1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
|
// This is the signal/slot helper code for SIP.
//
// Copyright (c) 2010 Riverbank Computing Limited <info@riverbankcomputing.com>
//
// This file is part of PyQt.
//
// This file may be used under the terms of the GNU General Public
// License versions 2.0 or 3.0 as published by the Free Software
// Foundation and appearing in the files LICENSE.GPL2 and LICENSE.GPL3
// included in the packaging of this file. Alternatively you may (at
// your option) use any later version of the GNU General Public
// License if such license has been publicly approved by Riverbank
// Computing Limited (or its successors, if any) and the KDE Free Qt
// Foundation. In addition, as a special exception, Riverbank gives you
// certain additional rights. These rights are described in the Riverbank
// GPL Exception version 1.1, which can be found in the file
// GPL_EXCEPTION.txt in this package.
//
// Please review the following information to ensure GNU General
// Public Licensing requirements will be met:
// http://trolltech.com/products/qt/licenses/licensing/opensource/. If
// you are unsure which license is appropriate for your use, please
// review the following information:
// http://trolltech.com/products/qt/licenses/licensing/licensingoverview
// or contact the sales department at sales@riverbankcomputing.com.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
#include <string.h>
#include <Python.h>
#include <QByteArray>
#include <QMetaObject>
#include <QMutex>
#include <QObject>
#include "qpycore_chimera.h"
#include "qpycore_pyqtproxy.h"
#include "qpycore_pyqtpyobject.h"
#include "qpycore_sip.h"
#include "qpycore_sip_helpers.h"
// Forward declarations.
static PyQtShortcircuitSignalProxy *find_shortcircuit_signal(QObject *qtx,
const char **sig);
static PyQtProxy *find_signal(QObject *qtx, const QByteArray &sig);
static void emit_shortcircuit_signal(QObject *tx, const char *sig,
PyObject *sigargs);
static bool is_shortcircuit_signal(const char *sig);
// Find an existing Python short-circuited signal proxy. Returns a pointer to
// the instance or 0 there wasn't one.
static PyQtShortcircuitSignalProxy *find_shortcircuit_signal(QObject *qtx,
const char **sig)
{
PyQtShortcircuitSignalProxy *proxy = PyQtShortcircuitSignalProxy::find(qtx, *sig);
if (proxy)
*sig = SIGNAL(pysignal(const PyQt_PyObject &));
return proxy;
}
// Find an existing Python signal proxy. Returns a pointer to the instance or
// 0 there wasn't one.
static PyQtProxy *find_signal(QObject *qtx, const QByteArray &sig)
{
PyQtProxy::ProxyHash::const_iterator it(PyQtProxy::proxy_signals.find(qtx));
while (it != PyQtProxy::proxy_signals.end() && it.key() == qtx)
{
PyQtProxy *proxy = it.value();
if (proxy->signature == sig)
return proxy;
++it;
}
return 0;
}
// Find an existing signal emitter for the given object and signature. Returns
// a pointer to the emitter or 0 if there wasn't one, and updates the signature
// if necessary.
QObject *qpycore_find_signal(QObject *qtx, const char **sig)
{
// See if it a short-circuit signal.
if (is_shortcircuit_signal(*sig))
return find_shortcircuit_signal(qtx, sig);
// See if the object can be used itself.
QByteArray norm_sig = QMetaObject::normalizedSignature(&(*sig)[1]);
if (qtx->metaObject()->indexOfSignal(norm_sig.constData()) >= 0)
return qtx;
// Look for an existing proxy.
return find_signal(qtx, norm_sig);
}
// Find an existing signal emitter for the given object and signature. Returns
// a pointer to the emitter or 0 if there wasn't one, and updates the signature
// if necessary.
extern "C" void *sipQtFindUniversalSignal(void *tx, const char **sig)
{
return qpycore_find_signal(reinterpret_cast<QObject *>(tx), sig);
}
// Factory function to create a signal emitter for the given object and
// signature. Returns a pointer to the emitter or 0 if there was an error, and
// updates the signature if necessary.
extern "C" void *sipQtCreateUniversalSignal(void *tx, const char **sigp)
{
QObject *proxy;
QObject *qtx = reinterpret_cast<QObject *>(tx);
const char *sig = *sigp;
// See if it a short-circuit signal.
if (is_shortcircuit_signal(sig))
{
Py_BEGIN_ALLOW_THREADS
proxy = new PyQtShortcircuitSignalProxy(qtx);
proxy->setObjectName(sig);
Py_END_ALLOW_THREADS
*sigp = SIGNAL(pysignal(const PyQt_PyObject &));
}
else
{
Py_BEGIN_ALLOW_THREADS
proxy = new PyQtProxy(qtx, &sig[1]);
Py_END_ALLOW_THREADS
}
return proxy;
}
// Factory function to create a universal slot instance. Returns a pointer to
// the instance or 0 if there was an error.
extern "C" void *sipQtCreateUniversalSlot(sipWrapper *tx, const char *sig,
PyObject *rxObj, const char *slot, const char **member, int flags)
{
// Get the receiver C++ QObject if there is one.
PyObject *qrxObj;
if (slot)
qrxObj = rxObj;
else if (PyMethod_Check(rxObj))
qrxObj = PyMethod_GET_SELF(rxObj);
else
qrxObj = 0;
QObject *qrx = 0;
if (qrxObj)
{
int iserr = 0;
void *rx = sipForceConvertToType(qrxObj, sipType_QObject, 0,
SIP_NOT_NONE|SIP_NO_CONVERTORS, 0, &iserr);
if (iserr)
PyErr_Clear();
else
qrx = reinterpret_cast<QObject *>(rx);
}
PyQtProxy *res;
Py_BEGIN_ALLOW_THREADS
res = new PyQtProxy(tx, sig, rxObj, slot, member, flags);
if (res->real_slot.signature)
{
// If the receiver is a QObject then move the proxy to the same thread.
if (qrx)
res->moveToThread(qrx->thread());
}
else
{
delete res;
res = 0;
}
Py_END_ALLOW_THREADS
return res;
}
// Dispose of a receiver that might be a universal slot.
extern "C" void sipQtDestroyUniversalSlot(void *rx)
{
Py_BEGIN_ALLOW_THREADS
PyQtProxy::mutex->lock();
PyQtProxy::ProxyHash::const_iterator it(PyQtProxy::proxy_slots.begin());
while (it != PyQtProxy::proxy_slots.end())
{
PyQtProxy *up = it.value();
if (up == reinterpret_cast<QObject *>(rx))
{
// If we are disconnecting within the slot that is connected then
// disable() will make sure the proxy isn't deleted until the slot
// returns.
up->disable();
break;
}
++it;
}
PyQtProxy::mutex->unlock();
Py_END_ALLOW_THREADS
}
// Search for the universal slot connected to a particular Qt signal.
extern "C" void *sipQtFindSlot(void *tx, const char *sig, PyObject *rxObj,
const char *slot, const char **member)
{
return PyQtProxy::findSlotProxy(tx, sig, rxObj, slot, member);
}
// Connect a Qt signal to a Qt slot.
extern "C" int sipQtConnect(void *tx, const char *sig, void *rx, const char *slot, int type)
{
// Unlike Qt3, Qt4 does not check that the signal and slot arguments are
// compatible in a release build. I think this is a bug, so we do the
// missing check here.
#if defined(QT_NO_DEBUG)
if (!QMetaObject::checkConnectArgs(sig, slot))
return 0;
#endif
int res;
Py_BEGIN_ALLOW_THREADS
res = QObject::connect(reinterpret_cast<QObject *>(tx), sig,
reinterpret_cast<QObject *>(rx), slot,
(Qt::ConnectionType)type);
Py_END_ALLOW_THREADS
return res;
}
// Disconnect a Qt signal from a Qt slot.
extern "C" int sipQtDisconnect(void *tx, const char *sig, void *rx, const char *slot)
{
int res;
Py_BEGIN_ALLOW_THREADS
res = QObject::disconnect(reinterpret_cast<QObject *>(tx), sig,
reinterpret_cast<QObject *>(rx), slot);
Py_END_ALLOW_THREADS
return res;
}
// See if two signal or slot names are the same.
extern "C" int sipQtSameSignalSlotName(const char *s1, const char *s2)
{
// Signal and slot names are always normalised so a simple string
// comparison will do.
return (qstrcmp(s1, s2) == 0);
}
// Return the next slot for a particular transmitter. This will be called with
// the GIL locked.
extern "C" sipSlot *sipQtFindSipslot(void *tx, void **context)
{
PyQtProxy::ProxyHash::const_iterator it;
PyQtProxy::ProxyHash::const_iterator *itp = *reinterpret_cast<PyQtProxy::ProxyHash::const_iterator **>(context);
// Use the existing context if there is one, otherwise initialise a new
// one.
if (itp)
it = *itp;
else
{
it = PyQtProxy::proxy_slots.find(tx);
itp = new PyQtProxy::ProxyHash::const_iterator(it);
*context = itp;
}
if (it != PyQtProxy::proxy_slots.end() && it.key() == tx)
{
PyQtProxy *up = it++.value();
// Save the current context.
*itp = it;
return &up->real_slot.sip_slot;
}
// Discard the context as it is no longer needed.
delete itp;
*context = 0;
return 0;
}
// Emit the given signal from the given object.
bool qpycore_qobject_emit(QObject *qtx, const char *sig, PyObject *sigargs)
{
// We need to explicitly check for anything that uses a proxy, so we might
// as well check for everything.
if (qtx->signalsBlocked())
return true;
// See if it is a short-circuit signal.
if (is_shortcircuit_signal(sig))
{
emit_shortcircuit_signal(qtx, sig, sigargs);
return true;
}
QByteArray norm_sig = QMetaObject::normalizedSignature(&sig[1]);
int signal_index = qtx->metaObject()->indexOfSignal(norm_sig.constData());
// If the signal doesn't exist then see if there is a proxy for it.
if (signal_index < 0)
{
PyQtProxy *proxy = find_signal(qtx, norm_sig);
// Unfortunately we can't distinguish between a Qt name with a typo and
// an unconnected Python signal - so we just ignore the emit.
if (!proxy)
return true;
// Use the proxy instead.
qtx = proxy;
signal_index = proxy->metaObject()->indexOfSignal(norm_sig.constData());
}
// Parse the signature.
const Chimera::Signature *parsed_signature = Chimera::parse(norm_sig,
"a signal argument");
if (!parsed_signature)
return false;
bool ok = qpycore_emit(qtx, signal_index, parsed_signature, sigargs);
delete parsed_signature;
return ok;
}
// Emit a signal based on a parsed signature.
bool qpycore_emit(QObject *qtx, int signal_index,
const Chimera::Signature *parsed_signature, PyObject *sigargs)
{
const QList<const Chimera *> &args = parsed_signature->parsed_arguments;
if (args.size() != PyTuple_GET_SIZE(sigargs))
{
const char *sig = parsed_signature->signature.constData();
// Bound signals include the type character.
if (*sig == '2')
++sig;
PyErr_Format(PyExc_TypeError,
"signal %s has %d argument(s) but %d provided", sig,
args.size(), (int)PyTuple_GET_SIZE(sigargs));
return false;
}
// Convert the arguments.
QList<Chimera::Storage *> values;
void **argv = new void *[1 + args.size()];
argv[0] = 0;
QList<const Chimera *>::const_iterator it = args.constBegin();
for (int a = 0; it != args.constEnd(); ++a)
{
PyObject *arg_obj = PyTuple_GET_ITEM(sigargs, a);
Chimera::Storage *val = (*it)->fromPyObjectToStorage(arg_obj);
if (!val)
{
const char *sig;
// Use the docstring if there is one and it is auto-generated.
sig = parsed_signature->docstring;
if (!sig || *sig != '\1')
{
sig = parsed_signature->signature.constData();
// Bound signals include the type character.
if (*sig == '2')
++sig;
}
else
{
// Skip the auto-generated marker.
++sig;
}
// Mimic SIP's exception text.
PyErr_Format(PyExc_TypeError,
"%s: argument %d has unexpected type '%s'", sig,
a + 1, Py_TYPE(arg_obj)->tp_name);
delete[] argv;
qDeleteAll(values.constBegin(), values.constEnd());
return false;
}
argv[1 + a] = val->address();
values << val;
++it;
}
Py_BEGIN_ALLOW_THREADS
QMetaObject::activate(qtx, signal_index, signal_index, argv);
Py_END_ALLOW_THREADS
delete[] argv;
qDeleteAll(values.constBegin(), values.constEnd());
return true;
}
// Emit a shortcircuit signal.
static void emit_shortcircuit_signal(QObject *tx, const char *sig,
PyObject *sigargs)
{
// Find the proxy emitter. Unfortunately we can't distinguish between a Qt
// name with a typo and an unconnected Python signal - so we just ignore
// the emit.
PyQtShortcircuitSignalProxy *proxy = PyQtShortcircuitSignalProxy::find(tx, sig);
if (proxy)
{
PyQt_PyObject wrapped_args(sigargs);
Py_BEGIN_ALLOW_THREADS
proxy->emit_signal(wrapped_args);
Py_END_ALLOW_THREADS
}
}
// Return true if the signature is of a short-circuit signal.
static bool is_shortcircuit_signal(const char *sig)
{
return !strchr(sig, '(');
}
|