1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
|
// This contains the implementation of the pyqtBoundSignal type.
//
// Copyright (c) 2015 Riverbank Computing Limited <info@riverbankcomputing.com>
//
// This file is part of PyQt4.
//
// This file may be used under the terms of the GNU General Public License
// version 3.0 as published by the Free Software Foundation and appearing in
// the file LICENSE included in the packaging of this file. Please review the
// following information to ensure the GNU General Public License version 3.0
// requirements will be met: http://www.gnu.org/copyleft/gpl.html.
//
// If you do not wish to use this file under the terms of the GPL version 3.0
// then you may purchase a commercial license. For more information contact
// info@riverbankcomputing.com.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
#include <Python.h>
#include <QtGlobal>
#include <QByteArray>
#include <QMetaObject>
#include "qpycore_chimera.h"
#include "qpycore_misc.h"
#include "qpycore_pyqtboundsignal.h"
#include "qpycore_pyqtproxy.h"
#include "qpycore_pyqtpyobject.h"
#include "qpycore_pyqtsignal.h"
#include "qpycore_sip.h"
#include "qpycore_sip_helpers.h"
// Forward declarations.
extern "C" {
static PyObject *pyqtBoundSignal_call(PyObject *self, PyObject *args,
PyObject *kw);
static void pyqtBoundSignal_dealloc(PyObject *self);
static PyObject *pyqtBoundSignal_repr(PyObject *self);
static PyObject *pyqtBoundSignal_get_doc(PyObject *self, void *);
static PyObject *pyqtBoundSignal_get_signal(PyObject *self, void *);
static PyObject *pyqtBoundSignal_connect(PyObject *self, PyObject *args,
PyObject *kwd_args);
static PyObject *pyqtBoundSignal_disconnect(PyObject *self, PyObject *args);
static PyObject *pyqtBoundSignal_emit(PyObject *self, PyObject *args);
static PyObject *pyqtBoundSignal_mp_subscript(PyObject *self,
PyObject *subscript);
}
static PyObject *connect(qpycore_pyqtBoundSignal *bs, QObject *qrx,
const char *slot, Qt::ConnectionType type);
static PyObject *disconnect(qpycore_pyqtBoundSignal *bs, QObject *qrx,
const char *slot);
static QObject *get_receiver(qpycore_pyqtBoundSignal *bs, PyObject *slot_obj,
QByteArray &name);
static QByteArray slot_signature_from_decorations(Chimera::Signature *signal,
PyObject *decorations, int nr_args);
static QByteArray slot_signature_from_metaobject(Chimera::Signature *signal,
const QMetaObject *slot_mo, const QByteArray &slot_name, int nr_args);
static QByteArray slot_signature(Chimera::Signature *signal,
const QByteArray &slot_name, int nr_args);
// Doc-strings.
PyDoc_STRVAR(pyqtBoundSignal_connect_doc,
"connect(slot, type=Qt.AutoConnection, no_receiver_check=False)\n"
"\n"
"slot is either a Python callable or another signal.\n"
"type is a Qt.ConnectionType.\n"
"no_receiver_check is True to disable the check that the receiver's C++\n"
"instance still exists when the signal is emitted.\n");
PyDoc_STRVAR(pyqtBoundSignal_disconnect_doc,
"disconnect([slot])\n"
"\n"
"slot is an optional Python callable or another signal. If it is omitted\n"
"then the signal is disconnected from everything it is connected to.");
PyDoc_STRVAR(pyqtBoundSignal_emit_doc,
"emit(*args)\n"
"\n"
"*args are the values that will be passed as arguments to all connected\n"
"slots.");
PyDoc_STRVAR(pyqtBoundSignal_signal_doc,
"The signature of the signal that would be returned by SIGNAL()");
// Define the methods.
static PyMethodDef pyqtBoundSignal_methods[] = {
{SIP_MLNAME_CAST("connect"), (PyCFunction)pyqtBoundSignal_connect,
METH_VARARGS|METH_KEYWORDS,
SIP_MLDOC_CAST(pyqtBoundSignal_connect_doc)},
{SIP_MLNAME_CAST("disconnect"), pyqtBoundSignal_disconnect,
METH_VARARGS, SIP_MLDOC_CAST(pyqtBoundSignal_disconnect_doc)},
{SIP_MLNAME_CAST("emit"), pyqtBoundSignal_emit,
METH_VARARGS, SIP_MLDOC_CAST(pyqtBoundSignal_emit_doc)},
{0, 0, 0, 0}
};
// Define the mapping methods.
static PyMappingMethods pyqtBoundSignal_as_mapping = {
0, /* mp_length */
pyqtBoundSignal_mp_subscript, /* mp_subscript */
0, /* mp_ass_subscript */
};
// The getters/setters.
static PyGetSetDef pyqtBoundSignal_getsets[] = {
{(char *)"__doc__", pyqtBoundSignal_get_doc, NULL, NULL, NULL},
{(char *)"signal", pyqtBoundSignal_get_signal, NULL,
(char *)pyqtBoundSignal_signal_doc, NULL},
{NULL, NULL, NULL, NULL, NULL}
};
// The pyqtBoundSignal type object.
PyTypeObject qpycore_pyqtBoundSignal_Type = {
PyVarObject_HEAD_INIT(NULL, 0)
SIP_TPNAME_CAST("PyQt4.QtCore.pyqtBoundSignal"), /* tp_name */
sizeof (qpycore_pyqtBoundSignal), /* tp_basicsize */
0, /* tp_itemsize */
pyqtBoundSignal_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_compare */
pyqtBoundSignal_repr, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
&pyqtBoundSignal_as_mapping, /* tp_as_mapping */
0, /* tp_hash */
pyqtBoundSignal_call, /* tp_call */
0, /* tp_str */
0, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT, /* tp_flags */
0, /* tp_doc */
0, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
pyqtBoundSignal_methods, /* tp_methods */
0, /* tp_members */
pyqtBoundSignal_getsets, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
0, /* tp_init */
0, /* tp_alloc */
PyType_GenericNew, /* tp_new */
0, /* tp_free */
0, /* tp_is_gc */
0, /* tp_bases */
0, /* tp_mro */
0, /* tp_cache */
0, /* tp_subclasses */
0, /* tp_weaklist */
0, /* tp_del */
#if PY_VERSION_HEX >= 0x02060000
0, /* tp_version_tag */
#endif
#if PY_VERSION_HEX >= 0x03040000
0, /* tp_finalize */
#endif
};
// The __doc__ getter.
static PyObject *pyqtBoundSignal_get_doc(PyObject *self, void *)
{
qpycore_pyqtBoundSignal *bs = (qpycore_pyqtBoundSignal *)self;
const char *docstring = bs->unbound_signal->docstring;
if (!docstring)
{
Py_INCREF(Py_None);
return Py_None;
}
if (*docstring == '\1')
++docstring;
return
#if PY_MAJOR_VERSION >= 3
PyUnicode_FromString
#else
PyString_FromString
#endif
(docstring);
}
// The __signal__ getter.
static PyObject *pyqtBoundSignal_get_signal(PyObject *self, void *)
{
qpycore_pyqtBoundSignal *bs = (qpycore_pyqtBoundSignal *)self;
return
#if PY_MAJOR_VERSION >= 3
PyUnicode_FromString
#else
PyString_FromString
#endif
(bs->unbound_signal->signature->signature.constData());
}
// The type repr slot.
static PyObject *pyqtBoundSignal_repr(PyObject *self)
{
qpycore_pyqtBoundSignal *bs = (qpycore_pyqtBoundSignal *)self;
QByteArray name = bs->unbound_signal->signature->name();
return
#if PY_MAJOR_VERSION >= 3
PyUnicode_FromFormat
#else
PyString_FromFormat
#endif
("<bound signal %s of %s object at %p>", name.constData() + 1,
bs->bound_pyobject->ob_type->tp_name, bs->bound_pyobject);
}
// The type call slot.
static PyObject *pyqtBoundSignal_call(PyObject *self, PyObject *args,
PyObject *kw)
{
qpycore_pyqtBoundSignal *bs = (qpycore_pyqtBoundSignal *)self;
return qpycore_call_signal_overload(bs->unbound_signal, bs->bound_pyobject,
args, kw);
}
// The type dealloc slot.
static void pyqtBoundSignal_dealloc(PyObject *self)
{
qpycore_pyqtBoundSignal *bs = (qpycore_pyqtBoundSignal *)self;
Py_XDECREF((PyObject *)bs->unbound_signal);
Py_TYPE(self)->tp_free(self);
}
// Create a bound signal.
PyObject *qpycore_pyqtBoundSignal_New(qpycore_pyqtSignal *unbound_signal,
PyObject *bound_pyobject, QObject *bound_qobject)
{
qpycore_pyqtBoundSignal *bs = (qpycore_pyqtBoundSignal *)PyType_GenericNew(&qpycore_pyqtBoundSignal_Type, 0, 0);
if (bs)
{
Py_INCREF((PyObject *)unbound_signal);
bs->unbound_signal = unbound_signal;
bs->bound_pyobject = bound_pyobject;
bs->bound_qobject = bound_qobject;
}
return (PyObject *)bs;
}
// The mapping subscript slot.
static PyObject *pyqtBoundSignal_mp_subscript(PyObject *self,
PyObject *subscript)
{
qpycore_pyqtBoundSignal *bs = (qpycore_pyqtBoundSignal *)self;
qpycore_pyqtSignal *ps = qpycore_find_signal(bs->unbound_signal, subscript,
"a bound signal type argument");
if (!ps)
return 0;
// Create a new bound signal.
return qpycore_pyqtBoundSignal_New(ps, bs->bound_pyobject,
bs->bound_qobject);
}
// Connect a signal.
static PyObject *pyqtBoundSignal_connect(PyObject *self, PyObject *args,
PyObject *kwd_args)
{
qpycore_pyqtBoundSignal *bs = (qpycore_pyqtBoundSignal *)self;
static const char *kwds[] = {
"slot",
"type",
"no_receiver_check",
0
};
PyObject *slot_obj, *type_obj = 0;
int no_receiver_check = 0;
if (!PyArg_ParseTupleAndKeywords(args, kwd_args,
#if PY_VERSION_HEX >= 0x03030000
"O|Op:connect",
#elif PY_VERSION_HEX >= 0x02050000
"O|Oi:connect",
#else
const_cast<char *>("O|Oi:connect"),
#endif
const_cast<char **>(kwds), &slot_obj, &type_obj, &no_receiver_check))
return 0;
Qt::ConnectionType type = Qt::AutoConnection;
if (type_obj)
{
if (!sipCanConvertToEnum(type_obj, sipType_Qt_ConnectionType))
{
PyErr_Format(PyExc_TypeError,
"connect() type argument should be Qt.ConnectionType, not '%s'",
Py_TYPE(slot_obj)->tp_name);
return 0;
}
type = (Qt::ConnectionType)SIPLong_AsLong(type_obj);
}
// See if the slot is a signal.
if (Py_TYPE(slot_obj) == &qpycore_pyqtBoundSignal_Type)
{
qpycore_pyqtBoundSignal *slot_bs = (qpycore_pyqtBoundSignal *)slot_obj;
// Check we are not connecting to ourself. We do this because Qt
// doesn't do a similar check and will recurse its way to a crash.
if (slot_bs->unbound_signal == bs->unbound_signal && slot_bs->bound_qobject == bs->bound_qobject)
{
PyErr_SetString(PyExc_ValueError,
"cannot connect a signal to itself");
return 0;
}
return connect(bs, slot_bs->bound_qobject,
slot_bs->unbound_signal->signature->signature.constData(),
type);
}
// Make sure the slot is callable.
if (!PyCallable_Check(slot_obj))
{
PyErr_Format(PyExc_TypeError,
"connect() slot argument should be a callable or a signal, not '%s'",
Py_TYPE(slot_obj)->tp_name);
return 0;
}
// See if the slot can be used directly (ie. it wraps a Qt slot) or if it
// needs a proxy.
QByteArray rx_name;
QObject *rx_qobj = get_receiver(bs, slot_obj, rx_name);
if (PyErr_Occurred())
return 0;
if (!rx_name.isEmpty())
return connect(bs, rx_qobj, rx_name.constData(), type);
// Create a proxy for the slot.
PyQtProxy *proxy;
const char *member;
#if QT_VERSION >= 0x040600
if ((type & Qt::UniqueConnection) == Qt::UniqueConnection)
{
proxy = PyQtProxy::findSlotProxy(bs->bound_qobject,
bs->unbound_signal->signature->signature.constData(), slot_obj,
0, &member);
if (proxy)
{
// We give more information than we could if it was a Qt slot but
// to be consistent we raise a TypeError even though it's not the
// most appropriate for the type of error.
PyErr_SetString(PyExc_TypeError, "connection is not unique");
return 0;
}
}
#endif
Py_BEGIN_ALLOW_THREADS
proxy = new PyQtProxy(bs, slot_obj, &member);
if (no_receiver_check)
proxy->disableReceiverCheck();
if (proxy->metaObject())
{
if (rx_qobj)
proxy->moveToThread(rx_qobj->thread());
}
else
{
delete proxy;
proxy = 0;
}
Py_END_ALLOW_THREADS
if (!proxy)
return 0;
return connect(bs, proxy, member, type);
}
// Connect a signal to a slot and handle any errors.
static PyObject *connect(qpycore_pyqtBoundSignal *bs, QObject *qrx,
const char *slot, Qt::ConnectionType type)
{
bool ok;
Chimera::Signature *signature = bs->unbound_signal->signature;
Py_BEGIN_ALLOW_THREADS
ok = QObject::connect(bs->bound_qobject, signature->signature.constData(),
qrx, slot, type);
Py_END_ALLOW_THREADS
if (!ok)
{
QByteArray rx_name = Chimera::Signature::name(slot);
PyErr_Format(PyExc_TypeError, "connect() failed between %s and %s()",
signature->py_signature.constData(), rx_name.constData() + 1);
return 0;
}
Py_INCREF(Py_None);
return Py_None;
}
// Disconnect a signal.
static PyObject *pyqtBoundSignal_disconnect(PyObject *self, PyObject *args)
{
qpycore_pyqtBoundSignal *bs = (qpycore_pyqtBoundSignal *)self;
PyObject *slot_obj = 0, *res_obj;
Chimera::Signature *signature = bs->unbound_signal->signature;
#if PY_VERSION_HEX >= 0x02050000
if (!PyArg_ParseTuple(args, "|O:disconnect", &slot_obj))
#else
if (!PyArg_ParseTuple(args, const_cast<char *>("|O:disconnect"), &slot_obj))
#endif
return 0;
// See if we are disconnecting everything from the overload.
if (!slot_obj)
{
res_obj = disconnect(bs, 0, 0);
PyQtProxy::deleteSlotProxies(bs->bound_qobject,
signature->signature.constData());
return res_obj;
}
// See if the slot is a signal.
if (Py_TYPE(slot_obj) == &qpycore_pyqtBoundSignal_Type)
{
qpycore_pyqtBoundSignal *slot_bs = (qpycore_pyqtBoundSignal *)slot_obj;
return disconnect(bs, slot_bs->bound_qobject,
slot_bs->unbound_signal->signature->signature.constData());
}
if (!PyCallable_Check(slot_obj))
{
PyErr_Format(PyExc_TypeError,
"disconnect() argument should be callable, not '%s'",
Py_TYPE(slot_obj)->tp_name);
return 0;
}
// See if the slot has been used directly (ie. it wraps a Qt slot) or if it
// has a proxy.
QByteArray rx_name;
QObject *rx_qobj = get_receiver(bs, slot_obj, rx_name);
if (PyErr_Occurred())
return 0;
if (!rx_name.isEmpty())
return disconnect(bs, rx_qobj, rx_name.constData());
const char *member;
PyQtProxy *proxy = PyQtProxy::findSlotProxy(bs->bound_qobject,
signature->signature.constData(), slot_obj, 0, &member);
if (!proxy)
{
PyErr_Format(PyExc_TypeError, "'%s' object is not connected",
Py_TYPE(slot_obj)->tp_name);
return 0;
}
res_obj = disconnect(bs, proxy, member);
proxy->disable();
return res_obj;
}
// Disonnect a signal from a slot and handle any errors.
static PyObject *disconnect(qpycore_pyqtBoundSignal *bs, QObject *qrx,
const char *slot)
{
Chimera::Signature *signature = bs->unbound_signal->signature;
bool ok;
Py_BEGIN_ALLOW_THREADS
ok = QObject::disconnect(bs->bound_qobject,
signature->signature.constData(), qrx, slot);
Py_END_ALLOW_THREADS
if (!ok)
{
QByteArray tx_name = signature->name();
if (slot)
{
QByteArray rx_name = Chimera::Signature::name(slot);
PyErr_Format(PyExc_TypeError,
"disconnect() failed between '%s' and '%s'",
tx_name.constData() + 1, rx_name.constData() + 1);
}
else
{
PyErr_Format(PyExc_TypeError,
"disconnect() failed between '%s' and all its connections",
tx_name.constData() + 1);
}
return 0;
}
Py_INCREF(Py_None);
return Py_None;
}
// Emit a signal.
static PyObject *pyqtBoundSignal_emit(PyObject *self, PyObject *args)
{
qpycore_pyqtBoundSignal *bs = (qpycore_pyqtBoundSignal *)self;
if (!bs->bound_qobject->signalsBlocked())
{
Chimera::Signature *signature = bs->unbound_signal->signature;
int mo_index = bs->bound_qobject->metaObject()->indexOfSignal(signature->signature.constData() + 1);
if (mo_index < 0)
{
PyErr_Format(PyExc_AttributeError,
"signal was not defined in the first super-class of class '%s'",
Py_TYPE(bs->bound_pyobject)->tp_name);
return 0;
}
// Use the docstring if there is one and it is auto-generated.
const char *docstring = bs->unbound_signal->docstring;
if (!docstring || *docstring != '\1')
{
docstring = signature->py_signature.constData();
}
else
{
// Skip the auto-generated marker.
++docstring;
}
#if QT_VERSION < 0x050000
if (!qpycore_emit(bs->bound_qobject, mo_index, signature, docstring, args))
return 0;
#else
// Qt5 changes the way signals with optional arguments are handled in
// that the version with all arguments used is always used when making
// connections. (Note that it's possible Qt4 does this as well but we
// have never noticed because Qt4 only has one signal with optional
// arguments.) We can't do what PyQt5 does because it exploits the
// fact that Qt5 signals are public rather than protected. We could do
// what PyQt3 does (by creating a public wrapper in the derived class)
// but that is a bit complicated. We could implement the parsing of
// optional arguments in Chimera, but that is also a bit complicated.
// Instead, at this late stage in the life of PyQt4, we keep the code
// changes to a minimum and handle it with a big hack. Each
// problematic signal has a number attached to it which specifies
// exactly what hack is needed.
PyObject *hacked_args;
int hack = bs->unbound_signal->hack;
// If all the arguments has been provided then we don't need the hack.
if (PyTuple_GET_SIZE(args) == signature->parsed_arguments.size())
{
hack = 0;
}
else
{
hacked_args = PyTuple_New(PyTuple_GET_SIZE(args) + 1);
if (!hacked_args)
return 0;
for (SIP_SSIZE_T i = 0; i < PyTuple_GET_SIZE(args); ++i)
{
PyObject *arg = PyTuple_GET_ITEM(args, i);
Py_INCREF(arg);
PyTuple_SET_ITEM(hacked_args, i, arg);
}
}
switch (hack)
{
case 1:
// Supply the missing None.
Py_INCREF(Py_None);
PyTuple_SET_ITEM(hacked_args, PyTuple_GET_SIZE(args), Py_None);
break;
case 2:
// Supply the missing [].
{
PyObject *empty_list = PyList_New(0);
if (!empty_list)
{
Py_DECREF(hacked_args);
return 0;
}
PyTuple_SET_ITEM(hacked_args, PyTuple_GET_SIZE(args),
empty_list);
}
break;
case 3:
// Supply the missing False.
Py_INCREF(Py_False);
PyTuple_SET_ITEM(hacked_args, PyTuple_GET_SIZE(args), Py_False);
break;
default:
hacked_args = args;
Py_INCREF(hacked_args);
}
bool ok = qpycore_emit(bs->bound_qobject, mo_index, signature,
docstring, hacked_args);
Py_DECREF(hacked_args);
if (!ok)
return 0;
#endif
}
Py_INCREF(Py_None);
return Py_None;
}
// Get the receiver QObject from the slot (if there is one) and its signature
// (if it wraps a Qt slot). A Python exception will be raised if there was an
// error.
static QObject *get_receiver(qpycore_pyqtBoundSignal *bs, PyObject *slot_obj,
QByteArray &name)
{
PyObject *rx_self, *decorations;
QByteArray rx_name;
bool try_qt_slot;
Chimera::Signature *signature = bs->unbound_signal->signature;
decorations = 0;
if (PyMethod_Check(slot_obj))
{
rx_self = PyMethod_GET_SELF(slot_obj);
PyObject *f = PyMethod_GET_FUNCTION(slot_obj);
Q_ASSERT(PyFunction_Check(f));
PyObject *f_name_obj = ((PyFunctionObject *)f)->func_name;
const char *f_name = sipString_AsASCIIString(&f_name_obj);
Q_ASSERT(f_name);
rx_name = f_name;
Py_DECREF(f_name_obj);
// See if this has been decorated.
decorations = PyObject_GetAttr(f, qpycore_signature_attr_name);
if (decorations)
{
try_qt_slot = true;
// It's convenient to do this here as it's not going to disappear.
Py_DECREF(decorations);
}
else
{
try_qt_slot = false;
}
Py_XINCREF(rx_self);
}
else if (PyCFunction_Check(slot_obj))
{
rx_self = PyCFunction_GET_SELF(slot_obj);
rx_name = ((PyCFunctionObject *)slot_obj)->m_ml->ml_name;
// We actually want the C++ name which may (in theory) be completely
// different. However this will cope with the exec_ case which is
// probably good enough.
if (rx_name.endsWith('_'))
rx_name.chop(1);
try_qt_slot = true;
Py_XINCREF(rx_self);
}
else
{
static PyObject *partial = 0;
// Get the functools.partial type object if we haven't already got it.
if (!partial)
{
PyObject *functools = PyImport_ImportModule("functools");
if (functools)
{
partial = PyObject_GetAttrString(functools, "partial");
Py_DECREF(functools);
}
}
// If we know about functools.partial then remove the outer partials to
// get to the original function.
if (partial && PyObject_IsInstance(slot_obj, partial))
{
PyObject *func = slot_obj;
Py_INCREF(func);
do
{
PyObject *subfunc = PyObject_GetAttrString(func, "func");
Py_DECREF(func);
// This should never happen.
if (!subfunc)
return 0;
func = subfunc;
}
while (PyObject_IsInstance(func, partial));
if (PyMethod_Check(func))
rx_self = PyMethod_GET_SELF(func);
else if (PyCFunction_Check(func))
rx_self = PyCFunction_GET_SELF(func);
else
rx_self = 0;
Py_XINCREF(rx_self);
Py_DECREF(func);
try_qt_slot = false;
}
else
{
rx_self = 0;
}
}
if (!rx_self)
return 0;
int iserr = 0;
void *rx = sipForceConvertToType(rx_self, sipType_QObject, 0,
SIP_NO_CONVERTORS, 0, &iserr);
Py_DECREF(rx_self);
PyErr_Clear();
if (iserr)
return 0;
QObject *rx_qobj = reinterpret_cast<QObject *>(rx);
// If there might be a Qt slot that can handle the arguments (or a subset
// of them) then use it. Otherwise we will fallback to using a proxy.
if (try_qt_slot)
{
for (int ol = signature->parsed_arguments.count(); ol >= 0; --ol)
{
// If there are decorations then we compare the signal's signature
// against them so that we distinguish between Python types that
// are passed to Qt as PyQt_PyObject objects. Qt will not make the
// distinction. If there are no decorations then let Qt determine
// if a slot is available.
if (decorations)
name = slot_signature_from_decorations(signature, decorations,
ol);
else
name = slot_signature_from_metaobject(signature,
rx_qobj->metaObject(), rx_name, ol);
if (!name.isEmpty())
{
// Prepend the magic slot marker.
name.prepend('1');
break;
}
}
}
return rx_qobj;
}
// Return the full name and signature of a Qt slot that a signal can be
// connected to, taking the slot decorators into account.
static QByteArray slot_signature_from_decorations(Chimera::Signature *signal,
PyObject *decorations, int nr_args)
{
for (SIP_SSIZE_T i = 0; i < PyList_GET_SIZE(decorations); ++i)
{
Chimera::Signature *slot = Chimera::Signature::fromPyObject(
PyList_GET_ITEM(decorations, i));
if (slot->parsed_arguments.count() != nr_args)
continue;
int a;
for (a = 0; a < nr_args; ++a)
{
const Chimera *sig_arg = signal->parsed_arguments.at(a);
const Chimera *slot_arg = slot->parsed_arguments.at(a);
// The same type names must be compatible.
if (sig_arg->name() == slot_arg->name())
continue;
enum Match {
// The type is PyQt_PyObject because it was explicitly
// specified as such as a string.
MatchesAll,
// The type is PyQt_PyObject because it was specified as a type
// object that needed wrapping.
MatchesPyType,
// The type is something other than PyQt_PyObject.
MatchesName
};
Match sig_match, slot_match;
if (sig_arg->name() != "PyQt_PyObject")
sig_match = MatchesName;
else
sig_match = sig_arg->py_type() ? MatchesPyType : MatchesAll;
if (slot_arg->name() != "PyQt_PyObject")
slot_match = MatchesName;
else
slot_match = slot_arg->py_type() ? MatchesPyType : MatchesAll;
// They are incompatible unless one is called PyQt_PyObject.
if (sig_match == MatchesName || slot_match == MatchesName)
break;
// They are compatible if neither was a Python type.
if (sig_match == MatchesAll || slot_match == MatchesAll)
continue;
// The signal type can be a sub-type of the slot type.
if (!PyType_IsSubtype((PyTypeObject *)sig_arg->py_type(), (PyTypeObject *)slot_arg->py_type()))
break;
}
if (a == nr_args)
return slot_signature(signal, slot->name(), nr_args);
}
return QByteArray();
}
// Return the full name and signature of a Qt slot that a signal can be
// connected to, taking the Qt meta-object into account.
static QByteArray slot_signature_from_metaobject(Chimera::Signature *signal,
const QMetaObject *slot_mo, const QByteArray &slot_name, int nr_args)
{
QByteArray slot_sig = slot_signature(signal, slot_name, nr_args);
if (slot_mo->indexOfSlot(slot_sig.constData()) < 0)
slot_sig.clear();
return slot_sig;
}
// Return the full name and signature of the Qt slot that a signal would be
// connected to.
static QByteArray slot_signature(Chimera::Signature *signal,
const QByteArray &slot_name, int nr_args)
{
QByteArray slot_sig = slot_name;
slot_sig.append('(');
for (int a = 0; a < nr_args; ++a)
{
if (a != 0)
slot_sig.append(',');
slot_sig.append(signal->parsed_arguments.at(a)->name());
}
slot_sig.append(')');
return slot_sig;
}
// Check that an object is a signal and return the bound QObject (if requested)
// and the signal signature.
const char *qpycore_pyqtsignal_get_parts(PyObject *sig_obj, QObject **qtx)
{
if (PyObject_TypeCheck(sig_obj, &qpycore_pyqtBoundSignal_Type))
{
qpycore_pyqtBoundSignal *bs = (qpycore_pyqtBoundSignal *)sig_obj;
if (qtx)
*qtx = bs->bound_qobject;
return bs->unbound_signal->signature->signature.constData();
}
if (PyObject_TypeCheck(sig_obj, &qpycore_pyqtSignal_Type) && !qtx)
{
qpycore_pyqtSignal *ps = (qpycore_pyqtSignal *)sig_obj;
return ps->signature->signature.constData();
}
return 0;
}
|