1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
|
// This implements the support for old-style signals and slots.
//
// @BS_LICENCE@
#include <Python.h>
#include <QObject>
#include "qpycore_pyqtproxy.h"
#include "qpycore_qtlib.h"
#include "qpycore_sip.h"
#include "qpycore_sip_helpers.h"
/* This is how Qt "types" signals and slots. */
#define isQtSlot(s) (*(s) == '1')
#define isQtSignal(s) (*(s) == '2')
static sipErrorState QObjectFromPy(PyObject *obj, QObject **qobjp);
static QObject *resolveSignal(QObject *qtx, const char **sig);
static PyObject *getWeakRef(PyObject *obj);
static char *sipStrdup(const char *);
static void saveMethod(sipPyMethod *pm, PyObject *meth);
// Invoke a single slot (Qt or Python) and return the result. Optionally check
// that any receiver C++ object still exist.
PyObject *qtlib_invoke_slot(const sipSlot *slot, PyObject *sigargs,
int no_receiver_check)
{
PyObject *sfunc, *sref;
// Get the object to call, resolving any weak references.
if (slot->weakSlot == Py_True)
{
// The slot is guaranteed to be Ok because it has an extra reference
// or is None.
sref = slot->pyobj;
}
else if (!slot->weakSlot)
{
sref = 0;
}
else
{
sref = PyWeakref_GetObject(slot->weakSlot);
if (!sref)
return 0;
}
if (sref == Py_None)
{
// If the real object has gone then we pretend everything is Ok. This
// mimics the Qt behaviour of not caring if a receiving object has been
// deleted.
Py_INCREF(Py_None);
return Py_None;
}
Py_XINCREF(sref);
if (!slot->pyobj)
{
PyObject *self = (sref ? sref : slot->meth.mself);
// If the receiver wraps a C++ object then ignore the call if it no
// longer exists.
if (!no_receiver_check &&
PyObject_TypeCheck(self, sipSimpleWrapper_Type) &&
!sipGetAddress((sipSimpleWrapper *)self))
{
Py_XDECREF(sref);
Py_INCREF(Py_None);
return Py_None;
}
#if PY_MAJOR_VERSION >= 3
sfunc = PyMethod_New(slot->meth.mfunc, self);
#else
sfunc = PyMethod_New(slot->meth.mfunc, self, slot->meth.mclass);
#endif
if (!sfunc)
{
Py_XDECREF(sref);
return 0;
}
}
else if (slot->name)
{
char *mname = slot->name + 1;
PyObject *self = (sref ? sref : slot->pyobj);
sfunc = PyObject_GetAttrString(self, mname);
if (!sfunc || !PyCFunction_Check(sfunc))
{
// Note that in earlier versions of SIP this error would be
// detected when the slot was connected.
PyErr_Format(PyExc_NameError, "Invalid slot %s", mname);
Py_XDECREF(sfunc);
Py_XDECREF(sref);
return 0;
}
}
else
{
sfunc = slot->pyobj;
Py_INCREF(sfunc);
}
// We make repeated attempts to call a slot. If we work out that it failed
// because of an immediate type error we try again with one less argument.
// We keep going until we run out of arguments to drop. This emulates the
// Qt ability of the slot to accept fewer arguments than a signal provides.
PyObject *sa = sigargs;
Py_INCREF(sa);
PyObject *oxtype, *oxvalue, *oxtb;
oxtype = oxvalue = oxtb = 0;
for (;;)
{
PyObject *resobj = PyEval_CallObject(sfunc, sa);
if (resobj)
{
Py_DECREF(sfunc);
Py_XDECREF(sref);
// Remove any previous exception.
if (sa != sigargs)
{
Py_XDECREF(oxtype);
Py_XDECREF(oxvalue);
Py_XDECREF(oxtb);
PyErr_Clear();
}
Py_DECREF(sa);
return resobj;
}
// Get the exception.
PyObject *xtype, *xvalue, *xtb;
PyErr_Fetch(&xtype, &xvalue, &xtb);
// See if it is unacceptable. An acceptable failure is a type error
// with no traceback - so long as we can still reduce the number of
// arguments and try again.
if (!PyErr_GivenExceptionMatches(xtype, PyExc_TypeError) || xtb ||
PyTuple_GET_SIZE(sa) == 0)
{
// If there is a traceback then we must have called the slot and
// the exception was later on - so report the exception as is.
if (xtb)
{
if (sa != sigargs)
{
Py_XDECREF(oxtype);
Py_XDECREF(oxvalue);
Py_XDECREF(oxtb);
}
PyErr_Restore(xtype, xvalue, xtb);
}
else if (sa == sigargs)
{
PyErr_Restore(xtype, xvalue, xtb);
}
else
{
// Discard the latest exception and restore the original one.
Py_XDECREF(xtype);
Py_XDECREF(xvalue);
Py_XDECREF(xtb);
PyErr_Restore(oxtype, oxvalue, oxtb);
}
break;
}
// If this is the first attempt, save the exception.
if (sa == sigargs)
{
oxtype = xtype;
oxvalue = xvalue;
oxtb = xtb;
}
else
{
Py_XDECREF(xtype);
Py_XDECREF(xvalue);
Py_XDECREF(xtb);
}
// Create the new argument tuple.
PyObject *nsa = PyTuple_GetSlice(sa, 0, PyTuple_GET_SIZE(sa) - 1);
if (!nsa)
{
// Tidy up.
Py_XDECREF(oxtype);
Py_XDECREF(oxvalue);
Py_XDECREF(oxtb);
break;
}
Py_DECREF(sa);
sa = nsa;
}
Py_DECREF(sfunc);
Py_XDECREF(sref);
Py_DECREF(sa);
return 0;
}
// Compare two slots to see if they are the same.
bool qtlib_same_slot(const sipSlot *sp, PyObject *rxObj, const char *slot)
{
// See if they are signals or Qt slots, ie. they have a name.
if (slot)
{
if (!sp->name || sp->name[0] == '\0')
return false;
return (qstrcmp(sp->name, slot) == 0 && sp->pyobj == rxObj);
}
// See if they are pure Python methods.
if (PyMethod_Check(rxObj))
{
if (sp->pyobj)
return false;
return (sp->meth.mfunc == PyMethod_GET_FUNCTION(rxObj)
&& sp->meth.mself == PyMethod_GET_SELF(rxObj)
#if PY_MAJOR_VERSION < 3
&& sp->meth.mclass == PyMethod_GET_CLASS(rxObj)
#endif
);
}
// See if they are wrapped C++ methods.
if (PyCFunction_Check(rxObj))
{
if (!sp->name || sp->name[0] != '\0')
return false;
return (sp->pyobj == PyCFunction_GET_SELF(rxObj) &&
qstrcmp(&sp->name[1], ((PyCFunctionObject *)rxObj)->m_ml->ml_name) == 0);
}
// The objects must be the same.
return (sp->pyobj == rxObj);
}
// Implement QObject.connect().
PyObject *qpycore_qobject_connect(sipErrorState *estate, QObject *qtx,
PyObject *txObj, PyObject *sigObj, PyObject *rxObj, PyObject *slotObj,
int type)
{
bool res;
const char *sig = pyqt4_get_signal(sigObj);
if (!sig)
{
*estate = sipBadCallableArg(1, sigObj);
return 0;
}
const char *slot;
QObject *qrx;
if (slotObj)
{
slot = pyqt4_get_slot(slotObj);
if (!slot)
{
*estate = sipBadCallableArg(3, slotObj);
return 0;
}
if ((*estate = QObjectFromPy(rxObj, &qrx)) != sipErrorNone)
{
if (*estate == sipErrorContinue)
*estate = sipBadCallableArg(2, rxObj);
return 0;
}
if (isQtSignal(slot))
qrx = resolveSignal(qrx, &slot);
}
else
{
qrx = qpycore_create_universal_slot((sipWrapper *)txObj, sig, rxObj, 0,
&slot, 0);
if (!qrx)
{
*estate = sipErrorFail;
return 0;
}
#if SIP_VERSION < 0x050000
sipSetPossibleProxy((sipSimpleWrapper *)txObj);
#endif
}
qtx = resolveSignal(qtx, &sig);
Py_BEGIN_ALLOW_THREADS
res = QObject::connect(qtx, sig, qrx, slot, (Qt::ConnectionType)type);
Py_END_ALLOW_THREADS
return PyBool_FromLong(res);
}
// Implement QObject.disconnect().
PyObject *qpycore_qobject_disconnect(sipErrorState *estate, QObject *qtx,
PyObject *sigObj, PyObject *rxObj, PyObject *slotObj)
{
bool res;
const char *sig = pyqt4_get_signal(sigObj);
if (!sig)
{
*estate = sipBadCallableArg(1, sigObj);
return 0;
}
const char *slot;
QObject *qrx;
if (slotObj)
{
slot = pyqt4_get_slot(slotObj);
if (!slot)
{
*estate = sipBadCallableArg(3, slotObj);
return 0;
}
if ((*estate = QObjectFromPy(rxObj, &qrx)) != sipErrorNone)
{
if (*estate == sipErrorContinue)
*estate = sipBadCallableArg(2, rxObj);
return 0;
}
if (isQtSignal(slot))
qrx = qpycore_find_signal(qrx, &slot);
}
else
{
qrx = PyQtProxy::findSlotProxy(qtx, sig, rxObj, 0, &slot);
}
qtx = qpycore_find_signal(qtx, &sig);
Py_BEGIN_ALLOW_THREADS
res = QObject::disconnect(qtx, sig, qrx, slot);
// Delete it if it is a universal slot as this will be it's only
// connection. If the slot is actually a universal signal then it should
// leave it in place.
PyQtProxy::mutex->lock();
PyQtProxy::ProxyHash::const_iterator it(PyQtProxy::proxy_slots.begin());
while (it != PyQtProxy::proxy_slots.end())
{
PyQtProxy *up = it.value();
if (up == qrx)
{
// If we are disconnecting within the slot that is connected then
// disable() will make sure the proxy isn't deleted until the slot
// returns.
up->disable();
break;
}
++it;
}
PyQtProxy::mutex->unlock();
Py_END_ALLOW_THREADS
return PyBool_FromLong(res);
}
// Free the resources of a slot.
void qtlib_free_slot(sipSlot *slot)
{
if (slot->name)
{
sipFree(slot->name);
}
else if (slot->weakSlot == Py_True)
{
Py_DECREF(slot->pyobj);
}
// Remove any weak reference.
Py_XDECREF(slot->weakSlot);
}
// Initialise a slot, returning 0 if there was no error. If the signal was a
// Qt signal, then the slot may be a Python signal or a Python slot. If the
// signal was a Python signal, then the slot may be anything.
int qtlib_save_slot(sipSlot *sp, PyObject *rxObj, const char *slot)
{
sp->weakSlot = 0;
if (!slot)
{
sp->name = 0;
if (PyMethod_Check(rxObj))
{
// Python creates methods on the fly. We could increment the
// reference count to keep it alive, but that would keep "self"
// alive as well and would probably be a circular reference.
// Instead we remember the component parts and hope they are still
// valid when we re-create the method when we need it.
saveMethod(&sp->meth, rxObj);
// Notice if the class instance disappears.
sp->weakSlot = getWeakRef(sp->meth.mself);
// This acts a flag to say that the slot is a method.
sp->pyobj = 0;
}
else
{
PyObject *self;
// We know that it is another type of callable, ie. a
// function/builtin.
if (PyCFunction_Check(rxObj) &&
(self = PyCFunction_GET_SELF(rxObj)) != NULL &&
PyObject_TypeCheck(self, sipSimpleWrapper_Type))
{
// It is a wrapped C++ class method. We can't keep a copy
// because they are generated on the fly and we can't take a
// reference as that may keep the instance (ie. self) alive.
// We therefore treat it as if the user had specified the slot
// at "obj, SLOT('meth()')" rather than "obj.meth" (see below).
const char *meth;
// Get the method name.
meth = ((PyCFunctionObject *)rxObj)->m_ml->ml_name;
if ((sp->name = (char *)sipMalloc(strlen(meth) + 2)) == NULL)
return -1;
// Copy the name and set the marker that it needs converting to
// a built-in method.
sp->name[0] = '\0';
strcpy(&sp->name[1], meth);
sp->pyobj = self;
sp->weakSlot = getWeakRef(self);
}
else
{
// Give the slot an extra reference to keep it alive and
// remember we have done so by treating weakSlot specially.
Py_INCREF(rxObj);
sp->pyobj = rxObj;
Py_INCREF(Py_True);
sp->weakSlot = Py_True;
}
}
}
else if ((sp->name = sipStrdup(slot)) == NULL)
{
return -1;
}
else if (isQtSlot(slot))
{
// The user has decided to connect a Python signal to a Qt slot and
// specified the slot as "obj, SLOT('meth()')" rather than "obj.meth".
char *tail;
// Remove any arguments.
if ((tail = strchr(sp->name,'(')) != NULL)
*tail = '\0';
// A bit of a hack to indicate that this needs converting to a built-in
// method.
sp->name[0] = '\0';
// Notice if the class instance disappears.
sp->weakSlot = getWeakRef(rxObj);
sp->pyobj = rxObj;
}
else
// It's a Qt signal.
sp->pyobj = rxObj;
return 0;
}
// Check that a Python object was returned by SIGNAL(), or is a signal object,
// and return the string.
const char *pyqt4_get_signal(PyObject *sig_obj)
{
const char *sig = pyqt4_get_pyqtsignal_parts(sig_obj, 0);
if (!sig && SIPBytes_Check(sig_obj))
{
sig = SIPBytes_AS_STRING(sig_obj);
if (!isQtSignal(sig))
sig = 0;
}
return sig;
}
// Check that a Python object was returned by SLOT() or SIGNAL() and return the
// string.
const char *pyqt4_get_slot(PyObject *slot_obj)
{
if (SIPBytes_Check(slot_obj))
{
const char *slot = SIPBytes_AS_STRING(slot_obj);
if (isQtSlot(slot) || isQtSignal(slot))
return slot;
}
return 0;
}
// Check that a Python object wraps a QObject and return it.
static sipErrorState QObjectFromPy(PyObject *obj, QObject **qobjp)
{
// We check the type first to allow type errors to continue to the next
// overload.
if (!PyObject_TypeCheck(obj, sipTypeAsPyTypeObject(sipType_QObject)))
return sipErrorContinue;
void *cpp = sipGetCppPtr((sipSimpleWrapper *)obj, sipType_QObject);
if (!cpp)
return sipErrorFail;
*qobjp = reinterpret_cast<QObject *>(cpp);
return sipErrorNone;
}
// Return a usable signal, creating a new universal signal if needed.
static QObject *resolveSignal(QObject *qtx, const char **sig)
{
QObject *new_qtx = qpycore_find_signal(qtx, sig);
if (!new_qtx)
new_qtx = qpycore_create_universal_signal(qtx, sig);
return new_qtx;
}
// Return a weak reference to the given object.
static PyObject *getWeakRef(PyObject *obj)
{
PyObject *wr = PyWeakref_NewRef(obj, NULL);
if (!wr)
PyErr_Clear();
return wr;
}
// Implement strdup() using sipMalloc().
static char *sipStrdup(const char *s)
{
char *d;
if ((d = (char *)sipMalloc(strlen(s) + 1)) != NULL)
strcpy(d,s);
return d;
}
// Save the components of a Python method.
static void saveMethod(sipPyMethod *pm, PyObject *meth)
{
pm->mfunc = PyMethod_GET_FUNCTION(meth);
pm->mself = PyMethod_GET_SELF(meth);
#if PY_MAJOR_VERSION < 3
pm->mclass = PyMethod_GET_CLASS(meth);
#endif
}
|