 = ccc1[k] * ccc2[l] * ccc3[m] * ccc4[n]
# Response function
resp_current = resp_matrix[k, l, m, n]
# Positive abcd indices
if -num_b1 <= k + a <= num_b1 and \
-num_b2 <= l + b <= num_b2 and \
-num_b3 <= m + c <= num_b3 and \
-num_b4 <= n + d <= num_b4:
cp = np.conj(ccc1[k + a] *
ccc2[l + b] *
ccc3[m + c] *
ccc4[n + d]) * c0
rs_p += cp * resp_current
# Negative abcd indices
if -num_b1 <= k - a <= num_b1 and \
-num_b2 <= l - b <= num_b2 and \
-num_b3 <= m - c <= num_b3 and \
-num_b4 <= n - d <= num_b4:
cm = np.conj(ccc1[k - a] *
ccc2[l - b] *
ccc3[m - c] *
ccc4[n - d]) * c0
rs_m += cm * resp_current
# Calculate current coefficient: equation 5.26
if a == 0 and b == 0 and c == 0 and d == 0:
return rs_p.imag + 1j * 0.
else:
return (rs_p.imag + rs_m.imag) - 1j * (rs_p.real - rs_m.real)
# Helper functions -----------------------------------------------------------
def _unpack_num_b(num_b, num_f):
"""Unpack num_b (summation limits for phase factor coefficients).
Args:
num_b: Summation limits for phase factor coefficients
num_f: Number of frequencies
Returns:
tuple: Summation limits for phase factor coefficients in tuple form,
with one value for each tone
"""
# Note: num_b is 0-indexed if it is a tuple
# I.e.: num_b[0] is for the fundamental frequency
if isinstance(num_b, tuple):
assert len(num_b) >= num_f, \
"There must be one value of num_b for each fundamental frequency."
num_b = tuple(num_b[:num_f])
return num_b
return tuple([num_b] * num_f)
|