1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
|
"""Test the qmix.qtcurrent module.
This is the module that calculates the quasiparticle tunneling currents.
This is the most difficult module to test because there are no "known" values
to compare against.
"""
import pytest
import numpy as np
from scipy.special import jv
import qmix
from qmix.qtcurrent import qtcurrent, interpolate_respfn, calculate_phase_factor_coeff
from qmix.circuit import EmbeddingCircuit
RESP = qmix.respfn.RespFnPolynomial(50) # response function for testing
VBIAS = np.linspace(0, 2, 101) # bias voltage for testing
def test_compare_qtcurrent_to_tucker_theory():
"""This test will compare the quasiparticle tunneling currents that are
calculated by qmix.qtcurrent to results calculated from Tucker theory
(Tucker & Feldman, 1985). Tucker theory uses much simpler equations to
calculate the tunneling currents, so it is easier to be sure that the
Tucker functions are working properly. The functions that are used
calculate the currents from Tucker theory are found at the bottom of this
file.
Note: The Tucker theory functions that are included within this file only
work for a single tone/single harmonic simulation."""
# Build embedding circuit
cct = EmbeddingCircuit(1, 1, vb_min=0, vb_npts=101)
freq = 0.33
cct.freq[1] = freq
# Set voltage across junction to Vph * 0.8
alpha = 0.8
vj = cct.initialize_vj()
vj[1, 1, :] = cct.freq[1] * alpha
# Calculate QTC using QMix
idc_qmix = qtcurrent(vj, cct, RESP, 0.) # DC
iac_qmix = qtcurrent(vj, cct, RESP, cct.freq[1]) # AC
# Calculate QTC using Tucker theory
idc_tucker = _tucker_dc_current(VBIAS, RESP, alpha, freq) # DC
iac_tucker = _tucker_ac_current(VBIAS, RESP, alpha, freq) # AC
# Compare methods
np.testing.assert_almost_equal(idc_qmix, idc_tucker, decimal=15)
np.testing.assert_almost_equal(iac_qmix, iac_tucker, decimal=15)
# Note: All arrays in my software use data type 'complex128'. This gives
# 64 bits to the floating point real number and 64 bits to the floating
# point imaginary number. Each floating point number then gets:
# - 1 sign bit
# - 11 exponent bits
# - 52 mantissa bits
# 52 mantissa bits gives roughly 15-17 significant figure accuracy in
# decimal notation. Therefore, if the average absolute error is on the
# order of 1e-15 to 1e-17, the comparison should be considered a success.
def test_effect_of_adding_more_tones():
"""This function simulates the QTCs using a 1 tone/1 harmonic simulation.
Then, more and more tones are added except only the first tone is
ever excited. This should result in the same tunnelling currents being
calculated in each simulation.
Note: 1, 2, 3 and 4 tone simulations use different calculation techniques,
so this test should make sure that they are all equivalent."""
num_b = (9, 2, 2, 2)
alpha1 = 0.8 # drive level, tone 1
freq1 = 0.33 # frequency, tone 1
# Setup 1st tone for comparison ------------------------------------------
num_f = 1
num_p = 1
cct1 = EmbeddingCircuit(num_f, num_p)
cct1.freq[1] = freq1
vj = cct1.initialize_vj()
vj[1, 1, :] = cct1.freq[1] * alpha1
i1 = qtcurrent(vj, cct1, RESP, cct1.freq, num_b)
idc1 = np.real(i1[0, :])
iac1 = i1[1, :]
# 2 tones ----------------------------------------------------------------
num_f = 2
cct = EmbeddingCircuit(num_f, num_p)
cct.freq[1] = cct1.freq[1]
cct.freq[2] = cct1.freq[1] + 0.05
vj = cct.initialize_vj()
vj[1, 1, :] = cct1.freq[1] * alpha1
i2 = qtcurrent(vj, cct, RESP, cct.freq, num_b)
idc2 = np.real(i2[0, :])
iac2 = i2[1, :]
# 3 tones ----------------------------------------------------------------
num_f = 3
cct = EmbeddingCircuit(num_f, num_p)
cct.freq[1] = cct1.freq[1]
cct.freq[2] = cct1.freq[1] + 0.05
cct.freq[3] = cct1.freq[1] + 0.10
vj = cct.initialize_vj()
vj[1, 1, :] = cct1.freq[1] * alpha1
i3 = qtcurrent(vj, cct, RESP, cct.freq, num_b)
idc3 = np.real(i3[0, :])
iac3 = i3[1, :]
# 4 tones ----------------------------------------------------------------
num_f = 4
cct = EmbeddingCircuit(num_f, num_p)
cct.freq[1] = cct1.freq[1]
cct.freq[2] = cct1.freq[1] + 0.05
cct.freq[3] = cct1.freq[1] + 0.10
cct.freq[4] = cct1.freq[1] + 0.15
vj = cct.initialize_vj()
vj[1, 1, :] = cct.freq[1] * alpha1
i4 = qtcurrent(vj, cct, RESP, cct.freq, num_b)
idc4 = np.real(i4[0, :])
iac4 = i4[1, :]
# Compare results --------------------------------------------------------
# Compare methods
# dc
np.testing.assert_equal(idc1, idc2)
np.testing.assert_equal(idc1, idc3)
np.testing.assert_equal(idc1, idc4)
# ac
np.testing.assert_equal(iac1, iac2)
np.testing.assert_equal(iac1, iac3)
np.testing.assert_equal(iac1, iac4)
# ensure all other tones are zero
np.testing.assert_equal(i2[2, :], np.zeros_like(i2[2, :]))
np.testing.assert_equal(i3[2, :], np.zeros_like(i3[2, :]))
np.testing.assert_equal(i3[3, :], np.zeros_like(i3[3, :]))
np.testing.assert_equal(i4[2, :], np.zeros_like(i4[2, :]))
np.testing.assert_equal(i4[3, :], np.zeros_like(i4[3, :]))
np.testing.assert_equal(i4[4, :], np.zeros_like(i4[4, :]))
def test_effect_of_adding_more_harmonics():
"""This test calculates the QTCs using a 1 tone/1 harmonic simulation.
Then, more and more harmonics are added except only the first
harmonic is ever excited. This should result in the same tunnelling
currents being calculated in each simulation."""
num_b = 9
alpha1 = 0.8 # drive level, harmonic 1
freq1 = 0.33 # frequency, harmonic 1
# Setup 1st tone for comparison ------------------------------------------
num_f = 1
num_p = 1
cct1 = EmbeddingCircuit(num_f, num_p)
cct1.freq[1] = freq1
vj = cct1.initialize_vj()
vj[1, 1, :] = cct1.freq[1] * alpha1
freq_list = [0, freq1]
i1 = qtcurrent(vj, cct1, RESP, freq_list, num_b)
idc1 = i1[0, :].real
# 2 harmonics ------------------------------------------------------------
num_p = 2
cct = EmbeddingCircuit(num_f, num_p)
cct.freq[1] = cct1.freq[1]
vj = cct.initialize_vj()
vj[1, 1, :] = cct1.freq[1] * alpha1
freq_list = [0, freq1, freq1*2]
i2 = qtcurrent(vj, cct, RESP, freq_list, num_b)
idc2 = i2[0, :].real
# 3 harmonics ------------------------------------------------------------
num_p = 3
cct = EmbeddingCircuit(num_f, num_p)
cct.freq[1] = cct1.freq[1]
vj = cct.initialize_vj()
vj[1, 1, :] = cct1.freq[1] * alpha1
freq_list = [0, freq1, freq1*2, freq1*3]
i3 = qtcurrent(vj, cct, RESP, freq_list, num_b)
idc3 = i3[0, :].real
# 4 harmonics ------------------------------------------------------------
num_p = 4
cct = EmbeddingCircuit(num_f, num_p)
cct.freq[1] = cct1.freq[1]
vj = cct.initialize_vj()
vj[1, 1, :] = cct1.freq[1] * alpha1
freq_list = [0, freq1, freq1*2, freq1*3, freq1*4]
i4 = qtcurrent(vj, cct, RESP, freq_list, num_b)
idc4 = i4[0, :].real
# Compare results --------------------------------------------------------
# Compare methods
# dc
np.testing.assert_equal(idc1, idc2)
np.testing.assert_equal(idc1, idc3)
np.testing.assert_equal(idc1, idc4)
# ac at fundamental
np.testing.assert_equal(i1[1, :], i2[1, :])
np.testing.assert_equal(i1[1, :], i3[1, :])
np.testing.assert_equal(i1[1, :], i4[1, :])
# ac at 2nd harmonic
np.testing.assert_equal(i2[2, :], i3[2, :])
np.testing.assert_equal(i2[2, :], i4[2, :])
# ac at 3rd harmonic
np.testing.assert_equal(i3[3, :], i4[3, :])
def test_setting_up_simulation_using_different_harmonic():
"""Simulate the QTCs using a one tone/one harmonic simulation. Then
simulate the same setup using a higher-order harmonic.
For example, simulate a signal at 200 GHz. Then simulate the
second-harmonic from a 100 GHz fundamental tone. Both simulations should
provide the same result."""
num_b = 15 # number of Bessel functions to include
num_f = 1 # number of frequencies
freq = 0.3 # frequency, normalized
alpha = 0.8 # drive level
# Basic simulation for comparison ----------------------------------------
num_p = 1
cct = EmbeddingCircuit(num_f, num_p)
cct.freq[1] = freq
vj = cct.initialize_vj()
vj[1, 1, :] = freq * alpha
i1 = qtcurrent(vj, cct, RESP, cct.freq, num_b)
i1_dc = i1[0].real
i1_ac = i1[-1]
# Using a fundamental tone that is half the original frequency -----------
num_p = 2
cct = EmbeddingCircuit(num_f, num_p)
cct.freq[1] = freq / 2.
vj = cct.initialize_vj()
vj[1, 2, :] = freq * alpha
freq_list = [0, freq/2., freq]
i2 = qtcurrent(vj, cct, RESP, freq_list, num_b*2)
i2_dc = i2[0].real
i2_ac = i2[-1]
# Compare methods
# dc
np.testing.assert_almost_equal(i1_dc, i2_dc, decimal=15)
# ac at fundamental
np.testing.assert_almost_equal(i1_ac, i2_ac, decimal=15)
# lower order harmonics should all be zero
np.testing.assert_equal(i2[1], np.zeros_like(i2[1]))
def test_effect_of_adding_more_tones_on_if():
"""Calculate the IF signal that is generated by a simple 2 tone
simulation. Then, add the IF frequency to the simulation. This should not
have any effect on the IF results."""
alpha1 = 0.8
freq1 = 0.3
freq2 = 0.35
freq_list = [0, freq1, freq2]
num_b = (9, 5, 5, 5)
# 2 tones ----------------------------------------------------------------
num_f = 2
num_p = 1
cct = EmbeddingCircuit(num_f, num_p)
cct.freq[1] = freq1
cct.freq[2] = freq2
vj = cct.initialize_vj()
vj[1, 1, :] = cct.freq[1] * alpha1
vj[2, 1, :] = 1e-5
idc2, ilo2, iif2 = qtcurrent(vj, cct, RESP, freq_list, num_b)
# 3 tones ----------------------------------------------------------------
num_f = 3
cct = EmbeddingCircuit(num_f, num_p)
cct.freq[1] = freq1
cct.freq[2] = freq2
cct.freq[3] = abs(freq1 - freq2)
vj = cct.initialize_vj()
vj[1, 1, :] = cct.freq[1] * alpha1
vj[2, 1, :] = 1e-5
idc3, ilo3, iif3 = qtcurrent(vj, cct, RESP, freq_list, num_b)
# Compare results --------------------------------------------------------
# Compare methods
np.testing.assert_almost_equal(idc2, idc3, decimal=15)
np.testing.assert_almost_equal(iif2.real, iif3.real, decimal=15)
np.testing.assert_almost_equal(iif2.imag, iif3.imag, decimal=15)
def test_excite_different_tones():
"""Calculate the QTCs using a 4 tone simulation. Do this 4 times, each
time exciting a different tone. Each simulation should be the same."""
# input signal properties
vj_set = 0.25
# 1st tone excited
num_f = 4
num_p = 1
num_b = (9, 3, 3, 3)
cct = EmbeddingCircuit(num_f, num_p)
cct.freq[1] = 0.3
cct.freq[2] = 0.4
cct.freq[3] = 0.5
cct.freq[4] = 0.6
vj = cct.initialize_vj()
vj[1, 1, :] = vj_set
idc1 = qtcurrent(vj, cct, RESP, 0, num_b)
# 2nd tone excited
num_f = 4
num_p = 1
num_b = (3, 9, 3, 3)
cct = EmbeddingCircuit(num_f, num_p)
cct.freq[1] = 0.4
cct.freq[2] = 0.3
cct.freq[3] = 0.5
cct.freq[4] = 0.6
vj = cct.initialize_vj()
vj[2, 1, :] = vj_set
idc2 = qtcurrent(vj, cct, RESP, 0, num_b)
# 3rd tone excited
num_f = 4
num_p = 1
num_b = (3, 3, 9, 3)
cct = EmbeddingCircuit(num_f, num_p)
cct.freq[1] = 0.5
cct.freq[2] = 0.4
cct.freq[3] = 0.3
cct.freq[4] = 0.6
vj = cct.initialize_vj()
vj[3, 1, :] = vj_set
idc3 = qtcurrent(vj, cct, RESP, 0, num_b)
# 4th tone excited
num_f = 4
num_p = 1
num_b = (3, 3, 3, 9)
cct = EmbeddingCircuit(num_f, num_p)
cct.freq[1] = 0.6
cct.freq[2] = 0.4
cct.freq[3] = 0.5
cct.freq[4] = 0.3
vj = cct.initialize_vj()
vj[4, 1, :] = vj_set
idc4 = qtcurrent(vj, cct, RESP, 0, num_b)
# Compare methods
np.testing.assert_almost_equal(idc1, idc2, decimal=15)
np.testing.assert_almost_equal(idc1, idc3, decimal=15)
np.testing.assert_almost_equal(idc1, idc4, decimal=15)
def test_interpolation_of_respfn():
"""The qmix.qtcurrent module contains a function that will pre-interpolate
the response function. This speeds up the calculations. This test will
ensure that this function is interpolating the response function
correctly."""
a, b, c, d = 4, 3, 2, 4
num_p = 1
# test 1 tone ------------------------------------------------------------
num_f = 1
cct = EmbeddingCircuit(num_f, num_p)
cct.freq[1] = 0.30
interp_matrix = interpolate_respfn(cct, RESP, num_b=5)
vtest = cct.vb + a * cct.freq[1]
np.testing.assert_equal(interp_matrix[a, :], RESP(vtest))
# test 2 tones -----------------------------------------------------------
num_f = 2
cct = EmbeddingCircuit(num_f, num_p)
cct.freq[1] = 0.30
cct.freq[2] = 0.35
interp_matrix = interpolate_respfn(cct, RESP, num_b=5)
vtest = cct.vb + a * cct.freq[1] + b * cct.freq[2]
np.testing.assert_equal(interp_matrix[a, b, :], RESP(vtest))
# test 3 tones -----------------------------------------------------------
num_f = 3
num_p = 2
cct = EmbeddingCircuit(num_f, num_p)
cct.freq[1] = 0.30
cct.freq[2] = 0.35
cct.freq[3] = 0.40
interp_matrix = interpolate_respfn(cct, RESP, num_b=5)
vtest = cct.vb + a * cct.freq[1] + b * cct.freq[2] + c * cct.freq[3]
np.testing.assert_equal(interp_matrix[a, b, c, :], RESP(vtest))
# test 4 tones -----------------------------------------------------------
num_f = 4
num_p = 2
cct = EmbeddingCircuit(num_f, num_p)
cct.freq[1] = 0.30
cct.freq[2] = 0.35
cct.freq[3] = 0.40
cct.freq[4] = 0.45
interp_matrix = interpolate_respfn(cct, RESP, num_b=5)
vtest = cct.vb + a * cct.freq[1] + b * cct.freq[2] + c * cct.freq[3] + d * cct.freq[4]
np.testing.assert_equal(interp_matrix[a, b, c, d, :], RESP(vtest))
# test 5 tones -----------------------------------------------------------
# should raise an error
cct.num_f = 5
with pytest.raises(ValueError):
_ = interpolate_respfn(cct, RESP, num_b=5)
def test_phase_factor_coefficients():
"""This test will generate the phase factor coefficients (see Eqns. 5.7
5.12 in Kittara's thesis) once using the calculate_phase_factor_coeff()
function from the qmix.qtcurrent module, and once using the
_calculate_phase_factor_coeff() function found at the bottom of this file.
The code found in the _calculate_phase_factor_coeff() function was taken
from an old version of the QMix code. It is much simpler than the current
version because it hasn't been optimized. It is relatively easy to ensure
that this code is correct. In this way, we can use it to validate the
optimized code."""
# Generate dummy input values
num_f = 4 # Number of tones
num_p = 2 # Number of harmonics
num_b = 15 # Number of Bessel functions
cct = EmbeddingCircuit(num_f, num_p)
cct.freq[1] = 0.30 # LO
cct.freq[2] = 0.33 # USB
cct.freq[3] = 0.27 # LSB
cct.freq[4] = 0.03 # IF
vj = cct.initialize_vj()
vj[1, 1, :] = 0.30 * np.exp(1j * 2.0)
vj[2, 1, :] = 0.10 * np.exp(1j * 1.5)
vj[3, 1, :] = 0.10 * np.exp(1j * -0.3)
vj[4, 1, :] = 0.00 * np.exp(1j * 1.0)
vj[1, 2, :] = 0.03 * np.exp(1j * 0.2)
vj[2, 2, :] = 0.01 * np.exp(1j * -1.7)
vj[3, 2, :] = 0.01 * np.exp(1j * -0.2)
vj[4, 2, :] = 0.00 * np.exp(1j * -1.5)
ckh_known = _calculate_phase_factor_coeff(vj, cct.freq, num_f, num_p, num_b)
ckh_qmix = calculate_phase_factor_coeff(vj, cct.freq, num_f, num_p, num_b)
np.testing.assert_almost_equal(ckh_qmix, ckh_known, decimal=12)
# Tucker theory --------------------------------------------------------------
# These functions will calculate the QTCs using the equations found in:
# J. R. Tucker and M. J. Feldman, "Quantum detection at millimeter
# wavelengths," Reviews of Modern Physics, vol. 57, no. 4, pp. 1055-1113,
# Oct. 1985.
def _tucker_dc_current(voltage, resp, alpha, v_ph, num_b=20):
"""Calculate the DC tunneling current for a single tone/harmonic using
Tucker theory. This gives the pumped I-V curve. This is equation 3.3 in
Tucker's 1985 paper.
Args:
voltage: normalized bias voltage
resp: response function, instance of qmix.respfn.RespFn class
alpha: junction drive level
v_ph: equivalent frequency
num_b: number of Bessel functions to include
Returns:
DC tunneling current
"""
i_dc = np.zeros(len(voltage), dtype=float)
for n in range(-num_b, num_b + 1):
i_dc += jv(n, alpha)**2 * np.imag(resp(voltage + n * v_ph))
return i_dc
def _tucker_ac_current(voltage, resp, alpha, v_ph, num_b=20):
"""Calculate the AC tunneling current for a single tone/harmonic using
Tucker theory.
Args:
voltage: normalized bias voltage
resp: response function, instance of qmix.respfn.RespFn class
alpha: junction drive level
v_ph: frequency
num_b: truncate the bessel functions at this order
Returns:
AC tunneling current
"""
i_ac = np.zeros(len(voltage), dtype=complex)
for n in range(-num_b, num_b + 1):
# Real component
i_ac += (jv(n, alpha) * (jv(n - 1, alpha) + jv(n + 1, alpha)) *
resp.idc(voltage + n * v_ph))
# Imaginary component
i_ac += (1j * jv(n, alpha) * (jv(n - 1, alpha) - jv(n + 1, alpha)) *
resp.ikk(voltage + n * v_ph))
return i_ac
# Phase factor coefficients --------------------------------------------------
# These functions will calculate the phase factor coefficients (Eqns. 5.7 and
# 5.12 in Kittara's thesis). In QMix, this is performed by the
# qmix.qtcurrent.calculate_phase_factor_coeff() function. The code below was
# taken from an old version that worked. I use it now to generate known good
# values. That way, I can optimize the function in QMix and know that it still
# produces good values.
def _calculate_phase_factor_coeff(vj, freq, num_f, num_p, num_b):
"""Calculate the convolution coefficients for each tone.
This code was taken from qmix.qtcurrent.calculate_phase_factor_coeff()
I have since optimized qmix.qtcurrent._convolution_coefficient(), so this
code here is to ensure that the new optimized function still returns the
same results.
Args:
vj (ndarray): Voltage across the SIS junction
freq (ndarray): Photon voltages
num_f (int): Number of non-harmonically related frequencies
num_p (int): Number of harmonics
num_b (int): Number of Bessel functions
Returns:
ndarray: Coefficients
"""
# Number of bias voltage points
npts = len(vj[0, 0, :])
# Number of Bessel functions to include
if isinstance(num_b, int):
num_b = tuple([num_b] * num_f)
# Junction drive level:
# alpha[f, p, i] in R^(num_f+1)(num_p+1)(npts)
alpha = np.zeros_like(vj, dtype=float)
for f in range(1, num_f + 1):
for H in range(1, num_p + 1):
alpha[f, H, :] = np.abs(vj[f, H, :]) / (H * freq[f])
# Junction voltage phase:
# phi[f, p, i] in R^(num_f+1)(num_p+1)(npts)
phi = np.angle(vj) # in radians
# Complex coefficients from the Jacobi-Anger equality:
# anp[f, p, n, i] in C^(num_f+1)(num_p+1)(num_b*2+1)(npts)
# Equation 5.7 in Kittara's thesis
anp = np.zeros((num_f + 1, num_p + 1, max(num_b) * 2 + 1, npts), dtype=complex)
for f in range(1, num_f + 1):
for H in range(1, num_p + 1):
for n in range(-num_b[f - 1], num_b[f - 1] + 1):
anp[f, H, n] = jv(n, alpha[f, H]) * np.exp(-1j * n * phi[f, H])
# Phase factor coefficients:
# cc[f, k, i] in C^(num_f+1)(num_b*2+1)(npts)
# Eqn. 5.12 in Kittara's thesis
_, num_p, num_b, _ = anp.shape
num_p -= 1 # number of harmonics
num_b = (num_b - 1) // 2 # number of bessel functions
ckh_last = anp[:, 1, :, :]
if num_p != 1:
for H in range(2, num_p + 1):
ckh_next = np.zeros_like(ckh_last)
for k in range(-num_b, num_b + 1):
for m in range(-num_b, num_b + 1):
idx = k - H * m
if -num_b <= idx <= num_b:
ckh_next[1:, k] += ckh_last[1:, idx] * anp[1:, H, m]
ckh_last = ckh_next
# # DEBUG
# import matplotlib.pyplot as plt
# plt.figure()
# for f in range(1, num_f+1):
# # plt.stem(freq[f]*np.arange(-num_b, num_b+1), np.abs(cc_out[f, :, 70]))
# plt.stem(np.abs(cc_out[f, :, 70]))
# plt.show()
return ckh_last
|