File: qpycore_pyqtboundsignal.cpp

package info (click to toggle)
python-qt4 4.11.4%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 40,148 kB
  • ctags: 6,150
  • sloc: python: 125,936; cpp: 12,628; xml: 292; makefile: 259; php: 27; sh: 2
file content (985 lines) | stat: -rw-r--r-- 29,763 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
// This contains the implementation of the pyqtBoundSignal type.
//
// Copyright (c) 2015 Riverbank Computing Limited <info@riverbankcomputing.com>
// 
// This file is part of PyQt4.
// 
// This file may be used under the terms of the GNU General Public License
// version 3.0 as published by the Free Software Foundation and appearing in
// the file LICENSE included in the packaging of this file.  Please review the
// following information to ensure the GNU General Public License version 3.0
// requirements will be met: http://www.gnu.org/copyleft/gpl.html.
// 
// If you do not wish to use this file under the terms of the GPL version 3.0
// then you may purchase a commercial license.  For more information contact
// info@riverbankcomputing.com.
// 
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.


#include <Python.h>

#include <QtGlobal>
#include <QByteArray>
#include <QMetaObject>

#include "qpycore_chimera.h"
#include "qpycore_misc.h"
#include "qpycore_pyqtboundsignal.h"
#include "qpycore_pyqtproxy.h"
#include "qpycore_pyqtpyobject.h"
#include "qpycore_pyqtsignal.h"
#include "qpycore_sip.h"
#include "qpycore_sip_helpers.h"


// Forward declarations.
extern "C" {
static PyObject *pyqtBoundSignal_call(PyObject *self, PyObject *args,
        PyObject *kw);
static void pyqtBoundSignal_dealloc(PyObject *self);
static PyObject *pyqtBoundSignal_repr(PyObject *self);
static PyObject *pyqtBoundSignal_get_doc(PyObject *self, void *);
static PyObject *pyqtBoundSignal_get_signal(PyObject *self, void *);
static PyObject *pyqtBoundSignal_connect(PyObject *self, PyObject *args,
        PyObject *kwd_args);
static PyObject *pyqtBoundSignal_disconnect(PyObject *self, PyObject *args);
static PyObject *pyqtBoundSignal_emit(PyObject *self, PyObject *args);
static PyObject *pyqtBoundSignal_mp_subscript(PyObject *self,
        PyObject *subscript);
}

static PyObject *connect(qpycore_pyqtBoundSignal *bs, QObject *qrx,
        const char *slot, Qt::ConnectionType type);
static PyObject *disconnect(qpycore_pyqtBoundSignal *bs, QObject *qrx,
        const char *slot);
static QObject *get_receiver(qpycore_pyqtBoundSignal *bs, PyObject *slot_obj,
        QByteArray &name);
static QByteArray slot_signature_from_decorations(Chimera::Signature *signal,
        PyObject *decorations, int nr_args);
static QByteArray slot_signature_from_metaobject(Chimera::Signature *signal,
        const QMetaObject *slot_mo, const QByteArray &slot_name, int nr_args);
static QByteArray slot_signature(Chimera::Signature *signal,
        const QByteArray &slot_name, int nr_args);


// Doc-strings.
PyDoc_STRVAR(pyqtBoundSignal_connect_doc,
"connect(slot, type=Qt.AutoConnection, no_receiver_check=False)\n"
"\n"
"slot is either a Python callable or another signal.\n"
"type is a Qt.ConnectionType.\n"
"no_receiver_check is True to disable the check that the receiver's C++\n"
"instance still exists when the signal is emitted.\n");

PyDoc_STRVAR(pyqtBoundSignal_disconnect_doc,
"disconnect([slot])\n"
"\n"
"slot is an optional Python callable or another signal.  If it is omitted\n"
"then the signal is disconnected from everything it is connected to.");

PyDoc_STRVAR(pyqtBoundSignal_emit_doc,
"emit(*args)\n"
"\n"
"*args are the values that will be passed as arguments to all connected\n"
"slots.");

PyDoc_STRVAR(pyqtBoundSignal_signal_doc,
"The signature of the signal that would be returned by SIGNAL()");


// Define the methods.
static PyMethodDef pyqtBoundSignal_methods[] = {
    {SIP_MLNAME_CAST("connect"), (PyCFunction)pyqtBoundSignal_connect,
            METH_VARARGS|METH_KEYWORDS,
            SIP_MLDOC_CAST(pyqtBoundSignal_connect_doc)},
    {SIP_MLNAME_CAST("disconnect"), pyqtBoundSignal_disconnect,
            METH_VARARGS, SIP_MLDOC_CAST(pyqtBoundSignal_disconnect_doc)},
    {SIP_MLNAME_CAST("emit"), pyqtBoundSignal_emit,
            METH_VARARGS, SIP_MLDOC_CAST(pyqtBoundSignal_emit_doc)},
    {0, 0, 0, 0}
};


// Define the mapping methods.
static PyMappingMethods pyqtBoundSignal_as_mapping = {
    0,                      /* mp_length */
    pyqtBoundSignal_mp_subscript,   /* mp_subscript */
    0,                      /* mp_ass_subscript */
};


// The getters/setters.
static PyGetSetDef pyqtBoundSignal_getsets[] = {
    {(char *)"__doc__", pyqtBoundSignal_get_doc, NULL, NULL, NULL},
    {(char *)"signal", pyqtBoundSignal_get_signal, NULL,
            (char *)pyqtBoundSignal_signal_doc, NULL},
    {NULL, NULL, NULL, NULL, NULL}
};


// The pyqtBoundSignal type object.
PyTypeObject qpycore_pyqtBoundSignal_Type = {
    PyVarObject_HEAD_INIT(NULL, 0)
    SIP_TPNAME_CAST("PyQt4.QtCore.pyqtBoundSignal"),    /* tp_name */
    sizeof (qpycore_pyqtBoundSignal),   /* tp_basicsize */
    0,                      /* tp_itemsize */
    pyqtBoundSignal_dealloc,    /* tp_dealloc */
    0,                      /* tp_print */
    0,                      /* tp_getattr */
    0,                      /* tp_setattr */
    0,                      /* tp_compare */
    pyqtBoundSignal_repr,   /* tp_repr */
    0,                      /* tp_as_number */
    0,                      /* tp_as_sequence */
    &pyqtBoundSignal_as_mapping,    /* tp_as_mapping */
    0,                      /* tp_hash */
    pyqtBoundSignal_call,   /* tp_call */
    0,                      /* tp_str */
    0,                      /* tp_getattro */
    0,                      /* tp_setattro */
    0,                      /* tp_as_buffer */
    Py_TPFLAGS_DEFAULT,     /* tp_flags */
    0,                      /* tp_doc */
    0,                      /* tp_traverse */
    0,                      /* tp_clear */
    0,                      /* tp_richcompare */
    0,                      /* tp_weaklistoffset */
    0,                      /* tp_iter */
    0,                      /* tp_iternext */
    pyqtBoundSignal_methods,    /* tp_methods */
    0,                      /* tp_members */
    pyqtBoundSignal_getsets,    /* tp_getset */
    0,                      /* tp_base */
    0,                      /* tp_dict */
    0,                      /* tp_descr_get */
    0,                      /* tp_descr_set */
    0,                      /* tp_dictoffset */
    0,                      /* tp_init */
    0,                      /* tp_alloc */
    PyType_GenericNew,      /* tp_new */
    0,                      /* tp_free */
    0,                      /* tp_is_gc */
    0,                      /* tp_bases */
    0,                      /* tp_mro */
    0,                      /* tp_cache */
    0,                      /* tp_subclasses */
    0,                      /* tp_weaklist */
    0,                      /* tp_del */
#if PY_VERSION_HEX >= 0x02060000
    0,                      /* tp_version_tag */
#endif
#if PY_VERSION_HEX >= 0x03040000
    0,                      /* tp_finalize */
#endif
};


// The __doc__ getter.
static PyObject *pyqtBoundSignal_get_doc(PyObject *self, void *)
{
    qpycore_pyqtBoundSignal *bs = (qpycore_pyqtBoundSignal *)self;

    const char *docstring = bs->unbound_signal->docstring;

    if (!docstring)
    {
        Py_INCREF(Py_None);
        return Py_None;
    }

    if (*docstring == '\1')
        ++docstring;

    return
#if PY_MAJOR_VERSION >= 3
        PyUnicode_FromString
#else
        PyString_FromString
#endif
            (docstring);
}


// The __signal__ getter.
static PyObject *pyqtBoundSignal_get_signal(PyObject *self, void *)
{
    qpycore_pyqtBoundSignal *bs = (qpycore_pyqtBoundSignal *)self;

    return
#if PY_MAJOR_VERSION >= 3
        PyUnicode_FromString
#else
        PyString_FromString
#endif
            (bs->unbound_signal->signature->signature.constData());
}


// The type repr slot.
static PyObject *pyqtBoundSignal_repr(PyObject *self)
{
    qpycore_pyqtBoundSignal *bs = (qpycore_pyqtBoundSignal *)self;

    QByteArray name = bs->unbound_signal->signature->name();

    return
#if PY_MAJOR_VERSION >= 3
        PyUnicode_FromFormat
#else
        PyString_FromFormat
#endif
            ("<bound signal %s of %s object at %p>", name.constData() + 1,
                    bs->bound_pyobject->ob_type->tp_name, bs->bound_pyobject);
}


// The type call slot.
static PyObject *pyqtBoundSignal_call(PyObject *self, PyObject *args,
        PyObject *kw)
{
    qpycore_pyqtBoundSignal *bs = (qpycore_pyqtBoundSignal *)self;

    return qpycore_call_signal_overload(bs->unbound_signal, bs->bound_pyobject,
            args, kw);
}


// The type dealloc slot.
static void pyqtBoundSignal_dealloc(PyObject *self)
{
    qpycore_pyqtBoundSignal *bs = (qpycore_pyqtBoundSignal *)self;

    Py_XDECREF((PyObject *)bs->unbound_signal);

    Py_TYPE(self)->tp_free(self);
}


// Create a bound signal.
PyObject *qpycore_pyqtBoundSignal_New(qpycore_pyqtSignal *unbound_signal,
        PyObject *bound_pyobject, QObject *bound_qobject)
{
    qpycore_pyqtBoundSignal *bs = (qpycore_pyqtBoundSignal *)PyType_GenericNew(&qpycore_pyqtBoundSignal_Type, 0, 0);

    if (bs)
    {
        Py_INCREF((PyObject *)unbound_signal);
        bs->unbound_signal = unbound_signal;

        bs->bound_pyobject = bound_pyobject;
        bs->bound_qobject = bound_qobject;
    }

    return (PyObject *)bs;
}


// The mapping subscript slot.
static PyObject *pyqtBoundSignal_mp_subscript(PyObject *self,
        PyObject *subscript)
{
    qpycore_pyqtBoundSignal *bs = (qpycore_pyqtBoundSignal *)self;

    qpycore_pyqtSignal *ps = qpycore_find_signal(bs->unbound_signal, subscript,
            "a bound signal type argument");

    if (!ps)
        return 0;

    // Create a new bound signal.
    return qpycore_pyqtBoundSignal_New(ps, bs->bound_pyobject,
            bs->bound_qobject);
}


// Connect a signal.
static PyObject *pyqtBoundSignal_connect(PyObject *self, PyObject *args,
        PyObject *kwd_args)
{
    qpycore_pyqtBoundSignal *bs = (qpycore_pyqtBoundSignal *)self;

    static const char *kwds[] = {
        "slot",
        "type",
        "no_receiver_check",
        0
    };

    PyObject *slot_obj, *type_obj = 0;
    int no_receiver_check = 0;

    if (!PyArg_ParseTupleAndKeywords(args, kwd_args,
#if PY_VERSION_HEX >= 0x03030000
                "O|Op:connect",
#elif PY_VERSION_HEX >= 0x02050000
                "O|Oi:connect",
#else
                const_cast<char *>("O|Oi:connect"),
#endif
                const_cast<char **>(kwds), &slot_obj, &type_obj, &no_receiver_check))
        return 0;

    Qt::ConnectionType type = Qt::AutoConnection;

    if (type_obj)
    {
        if (!sipCanConvertToEnum(type_obj, sipType_Qt_ConnectionType))
        {
            PyErr_Format(PyExc_TypeError,
                    "connect() type argument should be Qt.ConnectionType, not '%s'",
                    Py_TYPE(slot_obj)->tp_name);

            return 0;
        }

        type = (Qt::ConnectionType)SIPLong_AsLong(type_obj);
    }

    // See if the slot is a signal.
    if (Py_TYPE(slot_obj) == &qpycore_pyqtBoundSignal_Type)
    {
        qpycore_pyqtBoundSignal *slot_bs = (qpycore_pyqtBoundSignal *)slot_obj;

        // Check we are not connecting to ourself.  We do this because Qt
        // doesn't do a similar check and will recurse its way to a crash.
        if (slot_bs->unbound_signal == bs->unbound_signal && slot_bs->bound_qobject == bs->bound_qobject)
        {
            PyErr_SetString(PyExc_ValueError,
                    "cannot connect a signal to itself");
            return 0;
        }

        return connect(bs, slot_bs->bound_qobject,
                slot_bs->unbound_signal->signature->signature.constData(),
                type);
    }

    // Make sure the slot is callable.
    if (!PyCallable_Check(slot_obj))
    {
        PyErr_Format(PyExc_TypeError,
                "connect() slot argument should be a callable or a signal, not '%s'",
                Py_TYPE(slot_obj)->tp_name);

        return 0;
    }

    // See if the slot can be used directly (ie. it wraps a Qt slot) or if it
    // needs a proxy.
    QByteArray rx_name;
    QObject *rx_qobj = get_receiver(bs, slot_obj, rx_name);

    if (PyErr_Occurred())
        return 0;

    if (!rx_name.isEmpty())
        return connect(bs, rx_qobj, rx_name.constData(), type);

    // Create a proxy for the slot.
    PyQtProxy *proxy;
    const char *member;

#if QT_VERSION >= 0x040600
    if ((type & Qt::UniqueConnection) == Qt::UniqueConnection)
    {
        proxy = PyQtProxy::findSlotProxy(bs->bound_qobject,
                bs->unbound_signal->signature->signature.constData(), slot_obj,
                0, &member);

        if (proxy)
        {
            // We give more information than we could if it was a Qt slot but
            // to be consistent we raise a TypeError even though it's not the
            // most appropriate for the type of error.
            PyErr_SetString(PyExc_TypeError, "connection is not unique");
            return 0;
        }
    }
#endif

    Py_BEGIN_ALLOW_THREADS

    proxy = new PyQtProxy(bs, slot_obj, &member);

    if (no_receiver_check)
        proxy->disableReceiverCheck();

    if (proxy->metaObject())
    {
        if (rx_qobj)
            proxy->moveToThread(rx_qobj->thread());
    }
    else
    {
        delete proxy;
        proxy = 0;
    }

    Py_END_ALLOW_THREADS

    if (!proxy)
        return 0;

    return connect(bs, proxy, member, type);
}


// Connect a signal to a slot and handle any errors.
static PyObject *connect(qpycore_pyqtBoundSignal *bs, QObject *qrx,
        const char *slot, Qt::ConnectionType type)
{
    bool ok;
    Chimera::Signature *signature = bs->unbound_signal->signature;

    Py_BEGIN_ALLOW_THREADS
    ok = QObject::connect(bs->bound_qobject, signature->signature.constData(),
            qrx, slot, type);
    Py_END_ALLOW_THREADS

    if (!ok)
    {
        QByteArray rx_name = Chimera::Signature::name(slot);

        PyErr_Format(PyExc_TypeError, "connect() failed between %s and %s()",
                signature->py_signature.constData(), rx_name.constData() + 1);

        return 0;
    }

    Py_INCREF(Py_None);
    return Py_None;
}


// Disconnect a signal.
static PyObject *pyqtBoundSignal_disconnect(PyObject *self, PyObject *args)
{
    qpycore_pyqtBoundSignal *bs = (qpycore_pyqtBoundSignal *)self;

    PyObject *slot_obj = 0, *res_obj;
    Chimera::Signature *signature = bs->unbound_signal->signature;

#if PY_VERSION_HEX >= 0x02050000
    if (!PyArg_ParseTuple(args, "|O:disconnect", &slot_obj))
#else
    if (!PyArg_ParseTuple(args, const_cast<char *>("|O:disconnect"), &slot_obj))
#endif
        return 0;

    // See if we are disconnecting everything from the overload.
    if (!slot_obj)
    {
        res_obj = disconnect(bs, 0, 0);

        PyQtProxy::deleteSlotProxies(bs->bound_qobject,
                signature->signature.constData());

        return res_obj;
    }

    // See if the slot is a signal.
    if (Py_TYPE(slot_obj) == &qpycore_pyqtBoundSignal_Type)
    {
        qpycore_pyqtBoundSignal *slot_bs = (qpycore_pyqtBoundSignal *)slot_obj;

        return disconnect(bs, slot_bs->bound_qobject,
                slot_bs->unbound_signal->signature->signature.constData());
    }

    if (!PyCallable_Check(slot_obj))
    {
        PyErr_Format(PyExc_TypeError,
                "disconnect() argument should be callable, not '%s'",
                Py_TYPE(slot_obj)->tp_name);

        return 0;
    }

    // See if the slot has been used directly (ie. it wraps a Qt slot) or if it
    // has a proxy.
    QByteArray rx_name;
    QObject *rx_qobj = get_receiver(bs, slot_obj, rx_name);

    if (PyErr_Occurred())
        return 0;

    if (!rx_name.isEmpty())
        return disconnect(bs, rx_qobj, rx_name.constData());

    const char *member;
    PyQtProxy *proxy = PyQtProxy::findSlotProxy(bs->bound_qobject,
            signature->signature.constData(), slot_obj, 0, &member);

    if (!proxy)
    {
        PyErr_Format(PyExc_TypeError, "'%s' object is not connected",
                Py_TYPE(slot_obj)->tp_name);

        return 0;
    }

    res_obj = disconnect(bs, proxy, member);

    proxy->disable();

    return res_obj;
}


// Disonnect a signal from a slot and handle any errors.
static PyObject *disconnect(qpycore_pyqtBoundSignal *bs, QObject *qrx,
        const char *slot)
{
    Chimera::Signature *signature = bs->unbound_signal->signature;
    bool ok;

    Py_BEGIN_ALLOW_THREADS
    ok = QObject::disconnect(bs->bound_qobject,
            signature->signature.constData(), qrx, slot);
    Py_END_ALLOW_THREADS

    if (!ok)
    {
        QByteArray tx_name = signature->name();

        if (slot)
        {
            QByteArray rx_name = Chimera::Signature::name(slot);

            PyErr_Format(PyExc_TypeError,
                    "disconnect() failed between '%s' and '%s'",
                    tx_name.constData() + 1, rx_name.constData() + 1);
        }
        else
        {
            PyErr_Format(PyExc_TypeError,
                    "disconnect() failed between '%s' and all its connections",
                    tx_name.constData() + 1);
        }

        return 0;
    }

    Py_INCREF(Py_None);
    return Py_None;
}


// Emit a signal.
static PyObject *pyqtBoundSignal_emit(PyObject *self, PyObject *args)
{
    qpycore_pyqtBoundSignal *bs = (qpycore_pyqtBoundSignal *)self;

    if (!bs->bound_qobject->signalsBlocked())
    {
        Chimera::Signature *signature = bs->unbound_signal->signature;
        int mo_index = bs->bound_qobject->metaObject()->indexOfSignal(signature->signature.constData() + 1);

        if (mo_index < 0)
        {
            PyErr_Format(PyExc_AttributeError,
                    "signal was not defined in the first super-class of class '%s'",
                    Py_TYPE(bs->bound_pyobject)->tp_name);
            return 0;
        }

        // Use the docstring if there is one and it is auto-generated.
        const char *docstring = bs->unbound_signal->docstring;

        if (!docstring || *docstring != '\1')
        {
            docstring = signature->py_signature.constData();
        }
        else
        {
            // Skip the auto-generated marker.
            ++docstring;
        }

#if QT_VERSION < 0x050000
        if (!qpycore_emit(bs->bound_qobject, mo_index, signature, docstring, args))
            return 0;
#else
        // Qt5 changes the way signals with optional arguments are handled in
        // that the version with all arguments used is always used when making
        // connections.  (Note that it's possible Qt4 does this as well but we
        // have never noticed because Qt4 only has one signal with optional
        // arguments.)  We can't do what PyQt5 does because it exploits the
        // fact that Qt5 signals are public rather than protected.  We could do
        // what PyQt3 does (by creating a public wrapper in the derived class)
        // but that is a bit complicated.  We could implement the parsing of
        // optional arguments in Chimera, but that is also a bit complicated.
        // Instead, at this late stage in the life of PyQt4, we keep the code
        // changes to a minimum and handle it with a big hack.  Each
        // problematic signal has a number attached to it which specifies
        // exactly what hack is needed.

        PyObject *hacked_args;
        int hack = bs->unbound_signal->hack;

        // If all the arguments has been provided then we don't need the hack.
        if (PyTuple_GET_SIZE(args) == signature->parsed_arguments.size())
        {
            hack = 0;
        }
        else
        {
            hacked_args = PyTuple_New(PyTuple_GET_SIZE(args) + 1);

            if (!hacked_args)
                return 0;

            for (SIP_SSIZE_T i = 0; i < PyTuple_GET_SIZE(args); ++i)
            {
                PyObject *arg = PyTuple_GET_ITEM(args, i);

                Py_INCREF(arg);
                PyTuple_SET_ITEM(hacked_args, i, arg);
            }
        }

        switch (hack)
        {
        case 1:
            // Supply the missing None.
            Py_INCREF(Py_None);
            PyTuple_SET_ITEM(hacked_args, PyTuple_GET_SIZE(args), Py_None);
            break;

        case 2:
            // Supply the missing [].
            {
                PyObject *empty_list = PyList_New(0);

                if (!empty_list)
                {
                    Py_DECREF(hacked_args);
                    return 0;
                }

                PyTuple_SET_ITEM(hacked_args, PyTuple_GET_SIZE(args),
                        empty_list);
            }

            break;

        case 3:
            // Supply the missing False.
            Py_INCREF(Py_False);
            PyTuple_SET_ITEM(hacked_args, PyTuple_GET_SIZE(args), Py_False);
            break;

        default:
            hacked_args = args;
            Py_INCREF(hacked_args);
        }

        bool ok = qpycore_emit(bs->bound_qobject, mo_index, signature,
                docstring, hacked_args);

        Py_DECREF(hacked_args);

        if (!ok)
            return 0;
#endif
    }

    Py_INCREF(Py_None);
    return Py_None;
}


// Get the receiver QObject from the slot (if there is one) and its signature
// (if it wraps a Qt slot).  A Python exception will be raised if there was an
// error.
static QObject *get_receiver(qpycore_pyqtBoundSignal *bs, PyObject *slot_obj,
        QByteArray &name)
{
    PyObject *rx_self, *decorations;
    QByteArray rx_name;
    bool try_qt_slot;
    Chimera::Signature *signature = bs->unbound_signal->signature;

    decorations = 0;

    if (PyMethod_Check(slot_obj))
    {
        rx_self = PyMethod_GET_SELF(slot_obj);

        PyObject *f = PyMethod_GET_FUNCTION(slot_obj);
        Q_ASSERT(PyFunction_Check(f));

        PyObject *f_name_obj = ((PyFunctionObject *)f)->func_name;
        const char *f_name = sipString_AsASCIIString(&f_name_obj);
        Q_ASSERT(f_name);

        rx_name = f_name;
        Py_DECREF(f_name_obj);

        // See if this has been decorated.
        decorations = PyObject_GetAttr(f, qpycore_signature_attr_name);

        if (decorations)
        {
            try_qt_slot = true;

            // It's convenient to do this here as it's not going to disappear.
            Py_DECREF(decorations);
        }
        else
        {
            try_qt_slot = false;
        }

        Py_XINCREF(rx_self);
    }
    else if (PyCFunction_Check(slot_obj))
    {
        rx_self = PyCFunction_GET_SELF(slot_obj);
        rx_name = ((PyCFunctionObject *)slot_obj)->m_ml->ml_name;

        // We actually want the C++ name which may (in theory) be completely
        // different.  However this will cope with the exec_ case which is
        // probably good enough.
        if (rx_name.endsWith('_'))
            rx_name.chop(1);

        try_qt_slot = true;

        Py_XINCREF(rx_self);
    }
    else
    {
        static PyObject *partial = 0;

        // Get the functools.partial type object if we haven't already got it.
        if (!partial)
        {
            PyObject *functools = PyImport_ImportModule("functools");

            if (functools)
            {
                partial = PyObject_GetAttrString(functools, "partial");
                Py_DECREF(functools);
            }
        }

        // If we know about functools.partial then remove the outer partials to
        // get to the original function.
        if (partial && PyObject_IsInstance(slot_obj, partial))
        {
            PyObject *func = slot_obj;

            Py_INCREF(func);

            do
            {
                PyObject *subfunc = PyObject_GetAttrString(func, "func");

                Py_DECREF(func);

                // This should never happen.
                if (!subfunc)
                    return 0;

                func = subfunc;
            }
            while (PyObject_IsInstance(func, partial));

            if (PyMethod_Check(func))
                rx_self = PyMethod_GET_SELF(func);
            else if (PyCFunction_Check(func))
                rx_self = PyCFunction_GET_SELF(func);
            else
                rx_self = 0;

            Py_XINCREF(rx_self);
            Py_DECREF(func);

            try_qt_slot = false;
        }
        else
        {
            rx_self = 0;
        }
    }
 
    if (!rx_self)
        return 0;

    int iserr = 0;
    void *rx = sipForceConvertToType(rx_self, sipType_QObject, 0,
            SIP_NO_CONVERTORS, 0, &iserr);

    Py_DECREF(rx_self);

    PyErr_Clear();

    if (iserr)
        return 0;

    QObject *rx_qobj = reinterpret_cast<QObject *>(rx);

    // If there might be a Qt slot that can handle the arguments (or a subset
    // of them) then use it.  Otherwise we will fallback to using a proxy.
    if (try_qt_slot)
    {
        for (int ol = signature->parsed_arguments.count(); ol >= 0; --ol)
        {
            // If there are decorations then we compare the signal's signature
            // against them so that we distinguish between Python types that
            // are passed to Qt as PyQt_PyObject objects.  Qt will not make the
            // distinction.  If there are no decorations then let Qt determine
            // if a slot is available.
            if (decorations)
                name = slot_signature_from_decorations(signature, decorations,
                        ol);
            else
                name = slot_signature_from_metaobject(signature,
                        rx_qobj->metaObject(), rx_name, ol);

            if (!name.isEmpty())
            {
                // Prepend the magic slot marker.
                name.prepend('1');
                break;
            }
        }
    }

    return rx_qobj;
}


// Return the full name and signature of a Qt slot that a signal can be
// connected to, taking the slot decorators into account.
static QByteArray slot_signature_from_decorations(Chimera::Signature *signal,
        PyObject *decorations, int nr_args)
{
    for (SIP_SSIZE_T i = 0; i < PyList_GET_SIZE(decorations); ++i)
    {
        Chimera::Signature *slot = Chimera::Signature::fromPyObject(
                PyList_GET_ITEM(decorations, i));

        if (slot->parsed_arguments.count() != nr_args)
            continue;

        int a;

        for (a = 0; a < nr_args; ++a)
        {
            const Chimera *sig_arg = signal->parsed_arguments.at(a);
            const Chimera *slot_arg = slot->parsed_arguments.at(a);

            // The same type names must be compatible.
            if (sig_arg->name() == slot_arg->name())
                continue;

            enum Match {
                // The type is PyQt_PyObject because it was explicitly
                // specified as such as a string.
                MatchesAll,

                // The type is PyQt_PyObject because it was specified as a type
                // object that needed wrapping.
                MatchesPyType,

                // The type is something other than PyQt_PyObject.
                MatchesName
            };

            Match sig_match, slot_match;

            if (sig_arg->name() != "PyQt_PyObject")
                sig_match = MatchesName;
            else
                sig_match = sig_arg->py_type() ? MatchesPyType : MatchesAll;

            if (slot_arg->name() != "PyQt_PyObject")
                slot_match = MatchesName;
            else
                slot_match = slot_arg->py_type() ? MatchesPyType : MatchesAll;

            // They are incompatible unless one is called PyQt_PyObject.
            if (sig_match == MatchesName || slot_match == MatchesName)
                break;

            // They are compatible if neither was a Python type.
            if (sig_match == MatchesAll || slot_match == MatchesAll)
                continue;

            // The signal type can be a sub-type of the slot type.
            if (!PyType_IsSubtype((PyTypeObject *)sig_arg->py_type(), (PyTypeObject *)slot_arg->py_type()))
                break;
        }

        if (a == nr_args)
            return slot_signature(signal, slot->name(), nr_args);
    }

    return QByteArray();
}


// Return the full name and signature of a Qt slot that a signal can be
// connected to, taking the Qt meta-object into account.
static QByteArray slot_signature_from_metaobject(Chimera::Signature *signal,
        const QMetaObject *slot_mo, const QByteArray &slot_name, int nr_args)
{
    QByteArray slot_sig = slot_signature(signal, slot_name, nr_args);

    if (slot_mo->indexOfSlot(slot_sig.constData()) < 0)
        slot_sig.clear();

    return slot_sig;
}


// Return the full name and signature of the Qt slot that a signal would be
// connected to.
static QByteArray slot_signature(Chimera::Signature *signal,
        const QByteArray &slot_name, int nr_args)
{
    QByteArray slot_sig = slot_name;

    slot_sig.append('(');

    for (int a = 0; a < nr_args; ++a)
    {
        if (a != 0)
            slot_sig.append(',');

        slot_sig.append(signal->parsed_arguments.at(a)->name());
    }

    slot_sig.append(')');

    return slot_sig;
}


// Check that an object is a signal and return the bound QObject (if requested)
// and the signal signature.
const char *qpycore_pyqtsignal_get_parts(PyObject *sig_obj, QObject **qtx)
{
    if (PyObject_TypeCheck(sig_obj, &qpycore_pyqtBoundSignal_Type))
    {
        qpycore_pyqtBoundSignal *bs = (qpycore_pyqtBoundSignal *)sig_obj;

        if (qtx)
            *qtx = bs->bound_qobject;

        return bs->unbound_signal->signature->signature.constData();
    }

    if (PyObject_TypeCheck(sig_obj, &qpycore_pyqtSignal_Type) && !qtx)
    {
        qpycore_pyqtSignal *ps = (qpycore_pyqtSignal *)sig_obj;

        return ps->signature->signature.constData();
    }

    return 0;
}